@\ CERN Program Library Long Writeup D506

NIU

Function Minimization and Error Analysis

Reference Manual

Version 94.1

F. James

Computing and Networks Division

CERN Geneva, Switzerland

Copyright Notice

MINUIT — Function Minimization and Error Analysis
CERN Program Library entry D506
(© Copyright CERN, Geneva 1994

Copyright and any other appropriate legal protection of these computer programs and associated
documentation reserved in all countries of the world.

These programs or documentation may not be reproduced by any method without prior written
consent of the Director-General of CERN or his delegate.

Permission for the usage of any programs described herein is granted apriori to those scientific
institutes associated with the CERN experimental program or with whom CERN has concluded a
scientific collaboration agreement.

Reguests for information should be addressed to:

CERN Program Library Office

CERN-CN Division

CH-1211 Geneva 23

Switzerland

Tel. +41 22 767 4951

Fax. +41 22 767 7155

Bitnet: CERNLIB@CERNVM

DECnet: VXCERN::CERNLIB (node 22.190)
Internet: CERNLIB@CERNVM.CERN.CH

Trademark notice: All trademarks appearing in this guide are acknowledged as such.

Contact Person Fred James/CN (Fred.James@cern.ch)
Technical Realizatian Michel Goossens/CN (goossens@cern.ch)

Edition — March 1994

Foreword
What Minuit is intended to do.

Minuit is conceived as a tool to find the minimum value of a multi-parameter function and analyze
the shape of the function around the minimum. The principal application is foreseen for statistical
analysis, working on chisquare or log-likelihood functions, to compute the best-fit parameter values and
uncertainties, including correlations between the parameters. It is especially suited to handle difficult
problems, including those which may require guidance in order to find the correct solution.

What Minuit is not intended to do.

Although Minuit will of course solve easy problems faster than complicated ones, it is not intended for
the repeated solution of identically parametrized problems (such as track fitting in a detector) where a
specialized program will in general be much more efficient.

Further remarks.

In thismanual examples areinmonotype face and stringsto be input by the user are underlined. In
the index the page where aroutine is defined isin bold, page numbers where aroutineis referenced are
in normal type. In the description of the routines a * following the name of a parameter indicates that
thisis an output parameter. If another * precedes a parameter in the calling sequence, the parameter in
guestion is both an input and output parameter.

This document has been produced using LATEX [1] withthe cernman style option, developed at CERN. A
compressed PostScript fileminuit. ps. gz, containing a complete printable version of this manual, can
be obtained from any CERN machine by anonymous ftp as follows (commands to be typed by the user
are underlined):

ftp asisOl.cern.ch

Trying 128.141.201.136...

Connected to asisOl.cern.ch.

220 agis01 FTP server (Version 6.10 ...) ready.

Name (asisOl:username): anonymous

Password: yourmailaddress

230 Guest login ok, access restrictions apply.
ftp> cd cernlib/doc/ps.dir

ftp> get minuit.ps

ftp> quit

Table of Contents

1 Minuit Basic Concepts.
1.1 TheOrganizationof Minuit. o v ittt
1.2 Internal and External Parameters.o oL o e e
1.2.1 Thetransformation for parameterswithlimits.
13 MINUItSIraegy. . . .« v v v v e
14 Parameter Errors. o v o o e
141 FCN Normalization and the ERRor definition.
142 TheErrorMatrix. 0 i e e e e e e e
143 MINOSEIOrS. . . . o i e e e e e e e e e e e e e e e e
144 Contour Plotting o v v i i e e e e e

2 Minuit Installation.
21 MIinUtREEASES. o o e e e e e e e e e e e e e
22 MINUItVErSIONS. . . v v v o s e
2.3 InterferencewithOtherPackages o o i ittt it
24 Floating-point Precision o o o v v e e e e e e e

3 How to Use Minuit
31 TheFunctionFCN. o o o i e e e e e e
3.2 RunningMinuitin Data-drivenMode. L oo
321 DaatodriveMinuit e e
322 Bacchandinteractiverunning. o o e
3.3 Running Minuitin Fortran-callablemode.,
3.3.1 MNINIT: InitidizeMinuito oo v o e
3.3.2 MNSETI: Specify atitleforaproblem.,
3.3.3 MNPARM: Define aparameter, assigning valuesfromvariables.
3.34 MNPARS: Define a parameter, assigning values from character string
335 MNEXCM: ExecuteaMinuitcommand
3.3.6 MNCOMD: Execute a Minuit command specified as a character string
3.3.7 MNPOUT: Get thecurrent valueof aparameter
3.3.8 MNSTAT: Get the current statusof minimization
3.39 MNEMAT: Get the current value of the covariance matrix
3.3.10 MNERRS: Accesscurrent parameter errors v v v v v v v v v e e .
3.3.11 MNCONT: Find afunction contour with the MNContour method
3.3.12 MNINTR: Switchto command-readingmode
3.3.13 MNINPU: Set logical unitnumber forinput

4 Minuit Commands

I B N N R R R L

0 NN N

©

9
10
11

13
13
13
14
14
15
15
16
16
16
17
17
18
18

19

5 How to get the right answer from Minuit.

5.1

52
5.3

5.4
55

5.6
5.7

WhichMinimizertoUse. o 0 i e e e
511 MIGRAD . . . o e
512 MINIMIZE @ e
513 SCAN . o e
514 SEEK o e e e e e e e e e e e e
515 SIMPLEX e
Floatingpoint Precision o o v it i i et e e e
Parameter LimitS o o oo e e e
53.1 GettingtheRight MinimumwithLimits.
5.3.2 Getting theright parameter errorswithlimits.
Fixingand ReleasingParameters o o e
Interpretation of Parameter Errors o oL e e
55.1 Statistical Interpretation. oL e
55.2 TheRdiability of Minuit Error Estimates.
Convergencein MIGRAD, and Positive-definiteness.
Additional Trouble-shooting« . v v it e

6 A complete example

6.1
6.2

Adatadrivenfit e e e e e e e e e e e
Thesame examplein Fortran-callablemode.

7 Interpretation of the errors on parameters as given by Minuit

7.1

7.2

7.3

Function normalizationand ERROR DEF o o vt i v i i vt e e .
711 Chi-sguarenormalization e e e e
7.1.2 Likdihood normalization e
Non-linearities: MIGRAD VErsUSHESSE versusMINOS o v v v v v v ..
721 Errorsprintedby Minuit Lo oo
7.2.2 Errorsafter MIGRAD (Or MINIMIZE) . . . v v v v v v vt v et e e e e e a s
723 Errorsafter HESSE o v v i i et e e e e e e e e e e e e e e e
724 Errorsby MINOS . . v v v v i e e e e e e e e e e e e e e e e e e e
Multiparameter errorsS v v v o e e e e e e e e e e e e e e e
731 TheErrorMatriX e e e e e e
7.3.2 MINOS withseveral freeParameters oo oL
7.3.3 Probability content of confidenceregions 0oL

List of Figures

7.1
7.2
7.3
7.4

MINOS errorsforparameter 1. o v v v v it e e e e e e e e e e
MINOS error confidenceregionforparameter 1. o oL
Rectangular confidence region for parametersland2
Optimal confidenceregionfor parametersland2

List of Tables

7.1 Tableof UP for multi-parameter confidence regions

Chapter 1: Minuit Basic Concepts.
1.1 The Organization of Minuit.

The Minuit package acts on a multiparameter Fortran function to which we give the generic name FCN,
although the actual name may be chosen by the user. This function must be defined and supplied by the
user (or by an intermediate program such as HBOOK][2] or PAWI[3], in case Minuit is being used under
the control of such an intermediate program). The value of FCN will in general depend on one or more
variable parameters whose meaning is defined by the user (or by the intermediate program), but whose
trial values are determined by Minuit according to what the user requests should be doneto FCN (usually
minimize it).

To take a simple example, suppose the problem isto fit a polynomial through a set of data points. Then
the user would write an FCN which calculates the chisquare between a polynomia and the data; the
variable parameters of FCN would be the coefficients of the polynomials. Using Minuit commands, the
user would request Minuit to minimize FCN with respect to the parameters, that is, find those values of
the coefficients which give the lowest value of chisquare.

The user must therefore supply, in addition to the function to be analyzed, a set of commands to instruct
Minuit what analysisis wanted. The commands may be given in several different forms:

— Asadatafile, corresponding to the traditional “data cards’, for batch processing;
— Typed in at execution time at aterminal, for interactive running;

— Coded in Fortran in the calling program, which allows looping, conditional execution, and all the
other possibilitiesof Fortran, but not interactivity, sinceit must be compiled before execution. This
issometimesknown as running Minuitin“slave mode”. HBOOK and PAW use Minuit inthisway.

It isalso possibleto mix any of the above forms, for example starting off afit with a standard command
file, then turning it over to the interactive user for the final command steps.

1.2 Internal and External Parameters.

Each of the parametersto FCN is defined by the user as belonging to one of the following types:

Freely variable: allowed to take on any value.

Variable with limits: allowed to vary only between two limits specified by the user.

Fixed: originaly defined as variable, but now taking on only the value the parameter
had at the moment it wasfixed, or avalue later assigned by the user.

Constant: taking on only one value as specified by the user.

Undefined: never defined by user.

The user, in FCN, must of course be able to “see” al types of defined parameters, and he therefore has
accessto what we call the external parameter listhat is, the parameters as he defined them. On the other
hand, theinternal Minuit minimizing routines only want to “ see” variable parameters without limits, and
so they have access only to the internal parameter listwhich is created from the externa list by the
following transformation:

(1) Squeeze out all parameters that are not variable.

1

2 Chapter 1. Minuit Basic Concepts.

(2) Transform al variable parameters with limits, so that the transformed parameter can vary without
limits. (Seethenext sectionfor detailsconcerningthistransformation.) Becausethistransformation
isnon-linear, it is recommended to avoid putting limits on parameters where they are not needed.

As an example, supposethat the user has defined the following parameters:

— Parameter 1, constant.

— Parameter 3, freely variable.

— Parameter 10, variable with limits.
— Parameter 11, constant.

— Parameter 22, freely variable.

— All others undefined.

Then the internal parameter list would be as follows:

— Internal parameter 1 = external parameter 3.
— Internal parameter 2 = external parameter 10, transformed appropriately.
— Interna parameter 3 = external parameter 22.

In the above example, Minuit considersthat the number of external parametersis 22 (the highest external
parameter number defined), and the number of internal parameters is 3. The latter number is passed
as NPAR to FCN. Thisis the number which determines, for example, the size of the error matrix of the
parameters, since only variable parameters have errors.

An important feature of Minuit is that parameters are allowed to change types during a Minuit run.
Several Minuit commands are available to make variable parameters fixed and vice-versa; to impose,
change, or remove limitsfrom variable parameters; and even to define completely new parameters at any
time during arun. In addition, some Minuit routines (notably the MINOS error analysis) cause one or
more variable parameters to be temporarily fixed during the calculation. Therefore, the correspondence
between externa and internal parameter listsisin general a dynamic one, and the value of NPAR is not
necessarily constant.

1.2.1 The transformation for parameters with limits.

For variable parameters with limits, Minuit uses the following transformation:

P, = arcsin (2 PZXt__aa — 1) P, =a+ b 5 a (sin Py + 1)

so that the internal value P;,; can take on any value, whilethe external value P.,; can take on valuesonly
between the lower limit ¢ and the upper limit 5. Since the transformation is necessarily non-linear, it
would transform a nice linear problem into a nasty non-linear one, which isthe reason why limits should
be avoided if not necessary. In addition, the transformation does require some computer time, so it Slows
down the computation a little bit, and more importantly, it introduces additional numerical inaccuracy
into the problem in addition to what is introduced in the numerical calculation of the FCN value. The
effects of non-linearity and numerical roundoff both become more important as the external value gets
closer to one of the limits (expressed as the distance to nearest limit divided by distance between limits).
The user must therefore be aware of thefact that, for example, if he putslimitsof (0, 10'°) on aparameter,
then the values 0.0 and 1.0 will be indistinguishableto the accuracy of most machines.

1.3. Minuit Strategy. 3

The transformation also affects the parameter error matrix, of course, so Minuit does a transformation
of the error matrix (and the “parabolic” parameter errors) when there are parameter limits. Users
should however realize that the transformation is only a linear approximation, and that it cannot give a
meaningful result if one or more parametersisvery closeto alimit, where 8 P, /0 P.,; ~ 0. Therefore,
it is recommended that:

— Limitson variable parameters should be used only when needed in order to prevent the parameter
from taking on unphysical values.

— When a satisfactory minimum has been found using limits, the limits should then be removed if
possible, in order to perform or re-perform the error analysis without limits.

Further discussion of the effects of parameter limits may be found in the last chapter.
1.3 Minuit Strategy.

At many placesin the analysisof the user function, Minuit must decide whether to be “ safe” and waste a
few function callsin order to know whereitis, or to be“fast” and attempt to get the requested resultswith
the fewest possible calls at a certain risk of not obtaining the precision desired by the user. In order to
allow the user to influence these decisions, thereisan internal Minuit parameter ISTRAT which can be set
by the user through the command SET STRategy. Inthecurrent release, thisparameter can takeon three
integer values (0O, 1, 2), and the default valueis 1. Value O indicates to Minuit that it should economize
function calls; it isintended for cases where there are many variable parameters and/or the function takes
along time to calculate and/or the user is not interested in very precise values for parameter errors. On
the other hand, the value 2 indicatesthat Minuit is allowed to waste function callsin order to be sure that
all values are precise; it isintended for cases where the function is evaluated in a very short time and/or
where the parameter errors must be calcul ated reliably

1.4 Parameter Errors.

Minuit is usually used to find the “best” values of a set of parameters, where “best” is defined as those
values which minimize a given function, FCN. Thewidth of the function minimum, or more generally, the
shape of the function in some neighbourhood of the minimum, gives information about the uncertainty
in the best parameter values, often called by physiciststhe parameter errors An important feature of

Minuit isthat it offers several toolsto analyze the parameter errors.

1.4.1 FCN Normalization and the ERRor definition.

Whatever method isused to cal cul ate the parameter errors, they will depend onthe overall (multiplicative)
normalization of FCN, in the sensethat if the value of FCN is everywhere multiplied by a constant 3, then
the errors will be decreased by afactor /3. Additive constants do not change the parameter errors, but
may imply a different goodness-of-fit confidence level.

Assuming that the user knows what the normalization of hisFCN means, and also that heisinterested in
parameter errors, the SET ERRordef command allows him to define what he means by one “error”, in
terms of the changein FCN valuewhich should be caused by changing one parameter by one“error”. If the
FCN isthe usual chisquarefunction (defined below), then ERRordef shouldbe set to 1.0 (the default value
anyway) if the user wants the usual one-standard-deviation errors. If FCN is a negative-log-likelihood
function, then the one-standard-deviation value for ERRORDEF is 0.5. If FCN is a chisquare, but the user
wants two-standard-deviation errors, then ERRORDEF should be = 4.0, etc.

4 Chapter 1. Minuit Basic Concepts.

Note that in the usual case where Minuit is being used to perform a fit to some experimenta data, the
parameter errors will be proportional to the uncertainty in the data, and therefore meaningful parameter
errors cannot be obtained unlessthe measurement errors of the data are known. In the common case of a
least-squaresfit, FCN is usually defined as a chisguare:

K@) =3, fespo) -) O;)Z_ c) (11)

where a is the vector of free parameters being fitted, and the ¢; are the uncertaintiesin the individual
measurements e;. |If these uncertainties are not known, and are simply left out of the calculation, then
the fit may still have meaning, but not the quantitative values of the resulting parameter errors. (Only the
relative errors of different parameters with respect to each other may be meaningful.)

If the o, are all overestimated by a factor 3, then the resulting parameter errors from the fit will be
overestimated by the same factor 3.

1.4.2 The Error Matrix.

The Minuit processors MIGRAD and HESSE normally produce an error matrix. Thismatrix isthe inverse
of the matrix of second derivatives of FCN, transformed if necessary into external coordinate space’,
and multiplied by the square root of ERRORDEF. Therefore, errors based on the Minuit error matrix take
account of all the parameter correlations, but not the non-linearities. That is, from the error matrix alone,
two-standard-deviation errors are always exactly twice as big as one-standard-deviation errors.

When the error matrix has been calculated (for example by the successful execution of a command
MIGrad or HESse) then the parameter errors printed by Minuit are the sguare roots of the diagonal
elements of thismatrix. The commands SHOw COVariance and SHOw CORrelations alow theuser to
see the off-diagonal elementsaswell. Thecommand SHOw EIGenvalues causes Minuitto calculateand
print out the eigenvalues of the error matrix, which should al be positiveif the matrix is positive-definite
(see below on Migrad and positive-definiteness).

The effect of correlations on the individual parameter errors can be seen as follows. When parameter
N is FIXed, Minuit inverts the error matrix, removes the row and column corresponding to parameter
N, and re-inverts the result. The effect on the errors of the other parameters will in general be to make
them smaller, since the component due to the uncertainty in parameter N has now been removed. (Inthe
limit that a given parameter is uncorrelated with parameter N, its error will not change when parameter
N isfixed.) However the procedure is not reversible, since Minuit forgets the original error matrix, so if
parameter N isthen RELeased, the error matrix is considered as unknown and has to be recal cul ated with
appropriate commands.

1.4.3 MINOS Errors.

The Minuit processor MINOS was probably thefirst, and may till bethe only, generally available program
to calculate parameter errors taking into account both parameter correlations and non-linearities. The
MINOS error intervalsare in general assymmetric, and may be expensive to calculate, especidly if there
are alot of free parameters and the problem is very non-linear.

! The internal error matrixmaintained by Minuit is transformed for the user into external coordinatgsut the numbering
of rows and columnsis of course still according to internal parameter numbering, since one does not want rows and columns
corresponding to parameters which are not variable. The transformation therefore affects only parameters with limits; if there
areno limits, internal and external error matrices are the same.

1.4. Parameter Errors. 5

MINOS can only operate after a good minimum has already been found, and the error matrix has been
calculated, so the MINOS command will normally follow a MIGRAD command. The MINOS error for a
given parameter is defined as the change in the value of that parameter which causes F”’ to increase by
the amount UP, where F” isthe minimum of FCN with respect to all otherfree parameters, and UP isthe
ERRordef value specified by the user (default = 1.).

The agorithm for finding the positive and negative MINOS errors for parameter N consists of varying
parameter N, each time minimizing FCN with respect to all the other NPAR-1 variable parameters, to find
numerically the two values of parameter N for which the minimum of FCN takes on the values FMIN+UP,
where FMIN isthe minimum of FCN with respect to all NPAR parameters. In order to make the procedure
as fast as possible, MINOS uses the error matrix to predict the values of al parameters at the various
sub-minimawhich it will have to find in the course of the calculation, and in the limit that the problem is
nearly linear, the predictions of MINOS will be nearly exact, requiring very few iterations. On the other
hand, when the problem is very non-linear (i.e., FCN isfar from a quadratic function of its parameters),
that is precisely the situation when MINOS is needed in order to indicate the correct parameter errors.

1.4.4 Contour Plotting

Minuit currently offers two very different procedures for finding FCN contours. They will be identified
by the corresponding command names. CONtour and MNContour.

1.4.4.1 CONtour

This procedure is designed for alineprinter or alphanumeric terminal as output device, and givesa static
picture of FCN as function of the two parameters specified by the user, that is, al the other variable
parameters (if any) are considered as temporarily fixed at their current values. First a range is chosen,
by default two current standard deviations on either side of the current best value of each of the two
parameters, and agrid size nischosen, by default 25 by 25 positionsfor the full range of each parameter.
Contour zero is defined as the current best function value F.,;,, (presumably the minimum), and then the
i*® contour is defined as where FCN has the value F,,;,, + 32 * UP. The procedure then simply evaluates
FCN at the four corners of each of the n* grid positions (which makes (n + 1)* evaluations) to determine
whether the i*® contour passes through it. The method, although not very efficient or precise, is very
robust, and capable of revealing unexpected multiplevalleys.

1.4.4.2 MNContour

The contour calculated by MNContour is dynamic, in the sense that it represents the minimum of FCN
with respect to all the other NPAR-2 parameters (if any). In statistical terms, thismeans that MNContour
takes account of the correlations between the two parameters being plotted, and all the other variable
parameters, using a procedure analogous to that of MINGS. (If thisfeature is not wanted, then the other
parameters must be FIXed before calling MNContour.) MNContour providesthe actual coordinatesof the
points around the contour, suitable for plotting with a graphics routine or by hand. The pointsare given
in counter-clockwise order around the contour. Only one contour is cal culated per command (or Fortran
cal), andthelevel is Fy,;, + UP. where UP isthe ERRordef specified by the user, or 1.0 by default. The
number of pointsto be calculated is chosen by the user (Default is 20 for the data-driven mode.). Asa
by-product, MNContour providesthe MINOS errors of the two parametersin question, since these are just
the extreme points of the contour (Use SHOw MINos to see them). In command-driven mode, a rough
(alphanumeric, not graphic) plot of the pointsis given (if PRIntlevel> 0) and the numerical values of

6 Chapter 1. Minuit Basic Concepts.

the coordinates are printed (if PRIntlevel> 1). In Fortran-callable mode, the user gets Fortran access
to the vector of point coordinates through SUBROUTINE MNCONT.

Chapter 2: Minuit Installation.
2.1 Minuit Releases.

Minuit has been extensively revised in 1989, but the usageislargely compatiblewiththat of older versions
which have been in use since before 1970. Users familiar with older releases, who have not yet used
releases from 1989 or later, must however read this manual, in order to adapt to the few changes as well
asto discover the new features and easier ways of using old features, such as free-field input.

2.2 Minuit Versions.

The program isentirely in standard portable Fortran 77, and requires no external subroutinesexcept those
defined as part of the Fortran 77 standard and onelogical function INTRAC . Theonly difference between
versionsfor different computers, apart from INTRAC, isthe floating point precision (see heading below).

As with previous releases, Minuit does not use a memory manager. This makes it easy to install and
independent of other programs, but has the disadvantage that both the memory occupation and the
maximum problem size (number of parameters) are fixed at compilation time. The old solution to this
problem, which consisted of providing “long” and “short” versions, has proved to be somewhat clumsy
and anyway insufficient for really exceptional users, so it has been abandoned in favour of a single
“standard” version.

The currently” standard” version of Minuit will handle functions of up to 100 parameters, of which not
more than 50 can be variable at one time. Because of the use of the PARAMETER statement in the Fortran
source, redimensioning for larger (or smaller) versions is very easy (although it will help to have a
source code manager or a good editor to propagate the modified PARAMETER statement through all the
subroutines, and of course it implies recompilation). The definition of what is “standard” may well
change in the light of experience (it was 35 instead of 50 variable parameters for release 89.05), and it is
likely that different installationswill wish to define it differently according to their own applications. In
any case, the dimensions used at compilation time are printed in the program header at execution time,
and the program is of course protected against the user trying to define too many parameters. The user
who finds that the version available to him istoo small (or too big) must try to convince his computer
manager to change the installation default or to provide an additional special version, or else he must
obtain the source and recompile his own version.

2.3 Interference with Other Packages

The new Minuit has been designed to interfere aslittle as possiblewith other programs or packageswhich
may be loaded at the same time. Thusit uses no memory manager or other external subroutines (except
LOGICAL FUNCTION INTRAC), al itsown subroutine names start with the lettersMN (except Minuit and
the user written routines), all COMMON block names start with the characters MN7, and the user should not
need to use explicitly any Minuit COMMON blocks.

In addition, more than one different functionscan be minimized in the same execution module, provided
the functions have different names, and provided one minimization and error analysis is completely
finished before the next one begins.

' INTRAC is available from the CERN Program Library for all common computers, and in the worst case can be replaced by
aLOGICAL FUNCTIONreturningavaueof .TRUE. or .FALSE. depending on whether or not Minuit is being used interactively.

7

8 Chapter 2. Minuit Installation.

2.4 Floating-point Precision

Itisrecommended for most applicationsto use 64-hbit floating point precision, or the nearest equivalent on
any particular machine. Thismeansthat the standard Minuitinstalled onVax, IBM and Unix workstations
will normally betheDOUBLE PRECISION version, whileonCDCandCray itwill beSINGLE PRECISION.

The arguments of the user’s FCN must of course correspond in type to the declarations compiled into the
Minuit version being used. The same is true of course for al floating-point arguments to any Minuit
routines called directly by the user in Fortran-callable mode. Furthermore, Minuit detects at execution
time the precision with which it was compiled, and expects that the calculations inside FCN will be
performed approximately to the same accuracy. (This accuracy is called EPSMAC and is printed in the
header produced by Minuit when it beginsexecution.) If the user foolsMinuit by using adoubleprecision
version but makinginternal FCN or FUTIL computationsin singleprecision, Minuit will interpret roundoff
noiseas significant and will usually either fail to find aminimum, or giveincorrect valuesfor the parameter
errors. It is therefore recommended, when using double precision (REAL*8) Minuit, to make sure al
computationsinFCN and FUTIL (if used), aswell asall subroutinescalled by FCN and FUTIL, are REAL*8,
by including the appropriate IMPLICIT declarationsin FCN and all user subroutinescalled by FCN. If for
some reason the computations cannot be done to a precision comparable with that expected by Minuit,
the user must inform Minuit of this situation with the SET EPS command.

Although 64-bit precision is recommended in general, the new Minuit is so careful to use all available
precision that in many cases, 32 bits will in fact be enough. It is therefore possible now to envisage
in some situations (for example on microcomputers or when memory is severely limited, or if 64-bit
arithmetic is very slow) the use of Minuit with 32- or 36-bit precision. With reduced precision, the user
may find that certain features sensitive to first and second differences (HESse, MINOs, MNContour) do
not work properly, in which case the calculations must be performed in higher precision.

Chapter 3: How to Use Minuit
3.1 The Function FCN.

The user must always supply a Fortran subroutine which calculates the function value to be minimized
or analyzed.

CALL FCN (NPAR,GRAD,FVAL,XVAL,IFLAG,FUTIL)

Input parameters

NPAR number of currently variable parameters.
XVAL vector of (constant and variable) parameters.
IFLAG Indicates what is to be calculated (see example below).

FUTIL Name of utilitary routine (if needed, it must be declared EXTERNAL and provided by the user).
Output parameters

FVAL The calculated function value.

GRAD The (optional) vector of first derivatives).

Note that when Minuit is being used through an intermediate package such as HBOOK or PAW, then the
FCN may be supplied by the this package.

| Example of FCN routine

SUBROUTINE FCN(NPAR,GRAD,FVAL,XVAL,IFLAG,FUTIL)

IMPLICIT DOUBLE PRECISION (A-H,0-Z) ! for 32-bit machines
DIMENSION GRAD (%) ,XVAL(*)
EXTERNAL FUTIL ! (if needed and supplied by user)
C_
IF (IFLAG .EQ. 1) THEN
C read input data,
C calculate any necessary constants, etc.
ENDIF
IF (IFLAG .EQ. 2) THEN
C calculate GRAD, the first derivatives of FVAL
¢ (this is optional)
ENDIF
C Always calculate the value of the function, FVAL,
C which is usually a chisquare or log likelihood.
C Optionally, calculation of FVAL may involve
FTHEO = FUTIL(....)
C It is responsability of user to pass
C any parameter values needed by FUTIL,
¢ either through arguments, or in a COMMON block
IF (IFLAG .EQ. 3) THEN
C will come here only after the fit is finished.
C Perform any final calculations, output fitted data, etc.
ENDIF
RETURN
END

The name of the subroutine may be chosen freely (in documentation we give it the generic name FCN)
and must be declared EXTERNAL in the user’s program which calls Minuit (in data-driven mode) or calls

9

10 Chapter 3. How to Use Minuit

Minuit subroutines (in Fortran-callable mode). The meaning of the parameters XVAL is of course defined
by the user, who uses the values of those parameters to calculate hisfunction value. The starting values
must be specified by the user (either by supplying parameter definitions from a file, or typing them
a the terminal, in data-driven mode; or by calling subroutine MNPARM in Fortran-callable mode), and
later values are determined by Minuit as it searches for the minimum or performs whatever analysisis
requested by the user. FUTIL represents the name of afunction or subroutinewhich may be defined and
supplied by the user and called from FCN. If the user does not use the FUTIL feature, the last argument
may be given as zero, but if used, the name of FUTIL must be declared EXTERNAL and a subprogram of
that name must be supplied at loading time.

It ispossible, by giving them different names, to analyze severa different FCNsin onejob. However, one
analysis must be completed before the next isstarted. In order to avoid interference between the analyses
of two different FCNs, the user should call Minuit (in data-driven mode) or MNINIT (in Fortran-callable
mode) each time anew FCN isto be studied.

3.2 Running Minuit in Data-driven Mode.

Minuit can be run in two different modes: Data-driven mode means that the user drives Minuit with
data, either typed interactively from aterminal or from a datafile in batch; and Fortran-callable mode
means that Minuit is driven directly from Fortran subroutine calls, without data. To some extent, the
two modes may also be mixed. This section describes the first mode, and is valid for both interactive
and batch running. The differences between interactive and batch are described in a separate subsection
below.

In data-driven mode, the user must supply, in addition to the subroutine FCN, a main program which

includes the following statements (the statements in upper case are required, those given in lower case
are optional):

| Example of main program when using Minuit in data driven mode

EXTERNAL FCHN

external futil

call mintio(ird, iwr,isav)
CALL MINUIT(FCN,futil)

The name of FCN may be chosen freely, and is communicated to Minuit as its first argument. FUTIL is
the generic name of a function or subroutinewhich the user may optionally call from FCN, and if he does
call such aroutine, he must declare it external and communicate its name to Minuit aswell. If FUTIL is
not used, then the second argument may be put equal to 0, and need not be declared EXTERNAL; if FUTIL
is declared EXTERNAL, it must be suppliedin the loading process.

3.2. Running Minuit in Data-driven Mode. 11

CALL MINTIO (IREAD,IWRITE,ISAVE)

Action: The purpose of MINTIO isto communicate to Minuit the I/O units.

Input parameters

IREAD Fortran unit number for reading (default 5).
IWRITE Fortran unit number for writing (default 6).
Isave Fortran unit number for saving (default 7).

If the default values are acceptable, then it is not necessary to call MINTIO. It isthe user’s responsibility
that the 1/0O unitsare properly opened for the appropriate operations.

Note

In data-driven mode, that iswith CALL MINUIT, you should not call MNINIT, since Minuit takes care of
all initialization. To change unit numbers, call MINTIO before callingMINUIT.

In order that control returns to the user program after CALL MINUIT, the last command in the corre-
sponding Data Block should be RETURN. If the last command iSEXIT or STOP, then Minuit will execute a
Fortran STOP, and if the last command isEND, Minuit will read a new Data Block from the current input
unit.

3.2.1 Data to drive Minuit

In data-driven mode, either interactively or in batch, Minuit reads the following data provided by the
user:

— Title: (astring of 50 characters or less) which can be chosen freely by the user, to help identify
thejob.

— Parameter definitions: for each parameter one record giving:

(1) The parameter number. Thisisthe index in the array XVAL by which the user function FCN
will access the value of the parameter.

(2) The parameter name. A string of ten characters to help the user in reading the Minuit
output.

(3) The starting value of the parameter.

(4) The starting step size,or expected uncertainty in this parameter, if it isto be a variable
parameter. Otherwise blank or zero if the value isto be constant.

Optiona The lower bound (limit) below which the parameter value must not vary.
Optional The upper bound (limit) above which the parameter value must not vary.

Normally the user should not specify limits on the parameters, that is both should be left blank.
If one limit is specified, then BOTH must be specified. The properties of limits are explained
elsawhere in this document.

The format of the parameter definitions may be either fixed-field (each item in a field of width
ten columns), or in free-field format. In the free-field format, items are separated by blanks or
one comma, and the parameter name must be given between single quotes. The program assumes
free-field format if it finds two single quotesin the line. Parameter names will be blank-padded or
truncated to be ten characters long.

12 Chapter 3. How to Use Minuit

— A blank record: indicatesthe end of parameter definitions.

— If the user FCN reads input data from the same input stream as the Minuit data (the default stream
iISUNIT 5), thentheFCN data should appear here.

— Minuit commands: these specify actionswhich should be performed by Minuit. Commands must
not contain leading or embedded blanks, but may be truncated to three characters, and may be
given in upper or lower case. Some commands have numerical arguments, and these may be given
in free-field format, separated by blank(s) or one commat. The list of recognized commands is
given and explained below. The command HELP causes Minuit to write to the output stream a list
of currently recognized commands. The command HELP SHOw lists the available SET and SHOw
commands.

Any or al of the above data read by Minuit can reside on one or more different files, and Minuit can be
instructed to switch to reading a different file with the SET INPUT command. Optionally, thetitle record
may be preceeded by arecord beginning with the characters SET TITLE, and the parameter definitions
may be preceeded by a record beginning with the characters PARAMETERS. It is in fact recommended
alwaysto include these optional records when preparing a datafile, since the file can then be read at any
time (not just at the beginning of a Minuit run) and will alwaysbe interpreted correctly by Minuit.

| Example of a typical Minuit data set |

SET TITLE

Fit to time distribution of K decays, Expt NA94
PARAMETERS

1 ’Real(X)’ 0. .1

2 ’Imag(X)’ 0. .1

5 ’Delta M’ .535 .01

10 ’K Short LT’ .892

11 ’K Long LT’ 518.3

fix 5

migrad

set print 0
minos

restore
migrad

minos

fix 5

set param 5 0.535
mncontour 1 2
stop

3.2.2 Batch and interactive running.

In its initialization phase, Minuit attempts to determine whether or not it is running interactively, by
calling the logical function INTRAC, aroutine in the CERN Program Library which can be provided for
all commonly used computers. For our purposes, we define “ running interactively” as meaning that input
is coming from aterminal under the control of an intelligent being, able to make decisions based on the

In older versions of Minuit, there was a special format for the MINOs command, when specifying alist of parameters; the
new Minuit reads the MINOs command with the same free-field format as the other commands, so if parameter numbers are
specified, they must now be separated by a blank or comma.

3.3. Running Minuit in Fortran-callable mode. 13

output he receives at the terminal. It isnot always easy for INTRAC to know whether thisisthe case, so,
depending on your operating system, Minuit can be fooled in certain cases. When this happens, the user
can awaysoverride the beliefs of INTRAC with the commandsSET BATch and SET INTeractive. The
command SHOw INTeractive informsthe user of the current mode.

According to whether or not it believes it is running interactively, Minuit behaves differently in the
following ways:

— If interactive, the user is prompted before each data record is read.

— If interactive, Minuit recovers from many error conditions and prompts the user to enter correct
data or to specify additional required input. If the same error conditions occur in batch mode,
the program either exits (if no corrective action seems possible) or ignores the incorrect data (for
example, acommand it cannot interpret) and continues.

— The default page size for output is a typical terminal dimension (80 by 24) if interactive, and a
typical printed page size (120 by 56) if batch, but these can be overridden with the commands SET
WIDth and SET LINes.

When an interactive user reguests Minuit to read further input from an external file (the SET INPut
command), then further input is considered to be temporarily in batch mode, until input reverts to the
primary input stream.

3.3 Running Minuit in Fortran-callable mode.

Thefollowing Minuit subroutinesare provided in order to allow the user to communicate with Minuit and

perform all Minuit functions (define parameters, execute commands, etc.) directly from Fortran through
subroutine cals. In the following list of subroutines, output arguments are indicated by appending a star

* toitsname. It should aso be noted that for the Double Precision version of Minuit (recommended for
all 32-bit machinessuch asIBM, Vax, Unix workstations, etc.), all theREAL arguments given below must
be declared DOUBLE PRECISION.

3.3.1 MNINIT: Initialize Minuit

CALL MNINIT (IRD,IWR,ISAV)

Input parameters:

IRD Unit number for input to Minuit.

IWR Unit number for output from Minuit.

ISAV Unit number for use of the SAVE command.

3.3.2 MNSETI: Specify a title for a problem

CALL MNSETI (CTITLE)

Input parameter:
CTITLE Character string of up to 50 characters containing an identification text for the present job or
fit.

14 Chapter 3. How to Use Minuit

3.3.3 MNPARM: Define a parameter, assigning values from variables

CALL MNPARM (NUM,CHNAM,STVAL,STEP,BND1,BND2,IERFLG*)

Input parameters:

NUM Parameter number as referenced by user in FCN.

CHNAM Character string of up to 10 characters containing the name which the user assigned to the
given parameter.

STVAL Starting value

STEP Starting step size or approximate parameter error.

BND1 Lower bound (limit) on parameter value, if any (see below).

BND2 Upper bound (limit) on parameter value, if any (see below).

Output parameter:

IERFLG Error return code: 0 if noerror, >0 if request failed.

If BND1=BND2=0., then the parameter is considered unbounded, which isrecommended unlesslimitsare
needed to make things behave well.

3.3.4 MNPARS: Define a parameter, assigning values from character string

Subroutine MNPARS defines a new (or redefines an old) parameter specifying values for its number,
name, starting value, step size, and limitsif any. All these values are given in one character string as if
it was being read from the input stream. It can therefore be used in place of MNPARM if the character
string format is more convenient than the calling sequence of MNPARM.

Calling sequence:
CALL MNPARS (CHSTR,ICONDN*)

Input parameter:

CHSTR String specifies the parameter definition in the usual Minuit format, as on a data record (See
3.2.1). Thefields are in the same order as the argumentsto MNPARM

Output parameter:

ICONDN Output condition

Possible values of output condition:

ICONDN=0 al OK

ICONDN=1 error, attempt to define parameter isignored
ICONDN=2 end of parameter definitions (parameter number zero)

Example:

CALL MNPARS(’ 15 ’’Lambda Mass’’ 1.2, 0.1’ , ICONDN)

3.3. Running Minuit in Fortran-callable mode. 15

3.3.5 MNEXCM: Execute a Minuit command

CALL MNEXCM (FCN,CHCOM,ARGLIS,NARG,IERFLG* ,FUTIL)

Input parameters:

FCN Name of the function being analyzed (to be declared EXTERNAL)

CHCOM Character string containing the name of the Minuit command to be executed (see below).

ARGLIS Array of dimension MAXARG, containing the numeric arguments to the command (if any),

NARG Number of arguments specified (NARGXMAXARG),

FUTIL Name of afunction called by FCN (or =0 if not used). If used this function must be declared
EXTERNAL.

Output parameter:

IERFLG Error return code: 0 if the command was executed normally, >0 otherwise.

Executing a command by calling MNEXCM has exactly the same effect as reading the same command in
data-driven mode, except that a few commands would make no sense and are not available in Fortran-
callable mode (e.g. SET INPUT). The other difference is that control always returns to the calling
routine from MNEXCM, even after commands END, EXIT, and STOP.

Warning: If thereisonly one argument, ARGLIS may be given asanumeric constant, but if you do this
make sure the constant is of the right data typefor example 0.5D0, not 0.5 if you are in the usual
Double Precision mode. To avoid this problem, it may be more convenient to use MNCOMD instead of
MNEXCM.

3.3.6 MNCOMD: Execute a Minuit command specified as a character string

Subroutine MNCOMD causes the execution of the Minuit command specified as the second argument.
It therefore works like MNEXCM, except that it accepts the entire command with arguments as one
character string. Thisis more convenient in many cases and avoids problems of word length matching
(DOUBLE PRECISION constants).

CALL MNCOMD (FCN,CHSTR,ICONDN*,FUTIL)

Input parameters:

FCN Name of the function being analyzed (to be declared EXTERNAL)

CHSTR Thefull Minuit command with arguments (CHARACTER)

FUTIL Name of afunction called by FCN (or =0 if not used). If used this function must be declared
EXTERNAL.

Output parameter:

ICONDN Error return code: 0 if the command was executed normally, >0 otherwise.

Some abnormal conditions:

ICONDN=1 command was blank, ignored

ICONDN=2 command line was unreadable, ignored

ICONDN=3 command was unknown, ignored

ICONDN=4 abnormal termination (e.g., MIGRAD not converged)

16 Chapter 3. How to Use Minuit

3.3.7 MNPOUT: Get the current value of a parameter

Thisroutineisthe inverse of MNPARM and can for instance be used after afit.

CALL MNPOUT (NUM,CHNAM*,VAL*,ERROR#*,BND1%*,BND2*,IVARBL*)

Input parameter:

NUM Parameter number as referenced by user in FCN and about which information is required.

Output parameters:

CHNAM Character string of up to 10 characters containing the name which the user assigned to the
given parameter.

VAL Current parameter value (fitted valueiif fit has converged),

ERROR Current estimate of parameter uncertainty (or zero if constant)

BND1 Lower limit on parameter value, if any (otherwise zero).

BND2 Upper limit on parameter value, if any (otherwise zero).

IVARBL Internal parameter number if parameter isvariable, or zero if parameter is constant, or negative
if parameter is undefined.

3.3.8 MNSTAT: Get the current status of minimization

CALL MNSTAT (FMIN*,FEDM*,ERRDEF*,NPARI*,NPARX* ,ISTAT*)

Output parameters:

FMIN The best function value found so far

FEDM The estimated vertical distance remaining to minimum
ERRDEF Thevalue of UP defining parameter uncertainties

NPARI Thenumber of currently variable parameters

NPARX Thehighest (external) parameter number defined by user
ISTAT A statusinteger indicating how good is the covariance matrix:
Not calculated at all

Diagonal approximation only, not accurate

Full matrix, but forced positive-definite

Full accurate covariance matrix (After MIGRAD, this is the indication of normal conver-
gence.)

w N = O

3.3.9 MNEMAT: Get the current value of the covariance matrix

CALL MNEMAT (EMAT#*,NDIM)

Input parameter:

NDIM Integer variable specifying the number of rows and columns the suer has reserved in EMAT
to store the matrix elements. NDIM should be at least as large as the number of parameters
variable at the time of the call, otherwise the user will get only part of the full matrix.

Output parameter:

EMAT Array declared as DIMENSION EMAT(NDIM,NDIM) which is to be filled with the (external)
covariance matrix.

3.3. Running Minuit in Fortran-callable mode. 17

3.3.10 MNERRS: Access current parameter errors

CALL MNERRS (NUM,EPLUS* ,EMINUS* ,EPARAB* ,GLOBCC*)

Input parameter:

NUM Parameter number. If NUM>O0, thisis taken to be an external parameter number; if NUM<O, it is
the negative of an internal parameter number.

Output parameters:

EPLUS The positive MINOS error of parameter NUM.

EMINUS The negative MINOS error (a negative number).

EPARAB The*“parabolic” parameter error, from the error matrix.

GLOBCC The global correlation coefficient for parameter NUM. Thisis a number between zero and one
which gives the correlation between parameter NUM and that linear combination of all other
parameters which is most strongly correlated with NUM.

Notethat thiscall doesnot causetheerrorsto be calculated, it merely returnsthe current existingvalues. If
any of the requested values has not been cal culated, or has been destroyed (for example, by aredefinition
of parameter values) MNERRS returns a value of zero for that argument. Thus the call to MNERRS will
normally follow the execution of commands MIGRAD, HESSE, MNContour, and/or MINOS.

3.3.11 MNCONT: Find a function contour with the MNContour method

CALL MNCONT (FCN,NUM1,NUM2,NPT,XPT*,YPT* NFOUND*,FUTIL)

Input parameters:

FCN Name of the function being treated (to be declared EXTERNAL)

NUM1/2 Parameter numbers with respect to which the contour isto be determined (external).

NPT The number of pointsrequired on the contour (>4).

FUTIL Name of afunction called by FCN (or =0 if not used). If used thisfunction must be declared
EXTERNAL.

Output parameters:

XPT Array of x-coordinates of contour pointswith values for parameter NUM1. It must be declared
withaDIMENSION XPT(NPT).

YPT Array of y-coordinates of contour pointswith values for parameter NUM2. It must be declared

withaDIMENSION YPT(NPT).

NFOUND Thenumber of pointsactually found on the contour. If all goeswell, thiswill be equal to NPT,
but it can be negative (if theinput arguments are not valid), or zero if lessthan four pointshave
been found, or lessthan NPT if the program could not find NPT points.

Notethat alternatively MNContour can becalculated by callingMNEXCM toissuetheMNContour command,
but then the user does not have Fortran access to the actual point coordinatesXPT and YPT.

18 Chapter 3. How to Use Minuit

3.3.12 MNINTR: Switch to command-reading mode

Thisfacility can be useful when one wants to continue interactively.

CALL MNINTR (FCN,FUTIL)

Input parameters:

FCN Name of the function being treated (to be declared EXTERNAL)
FUTIL Name of afunction called by FCN (or =0 if not used). If used this function must be declared
EXTERNAL.

Thecall toMNINTR will cause Minuit to read commands from theunit IRD (originally specified by the user
inhiscall toMNINIT, IRD isusually 5 by default, whichinturnisusually theterminal by default). Minuit
then reads and executes commands until it encounters a command END, EXIT, RETurn, or STOP, or an
end-of-file on input (or an unrecoverable error condition while reading or trying to execute a command),
in which case control returns to the program which called MNINTR.

3.3.13 MNINPU: Set logical unit number for input

Setslogical unit number of input unit from which Minuit will read the next command.

CALL MNINPU (NUNIT, IERR*)

Input parameter:

NUNIT Thel/O unit number, which must be avalid unit, opened for reading (Minuit makes no checks
at this level and will not attempt to open any files.) If NUNIT is specified as zero, Minuit
returnsto reading the previous unit (for thisreason, Minuit has to store the unit numbersin an
internal buffer).

Output parameter:

IERR returned as zero unless Minuit's internal buffer which stores unit numbersis full, which isa
fatal error.

Chapter 4: Minuit Commands

In data-driven mode, Minuit accepts commands in the following format:

command <argl> [arg2] etc.

commandOne of the commands listed below,
<argi> Numerical valuesof required arguments, if any.
[argi]] Numerical valuesof optional arguments, if any.

The arguments (if any) are separated from each other and from the command by one or more blanks or
a comma. Commands may be given in upper or lower case, and may be abbreviated, usually to three
characters. The shortest recognized abbreviationsare indicated by the capitalized part of the commands
listed below. Examples of valid commands are:

SET INPUT 21

migrad

mig 500

SET LIMITS 14 -1.0,1.0
contours 1 2

MINOS 500 1,3,5,21,22

In Fortran-callable mode, all the same commands (with a few obvious exceptions as indicated) can be
executed by passing the command-string and arguments to Minuit in a CALL MNEXCM statement.

List of Minuit commands

CALIfcn <iflag>

Instructs Minuit to call subroutine FCN with the value of IFLAG=<iflag>. (The actual name of the
subroutine called is that given by the user in his call to Minuit or MNEXCHM; the name given in this
command is not used.) If <iflag> > 5, Minuit assumes that a new problem is being redefined, and it
forgets the previous best value of the function, covariance matrix, etc. This command can be used to
instruct theuser functionto read new input data, recal cul ate constants, or otherwisemodify the cal culation
of thefunction.

CLEar

Resets all parameter names and values to undefined. Must normally be followed by a PARameters
command or equivalent, in order to define parameter values.

CONtour <paril> <par2> [devs] [ngrid]

Instructs Minuit to trace contour lines of the user function with respect to the two parameters whose
external numbers are <par1> and <par2>. Other variable parameters of the function, if any, will have
their valuesfixed at the current values during the contour tracing. Theoptional parameter [devs] (default
value 2.) givesthe number of standard deviationsin each parameter which should lie entirely within the
plotting area. Optional parameter [ngrid] (default value 25 unless page size is too small) determines
the resolution of the plot, i.e. the number of rows and columns of the grid at which the function will be
evaluated. [See also MNContour.]

19

20 Chapter 4. Minuit Commands

END

Signalstheend of adatablock (i.e., theend of afit), and impliesthat execution should continue, because
another DataBlock follows. A DataBlock isaset of Minuit dataconsistingof (1) A Title, (2) Oneor more
Parameter Definitions, (3) A blank line, and (4) A set of Minuit Commands. The END command is used
when more than one Data Block isto be used with the same FCN function. The END command first causes
Minuit to issue a CALL FCN with IFLAG=3, in order to allow FCN to perform any calculations associated
with the final fitted parameter values, unlessa CALL FCN 3 command has already been executed at the
current FCN value. The obsolete command END RETurn isthe same as the RETURN command.

EXIT

Signalsthe end of execution. TheEXIT command first causes MinuittoissueaCALL FCN with IFLAG=3,
in order to allow FCN to perform any cal culations associated with the final fitted parameter values, unless
aCALL FCN 3 command has aready been executed at the current FCN value. Then it executes a Fortran
STOP.

FIX <parno> [parno] ... [parno]

Causes parameter(s) <parno> to be removed from the list of variable parameters, and their value(s) will
remain constant during subsegquent minimizations, etc., until another command changes their value(s) or
status.

HELP [SET] [SHOw] [command]

If there are no arguments, causes Minuit to list the available commands. If argument SET or SHOW is
specified, thelist of recognized SET and SHOw commands is displayed. If a command name is specified
as argument, a short explanation of the command syntax is given.

HESse [maxcalls]

Instructs Minuit to calculate, by finite differences, the Hessian or error matrix. That is, it calculates
the full matrix of second derivatives of the function with respect to the currently variable parameters,
and invertsit, printing out the resulting error matrix. The optional argument [maxcalls] specifiesthe
(approximate) maximum number of function calls after which the calculation will be stopped.

IMProve [maxcalls]

If a previous minimization has converged, and the current values of the parameters therefore correspond
to alocal minimum of the function, this command requests a search for additional distinct local minima.
The optional argument [maxcalls] specifiesthe (approximate) maximum number of function calls after
which the calculation will be stopped.

MIGrad [maxcalls] [tolerance]

Causes minimization of the function by the method of Migrad, the most efficient and complete single
method, recommended for general functions (see also MINImize). The minimization produces as
a by-product the error matrix of the parameters, which is usually reliable unless warning messages are
produced. Theoptional argument [maxcalls] specifiesthe (approximate) maximum number of function
calls after which the calculation will be stopped even if it has not yet converged. The optional argument
[tolerance] specifiesrequired tolerance on the function value at the minimum. The default tolerance
is0. 1, and the minimization will stop when the estimated vertical distanceto the minimum (EDM) isless
than 0.001* [tolerance] *UP (See SET ERR).

21

MINImize [maxcalls] [tolerancel]

Causes minimization of the function by themethod of Migrad, asdoestheMIGrad command, but switches
to the SIMplex method if Migrad failsto converge. Arguments are asfor MIGrad. Notethat command
requires four characters to be unambiguouswith MINOs.

MINOs [maxcalls] [parno] [parno]

CausesaMinoserror analysisto be performed on the parameters whose numbers [parno] are specified.
If none are specified, Minos errors are calculated for al variable parameters. Minos errors may be
expensive to calculate, but are very reliable since they take account of non-linearitiesin the problem
as well as parameter correlations, and are in general asymmetric. The optional argument [maxcalls]
specifies the (approximate) maximum number of function calls per parameter requested after which
the calculation will be stopped for that parameter.

MNContour <parl> <par2> [npts]

Calculates one function contour of FCN with respect to parameters par1 and par2, with FCN minimized
alwayswith respect to all other NPAR-2 variable parameters (if any). Minuit will try to find npts points
on the contour (default 20). If only two parameters are variable at the time, it is not necessary to specify
their numbers. To calculate more than one contour, it is necessary to SET ERR to the appropriate value
and issue the MContour command for each contour desired.

RELease <parno> [parno] ... [parno]

If <parno> is the number of a previously variable parameter which has been fixed by a command:
FIX <parno>, thenthat parameter will return to variable status. Otherwise awarning messageis printed
and the command is ignored. Note that this command operates only on parameters which were at one
time variable and have been FIXed. It cannot make constant parameters variable; that must be done by
redefining the parameter with a PARameters command. [See also: REStore.]

REStore [code]

If no [code] is specified, this command restores al previousy FIXed parameters to variable status. If
[code]=1, then only the last parameter FIXed is restored to variable status. If code is neither zero nor
one, the command isignored. [See also: RELease.]

RETurn

Signals the end of a data block, and instructs Minuit to return to the program which called it. The
RETurn command first causes Minuitto CALL FCN with IFLAG=3, in order to allow FCN to perform any
calculations associated with thefinal fitted parameter values, unlessaCALL FCN 3 command has already
been executed at the current FCN value. Then it executes a Fortran RETURN.

SAVe

Causes the current parameter valuesto be saved on afilein such aformat that they can be read in again
as Minuit parameter definitions. If the covariance matrix exists, it is also output in such aformat. The
unit number is by default 7, or that specified by the user in his call to MINTIO or MNINIT. The user is
responsible for opening the file previous to issuing the SAVE command (except where this can be done
interactively).

22 Chapter 4. Minuit Commands

SCAn [parno] [numpts] [from] [tol

Scans the value of the user function by varying parameter number [parno], leaving all other parameters
fixed at the current value. If [parno] isnot specified, all variable parameters are scanned in sequence.
The number of points [numpts] in the scan is 40 by default, and cannot exceed 100. The range of the
scan is by default 2 standard deviationson each side of the current best value, but can be specified asfrom
[from] to [to]. After each scan, if a new minimum is found, the best parameter values are retained
as start values for future scans or minimizations. The curve resulting from each scan is plotted on the
output unit in order to show the approximate behaviour of the function. This command is hot intended
for minimization, but is sometimes useful for debugging the user function or finding areasonabl e starting
point.

SEEk [maxcalls] [devs]

CausesaMonte Carlo minimization of thefunction, by choosing random values of thevariable parameters,
chosen uniformly over a hypercube centered at the current best value. The region size is by default 3
standard deviations on each side, but can be changed by specifying the value of [devs].

SET BATch
Informs Minuit that it is running in batch mode.
SET EPSmachine <accuracy>

Informs Minuit that the rel ative floating point arithmetic precisionis<accuracy>. Minuit determinesthe
nominal precisionitself, but the SET EPS command can be used to override Minuit’s own determination,
when the user knows that the FCN function value is not calculated to the nominal machine accuracy.
Typical values of <accuracy> are between 10~ and 10~ %,

SET ERRordef <up>

Sets the value of UP (default value= 1.), defining parameter errors. Minuit defines parameter errors as
the change in parameter value required to change the function value by UP. Normally, for chisquared fits
UP=1, and for negative log likelihood, UP=0. 5.

SET GRAdient [force]

Informs Minuit that the user function is prepared to calculate its own first derivatives and return their
values in the array GRAD when IFLAG=2 (See specification of the function FCN). If [force] is not
specified, Minuit will calculate the FCN derivatives by finite differences at the current point and compare
with the user’'s calculation at that point, accepting the user’s values only if they agree. If [forcel=1,
Minuit does not do its own derivative calculation, and uses the derivatives calculated in FCN.

SET INPut [unitno] [filename]

Causes Minuit, in data-driven mode only, to read subsequent commands (or parameter definitionsor title)

from adifferentinputfile. If no [unitno] isspecified, reading revertsto the previousinput file, assuming

that there was one. If [unitno] isspecified, and that unit has not been opened, then Minuit attempts to

open thefile [filename] if aname isspecified. If running in interactive mode and [filename] iSnot

specified and [unitno] isnot opened, Minuit prompts the user to enter afile name. If theword REWIND

is added to the command (note: no blanks between INPUT and REWIND), the file is rewound before

reading. Note that this command is implemented in standard Fortran 77 and the results may depend on
the operating system; for example, if a filename is given under VM/CMS, it must be preceeded by a slash.

23

SET INTeractive
Informs Minuit that it is running interactively.
SET LIMits [parno] [lolim] [uplim]

Allows the user to change the limits on one or all parameters. If no arguments are specified, al limits
are removed from all parameters. If [parno] alone is specified, limits are removed from parameter
[parno]. If al arguments are specified, then parameter [parno] will be bounded between [1olim]
and [uplim]. Limitscan be specified in either order, Minuit will take the smaller as [101im] and the
larger as [uplim]. However, if [1olim] isequal to [uplim], an error condition results.

SET LINesperpage

Sets the number of lines that Minuit thinks will fit on one page of output. The default value is 24 for
interactive mode and 56 for batch.

SET NOGradient

Theinverse of SET GRAdient, instructs Minuit not to use the first derivatives calculated by the user in
FCN.

SET NOWarnings

Supresses Minuit warning messages. SET WARnings isthe default.
SET OUTputfile <unitno>

Instructs Minuit to write further output to unit <unitno>.
SET PAGethrow <integer>

Setsthe carriage control character for “new page” to <integer>. Thusthe value 1 produces a new page,
and O produces a blank line, on some output devices (see TOPofpage command).

SET PARameter <parno> <value>

Sets the value of parameter <parno> to <value>. The parameter in question may be variable, fixed, or
constant, but must be defined.

SET PRIntout <level>

Sets the print level, determining how much output Minuit will produce. The allowed values and their
meanings are displayed after aSHOw PRInt command, and are currently <level>=:

no output except from SHOW commands

minimum output (no starting values or intermediate results)
default value, normal output

additional output giving intermediate results.

maximum output, showing progress of minimizations.

W N = O =

Note: See asothe SET WARnings command.

24 Chapter 4. Minuit Commands

SET RANdomgenerator <seed>

Sets the seed of the random number generator used in SEEk. Thiscan be any integer between 10 000 and
900 000 000, for example one which was output from a SHOw RANdom command of a previous run.

SET STRategy <level>

Sets the strategy to be used in calculating first and second derivatives and in certain minimization
methods. In general, low values of <level> mean fewer function calls and high values mean more
reliable minimization. Currently allowed valuesare O, 1 (default), and 2.

SET TITle

Informs Minuit that the next input line is to be considered the (new) title for thistask or sub-task. This
is for the convenience of the user in reading his output. This command is available only in data-driven
mode; in Fortran-callable mode use CALL MNSETT.

SET WARNings

Instructs Minuit to output warning messages when suspicious conditions arise which may indicate
unreliableresults. Thisisthe default.

SET WIDthpage
Informs Minuit of the output page width. Default values are 80 for interactive jobs and 120 for batch.
SHOw XXXX

All SET XXXX commands have acorresponding SHOw XXXX command. In addition, the SHOw commands
listed starting here have no corresponding SET command for obvious reasons. The full list of SHOw
commands is printed in response to the command HELP SHOw.

SHOw CORrelations
Cadlculates and printsthe parameter correlations from the error matrix.
SHOw COVariance
Prints the (external) covariance (error) matrix.
SHOw ElGenvalues
Calculates and printsthe eigenvalues of the covariance matrix.
SHOw FCNvalue
Prints the current value of FCN.
SIMplex [maxcalls] [tolerance]

Performs a function minimization using the simplex method of Nelder and Mead. Minimization termi-
nates either when the function has been called (approximately) [maxcalls] times, or when the estimated
vertical distance to minimum (EDM) islessthan [tolerance]. The default value of [tolerance] is
0.1%UP (see SET ERR).

25

STAndard

Causes Minuit to execute the Fortran instruction CALL STAND where STAND is a subroutine supplied by
the user.

STOP
Same asEXIT.
TOPofpage

Causes Minuit to write the character specified in a SET PAGethrow command (default = 1) to column
1 of the output file, which may or may not position your output medium to the top of a page depending
on the device and system. This command can be expected to work properly only for printed output,
unfortunately it does not solve the IBM terminal problem.

Chapter 5: How to get the right answer from Minuit.

The goal of Minuit — to be able to minimize and analyze parameter errors for all possible user functions
with any number of variable parameters — is of courseimpossibletorealise, evenin principle, in afinite
amount of time. In practice, some assumptionsmust be made about the behaviour of the functionin order
to avoid evaluating it at all possible points. In this chapter we give some hints on how the user can help
Minuit to make the right assumptions.

5.1 Which Minimizer to Use.

One of the historically interesting advantages of Minuit is that it was probably the first minimization
program to offer the user a choice of several minimization algorithms. This could be taken as areflection
of thefact that none of the algorithmsknown at that time were good enough to be universal, so userswere
encouraged to find the one that worked best for them. Since then, algorithmshave improved considerably,
but Minuit still offers several, mostly so that old userswill not feel cheated, but al so to help the occasional
user who does manage to defeat the best algorithms. Minuit currently offers five commands which can
be used to find a smaller function value, in addition to a few others, like MINOS and IMPROVE, which
will retain a smaller function value if they stumble on one unexpectedly (or, in the case of IMPROVE,
hopefully). The commands which can be used to minimize are:

5.1.1 MIGRAD

This is the best minimizer for nearly al functions. It is a variable-metric method with inexact line
search, a stable metric updating scheme, and checks for positive-definiteness. It will run faster if you
SET STRATEGY 0 and will be more reliable if you SET STRATEGY 2 (although the latter option may
not help much). Its main weakness is that it depends heavily on knowledge of the first derivatives, and
fails miserably if they are very inaccurate. If first derivatives are a problem, they can be calculated
analytically inside FCN (see elsawherein thiswriteup) or if thisisnot feasible, the user can try toimprove
the accuracy of Minuit's numerical approximation by adjusting values using the SET EPS and/or SET
STRATEGY commands (see Floating Point Precision and SET STRATEGY).

5.1.2 MINIMIZE

Thisis equivalent to MIGRAD, except that if MIGRAD fails, it reverts to SIMPLEX and then calls MIGRAD
again. Thisiswhat theold MIGRAD command used to do, but it was removed from the MIGRAD command
so that users would have a choice, and becauseit is seldom of any useto call SIMPLEX when MIGRAD has
failed (there are of course exceptions).

5.1.3 SCAN

Thisis not intended to minimize, and just scans the function, one parameter at atime. It does however
retain the best value after each scan, so it does some sort of highly primitive minimization.

5.1.4 SEEK

We have retained this Monte Carlo search mainly for sentimental reasons, even though the limited
experience with it isless than spectacular. The method now incorporates a Metropolis algorithm which
alwaysmoves the search region to be centred at anew minimum, and has probability e(=F/Fmi=) of moving

26

5.2. Floating point Precision 27

the search region to a higher point with function value F. This gives it the theoretical ability to jump
through function barriers like a multidimensional quantum mechanical tunneler in search of isolated
minima, but it is widely believed by at least half of the authors of Minuit that thisis unlikely to work in
practice (counterexampl es are wel come) since it seemsto depend critically on choosing theright average
step size for the random jumps, and if you knew that, you wouldn’t need Minuit.

5.1.5 SIMPLEX

This genuine multidimensional minimization routine is usually much slower than MIGRAD, but it does
not use first derivatives, so it should not be so sensitive to the precision of the FCN calculations, and is
even rather robust with respect to gross fluctuationsin the function value. However, it gives no reliable
information about parameter errors, no information whatsoever about parameter correlations, and worst
of all cannot be expected to converge accurately to the minimum in afinite time. Its estimate of EDM is
largely fantasy, so it would not even know if it did converge.

5.2 Floating point Precision

Minuit figures out at execution time the precision with which it was compiled, and assumes that FCN
provides about the same precision. That means not just the length of the numbers used and returned by
FCN, but the actual mathematical accuracy of the calculations. The section on Floating point Precisionin
Chapter One describeswhat to do if thisisnot the case.

5.3 Parameter Limits

Putting limits (absolute bounds) on the allowed values for a given parameter, causes Minuit to make a
non-linear transformation of its own internal parameter values to obtain the (external) parameter values
passed to FCN. To understand the adverse effects of limits, see “The Transformation for Parameters with
Limits” in Chapter 1. Basically, the use of limits should be avoided unless needed to keep the parameter
inside a desired range.

If parameter limits are needed, in spite of the effects described in Chapter One, then the user should be
aware of the following techniquesto alleviate problems caused by limits:

5.3.1 Getting the Right Minimum with Limits.

If MIGRAD converges normally to a point where no parameter is near one of itslimits, then the existence
of limits has probably not prevented Minuit from finding the right minimum. On the other hand, if one
or more parameters is near itslimit at the minimum, this may be because the true minimum isindeed at
alimit, or it may be because the minimizer has become “blocked” at alimit. Thismay normally happen
only if the parameter is so closeto alimit (internal value at an odd multiple of + % that Minuit printsa
warning to this effect when it prints the parameter val ues.

The minimizer can become blocked at a limit, because at a limit the derivative seen by the minimizer
OF /O P, iszero no matter what the real derivative 8 F/0 P,y iS.

8F OF OPy OF
3Pint B 3Pext 3Pint B 3Pext B

For a stepping method (like SIMPLEX) this seldom poses any problem, but a method based on derivatives
(MIGRAD) may become blocked at such a value. If this happens, it may be necessary to move the value

0

28 Chapter 5. How to get the right answer from Minuit.

of the parameter in question a significant distance from the limit (with SET PARam) and restart the
minimization, perhapswith that parameter fixed temporarily. We are investigating waysto induce Minuit
to extricate itself from such situations automatically, but it is not so obvious as it seems, and for the
moment must sometimes be done by hand.

5.3.2 Getting the right parameter errors with limits.

In the best case, where the minimum is far from any limits, Minuit will correctly transform the error
matrix, and the parameter errors it reports should be accurate and very close to those you would have
got without limits. In other cases (which should be more common, since otherwise you wouldn’t need
limits), the very meaning of parameter errors becomes problematic. Mathematically, since the limit is
an absolute constraint on the parameter, a parameter at its limit has no error, at least in one direction.
The error matrix, which can assign only symmetric errors, then becomes essentially meaningless. On
the other hand, the MINOS analysisis still meaningful, at least in principle, as long as MIGRAD (which
is caled internally by MINOS) does not get blocked at a limit. Unfortunately, the user has no control
over this aspect of the MINOS calculation, although it is possible to get enough printout from the MINOS
command to be able to determine whether the results are reliable or not.

5.4 Fixing and Releasing Parameters

When Minuit needs to be guided to the “right” minimum, often the best way to do thisis with the FIX
and RELEASE commands. That is, supposeyou have a problem with ten free parameters, and when you
minimize with respect to all at once, Minuit goesto an unphysical solution characterized by an unphysical
or unwanted value of parameter number four. One way to avoid thisisto FIX parameter four at a“good”
value (not necessarily the best, since you presumably don’t know that yet), and minimize with respect to
the others. Then RELEASE 4 and minimize again. If the problem admitsa“good” physical solution, you
will normally find it thisway. If it doesn’t work, you may see what is wrong by the following sequence
(where xxx isthe expected physical value for parameter four):

SET PARAM 4 xxx
FIX 4

MIGRAD

RELEASE 4

SCAN 4

where the SCAN command gives you a picture of FCN as a function of parameter four alone, the others

being fixed at their current best values. If you suspect the difficulty is due to parameter five, then add the
command

CONTOUR 4 5
to see a two-dimensional picture.
5.5 Interpretation of Parameter Errors

There are two kinds of problems that can arise: The reliability of Minuit's error estimates, and their
statistical interpretation, assuming they are accurate.

5.5. Interpretation of Parameter Errors 29

5.5.1 Statistical Interpretation.

For discussuion of basic concepts, such as the meaning of the elements of the error matrix, parabolic
versus MINOS errors, the appropriate value for UP (see SET ERRdef), and setting of exact confidence
levels, see (in order of increasing complexity and completeness):

— “Interpretation of the Errors on Parameters’see Part 3 of thiswrite-up.
— “Determining the Statistical Significance of Experimental Res|#iis”
— “Statistical Methods in Experimental Physid$].

5.5.2 The Reliability of Minuit Error Estimates.

Minuit always carries around itsown current estimates of the parameter errors, which it will print out on
reguest, no matter how accurate they are at any given pointin the execution. For example, at initialization,
these estimates are just the starting step sizes as specified by the user. After aMIGRAD or HESSE step, the
errors are usually quite accurate, unlessthere has been aproblem. Minuit, when it printsout error values,
also gives some indication of how reliable it thinks they are. For example, those marked > CURRENT
GUESS ERROR’ are only working values not to be believed, and > APPROXIMATE ERROR’ means that
they have been calculated but there is reason to believe that they may not be accurate. If no mitigating
adjective is given, then at least Minuit believes the errors are accurate, although there is aways a small
chance that Minuit has been fooled. Some visible signsthat Minuit may have been fooled are:

— Warning messages produced during the minimization or error analysis.
— Failure to find new minimum.

— Value of EDM too big. For a*“normal” minimization, after MIGRAD, the value of EDM isusually more
than three orders of magnitude smaller than UP (the SET ERRordef), unlessalooser tolerance has
been specified.

— Correlation coefficients exactly equal to zero, unless some parameters are knownto be uncorrel ated
with the others.

— Correlation coefficients very closeto one (greater than 0.99). Thisindicates both an exceptionally
difficult problem, and one which has been badly parametrized so that individual errors are not very
meaningful because they are so highly correlated.

— Parameter at limit. This condition, signalled by a Minuit warning message, may make both the
function minimum and parameter errors unreliable. See section 5.3.2, Getting the right parameter
errors with limits.

The best way to be absolutely sure of the errors, isto use “independent” cal culationsand compare them,
or compare the calculated errors with a picture of the function if possible. For example, if thereis only
one free parameter, the command SCAN allows the user to verify approximately the function curvature.
Similarly, if there are only two free parameters, use CONTOUR. To verify a full error matrix, compare
the results of MIGRAD with those (calculated afterward) by HESSE, which uses a different method. And
of course the most reliable and most expensive technique, which must be used if asymmetric errors are
required, isMINOS.

30 Chapter 5. How to get the right answer from Minuit.

5.6 Convergence in MIGRAD, and Positive-definiteness.

MIGRAD usesitscurrent estimate of the covariance matrix of the function to determine the current search
direction, since thisis the optimal strategy for quadratic functions and “physical” functions should be
quadratic in the neighbourhood of the minimum at least. The search directions determined by MIGRAD
are guaranteed to be downhill only if the covariance matrix is positive-definite, so in case this is not
true, it makes a positive-definite approximation by adding an appropriate constant along the diagonal
as determined by the eigenvalues of the matrix. Theoretically, the covariance matrix for a “physical”
function must be positive-definite at the minimum, athough it may not be so for al pointsfar away from
the minimum, even for a well-determined physical problem. Therefore, if MIGRAD reports that it has
found a non-positive-definite covariance matrix, this may be a sign of one or more of the following:

— A non-physical region. On itsway to the minimum, MIGRAD may have traversed aregion which
has unphysical behaviour, which isof course not a serious problem aslong asit recovers and leaves
such aregion.

— An underdetermined problem. If the matrix is not positive-definite even at the minimum, this
may mean that the solution is not well-defined, for example that there are more unknowns than
there are data points, or that the parametrization of the fit contains a linear dependence. If thisis
the case, then Minuit (or any other program) cannot solve your problem uniquely, and the error
matrix will necessarily be largely meaningless, so the user must remove the underdeterminedness
by reformulating the parametrization. Minuit cannot do thisitself, but it can provide some hints
(contours, global correlation coefficients, eigenvalues) which can help the clever user to find out
what iswrong.

— Numerical inaccuracies. It is possible that the apparent lack of positive-definitenessis in fact
only due to excessive roundoff errors in numerical calculations, either in FCN or in Minuit. This
isunlikely in general, but becomes more likely if the number of free parametersis very large, or
if the parameters are badly scaled (not all of the same order of magnitude), and correlations are
aso large. In any case, whether the non-positive-definitenessis real or only numerical is largely
irrelevant, sincein both cases the error matrix will be unreliable and the minimum suspicious.

5.7 Additional Trouble-shooting
When Minuit just doesn’'t work, some of the more common causes are:

— Precision mismatch. Make sure your FCN has been compiled with the same precision as the
version of Minuityouare using. WhenusingDOUBLE PRECISION,itissafesttousethe IMPLICIT
declaration to make sure that everything is DOUBLE PRECISION, not just the arguments of FCN
but also the internal variables. Note that depending on the computer system used, floating-point
constants may be passed as single precision in subroutine arguments, even if thereisan IMPLICIT
DOUBLE PRECISION statement (which is strictly speaking correct since the IMPLICIT statement
refers only to variables, not constants). Therefore, if constants are used as arguments in subroutine
calls, they must be explicitly of theright precision (for example, on Apollo, even 0. isnot equal to
0.D0).

If the problem isonly one of precision, and not of word length mismatch, an appropriate SET EPS
command may fix it.

— Trivial bugs in FCN. The possibilitiesfor Fortran bugs are numerous. Probably the most common
among physicists inexperienced in Fortran is the confusion between REAL and INTEGER types,

5.7. Additional Trouble-shooting 31

which you can sometimes get away with, but not always. [For example, if A and B are REAL
variables, the Fortran statement A = 2*B is not good programming, but happens to do what the
user probably intended, whereasthestatement A = B + 2/3 amost certainly will not do what the
user intended.] Minuit can spot some trivial bugs itself, and issues a warning when it detects an
unusual FCN behaviour. Such awarning should be taken serioudly.

Minuit also offers sometools (especially SCAN) which can help the user to find trivial bugs.

— Overwriting in a user routine. Overwriting most often occurs when setting the values of alocal
array or an array in COMMON, and elements outside the dimensionsof the array are addressed. Most
computer systems do not detect this error unless you attempt to write into a protected area of
memory, and of course Minuitisalso helpless, especidly if Minuit itself isbeing overwritten. The
symptoms of user overwriting may be almost anything, including unusual behaviour of Minuit
itself. The effects depend critically on where instructions and data are loaded in memory, so
they may change completely if the same program is recompiled with different compiler optionsor
reloaded in a different sequence, even though the compiler and loader are not at fault.

— Changing the values of input arguments.In subroutine FCN, for example, the arguments NPAR
and IFLAG, as well as the values of the parameters themselves, are only input to FCN and their
values should not be changed inside FCN. Minuit is now protected against thisin principle, since
the user only gets a copy of the value, not the actual address of the internal Minuit variable, but
still thisisa symptom of misunderstanding by the user.

If you really want to change the number of variable parameters, this must be done with commands
like FIX and RELEASE, by redefining parameters using command PARAMETER or CLEAR.
Similarly, if a parameter takes on an unwanted value, it will do no good to change itsvalue inside
FCN: In the best case, Minuit won't see your improved value, and in the worst case, it will produce
unpredictableresults. To set a parameter to a certain value, use the command SET PARam, and to
keep it within certain bounds, use the command SET LIMits. If the parameter must obey more
complicated constraints, you must find atrick such as adding a penalty valueto FCN outside of the
physical region, to force it back to where you want it.

— An ill-posed problem. For questions of parameter dependence, see the discussion above on
postive-definiteness. Other mathematical problems which can arise are: excessive numerical
roundoff — be especially careful of exponential and factorial functionswhich get big very quickly
and lose accuracy; starting too far from the solution — the function may have unphysica
local minima, especialy at infinity in some variables; incorrect normalization — in likelihood
functions, the probability distributions must be normalized or at least have an integral which is
independent of the values of the variable parameters.

— A bug in Minuit. Thisis extremely unlikely, but it did happen once. If a bug is suspected, and
all other possible causes can be eliminated, please try to save a copy of theinput and output files,
listing of FCN, and other information that may be relevant, and send them to JAMES at CERNVM
or VXCERN : : JAMES or JAMES@QCERNAPO .CERN.CH.

Chapter 6: A complete example

We give here one full example of areal fit, performed first in batch data-driven mode, then the same fit
performed by Fortran calls.

6.1 A data-driven fit

The example job given here is set up for batch processing. The OPEN statements assign the input and
output files, and are somewhat computer-dependent (those given here are for a Vax). On many systems,
it may be more convenient (or necessary) to perform the file assignmentsin JCL rather than from the
Fortran, but whatever the user decides, the files must be opened and the unit numbers communicated to
Minuit before the call to MINUIT.

The same job could be run interactively, in which case the input and output files would be assigned to the
terminal, and the “user’s data” listed below, instead of coming from afile, would be typed in directly to
the terminal.

| The User’s main program |

PROGRAM DSDQ

EXTERNAL FCNKO

OPEN (UNIT=5,FILE=’DSDQ.DAT’,STATUS=’0LD’)

OPEN (UNIT=6,FILE=’DSDQ.0UT’,STATUS=’NEW’,FORM=’FORMATTED’)

cC CALL MINTIO(5,6,7) ! Not needed, default values
CALL MINUIT(FCNKO,O0) ! User routine is called FCNKO
STOP
END
| The User's FCN |

SUBROUTINE FCNKO(NPAR,GIN,F,X,IFLAG,FUTIL)
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
REAL THPLUI, THMINI

DIMENSION X(*),GIN(%)

C this subroutine does not use FUTIL

PARAMETER (MXBIN=50)

DIMENSION THPLU(MXBIN),THMIN(MXBIN),T(MXBIN),
+ EVTP (MXBIN) ,EVTM(MXBIN)
DATA NBINS,NEVTOT/ 30,250/
DATA (EVTP(IGOD),IGOD=1,30)

+ /11., 9., 13., 13., 17., 9., 1., 7., 8., 9.,
+ 6., 4., 6., 3., 7., 4., 7., 3., 8., 4.,
+ 6., 5., 7., 2., 7., 1., 4., 1., 4., 5./
DATA (EVTM(IGOD),IGOD=1,30)
+ /0., 0., 0., 0., 0., 0., 0., 0., 1., 1.,
+ 0., 2., 1., 4., 4., 2., 4., 2., 2., .
+ 2., 3., 7., 2., 3., 6., 2., 4., 1., 5./
c
XRE = X(1)
XIM = X(2)
DM = X(5)

GAMS = 1.0/X(10)
GAML = 1.0/X(11)

32

6.1. A data-driven fit

GAMLS = 0.5% (GAML+GAMS)
IF (IFLAG .NE. 1) GO TO 300
C generate random data
STHPLU = 0.
STHMIN = 0.
DO 200 I= 1, NBINS
T(I) = 0.1+REAL(I)

TI = T(I)

EHALF = EXP(-TI*GAMLS)

TH = ((1.0-XRE)*%*2 + XIM##2) % EXP(-TI*GAML)
TH = TH + ((1.0+XRE)#**2 + XIM**2) * EXP(-TI*GAMS)
TH = TH - 4.0%XIM*SIN(DM*TI) * EHALF
STERM = 2.0%(1.0-XRE**2-XIM**2)*COS(DM*TI) * EHALF
THPLU(I) = TH + STERM

THMIN(I) = TH - STERM
STHPLU = STHPLU + THPLU(I)
STHMIN = STHMIN + THMIN(I)
200 CONTINUE
NEVPLU = REAL(NEVTOT) *(STHPLU/ (STHPLU+STHMIN))
NEVMIN = REAL(NEVTOT)*(STHMIN/ (STHPLU+STHMIN))
WRITE (6,°(A)’) °> LEPTONIC K ZERO DECAYS’
WRITE (6,’(A,3I10)’) *» PLUS, MINUS, TOTAL=’,NEVPLU,NEVMIN,NEVTOT
WRITE (6,’(A)’)

+ 0 TIME THEOR+ EXPTL+ THEOR- EXPTL-’
SEVTP = 0.
SEVTM = 0.

DO 250 I= 1, NBINS
THPLU(I) = THPLU(I)#REAL(NEVPLU) / STHPLU
THMIN(I) = THMIN(I)#REAL(NEVMIN) / STHMIN
THPLUI = THPLU(I)

Ccccce remove the CCC to generate random data
CCC CALL POISSN(THPLUI,NP,IERROR)
CCC EVTP(I) = NP

SEVTP = SEVTP + EVTP(I)
THMINI = THMIN(I)
cee CALL POISSN(THMINI,NM,IERROR)
cee EVIM(I) = NM
SEVTM = SEVTM + EVTM(I)
IF (IFLAG .NE. 4)
+ WRITE (6,’(1X,5G12.4)’) T(I),THPLU(I),EVTP(I),THMIN(I) ,EVTM(I)
250 CONTINUE
WRITE (6, ’(A,2F10.2)’) ’ DATA EVTS PLUS, MINUS=’, SEVTP,SEVTM

C calculate chisquare

300 CONTINUE
CHISQ = 0.
STHPLU = 0.
STHMIN = 0.
DO 400 I= 1, NBINS
TI = T(D
EHALF = EXP(-TI*GAMLS)
TH = ((1.0-XRE)*%*2 + XIM##2) % EXP(-TI*GAML)
TH = TH + ((1.0+XRE)#**2 + XIM**2) * EXP(-TI*GAMS)
TH = TH - 4.0*%XIM*SIN(DM*TI) * EHALF
STERM = 2.0%(1.0-XRE**2-XIM#*2)*C0S(DM*#TI) * EHALF
THPLU(I) = TH + STERM

THMIN(I) = TH - STERM
STHPLU = STHPLU + THPLU(I)

34

STHMIN = STHMIN + THMIN(I)
400 CONTINUE

THP = 0.
THM = 0.
EVP = 0.
EVM = 0

IF (IFLAG .NE. 4) WRITE (6,’(1HO,10X,4,20X,4)’)
+ POSITIVE LEPTONS’,’NEGATIVE LEPTONS’

IF (IFLAG .NE. 4) WRITE (6,’(A,3X,4)")
+ ’ TIME THEOR EXPTL CHISQ’,
+ ’ TIME THEOR EXPTL CHISQ’

DO 450 I= 1, NBINS
THPLU(I) = THPLU(I)#*SEVTP / STHPLU
THMIN(I) = THMIN(I)#*SEVTM / STHMIN
THP = THP + THPLU(I)
THM = THM + THMIN(I)
EVP = EVP + EVTP(I)
EVM = EVM + EVTM(I)
C Sum over bins until at least four events found
IF (EVP .GT. 3.) THEN
CHI1 = (EVP-THP)#**2/EVP
CHISQ = CHISQ + CHI1
IF (IFLAG .NE. 4)

+ WRITE (6, (1X,4F9.3)’) T(I),THP,EVP,CHI1
THP = 0.
EVP = 0.

ENDIF

IF (EVM .GT. 3) THEN
CHI2 = (EVM-THM)**2/EVM
CHISQ = CHISQ + CHIZ2
IF (IFLAG .NE. 4)

+ WRITE (6,’ (42X,4F9.3)’) T(I),THM,EVM,CHI2
THM = 0.
EVM = 0.

ENDIF

450 CONTINUE

F = CHISQ

RETURN

END

Chapter 6. A complete example

| The user’s data to drive Minuit.

set title

FIT DELTA S/ DELTA Q RULE TO LEPTONIC K ZERO DECAYS
parameters

1 ’Real(X)’ 0. .1

2 ’Imag(X)’ 0. .1

5 ’Delta M’ .535 .01

10 ’K Short LT’ .892

11 ’K Long LT’ 518.3

fix 6

nigr

print O

set print 0

6.2. The same example in Fortran-callable mode. 35

minos

restore

migrad

minos

set param 5 0.535
fix 5

contour 1 2

stop

6.2 The same example in Fortran-callable mode.

The program below takes the place of the datain the above example.

| The User’'s main program and subroutine

PROGRAM DSDQ

Minuit test case. Fortran-callable.

Fit randomly-generated leptonic KO decays to the
time distribution expected for interfering K1 and K2,
with free parameters Re(X), Im(X), DeltaM, and GammaS.

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

EXTERNAL FCNKO

cC OPEN (UNIT=6,FILE="DSDQ.0UT’,STATUS=’NEW’,FORM=’FORMATTED’)
DIMENSION NPRM(5),VSTRT(5),STP(5),ARGLIS(10)
CHARACTER*10 PNAM(5)

Q a a .

DATA NPRM / 1 , 2 , 5 , 10 , 11 /
DATA PNAM /’Re(X)’, ’Im(X)’, ’Delta M’,’T Kshort’,’T Klong’/
DATA VSTRT/ ©0. , 0. , .535 , .892 , 518.3 /
DATA STP / 0.1, 0.1, 0.1 , 0. , 0. /
C Initialize Minuit, define I/0 unit numbers
CALL MNINIT(5,6,7)
C Define parameters, set initial values
ZERO = 0.

DO 11 I=1, 5
CALL MNPARM(NPRM(I),PNAM(I),VSTRT(I),STP(I),ZERO,ZERO,IERFLG)
IF (IERFLG .NE. 0) THEN
WRITE (6,°(A,I)’) ~’ UNABLE TO DEFINE PARAMETER NO.’,I
STOP
ENDIF
11 CONTINUE

CALL MNSETI(’Time Distribution of Leptonic KO Decays’)
c Request FCN to read in (or generate random) data (IFLAG=1)
ARGLIS(1) = 1.
CALL MNEXCM(FCNKO, ’>CALL FCN’, ARGLIS ,1,IERFLG)

ARGLIS(1) = 5.
CALL MNEXCM(FCNKO, FIX’, ARGLIS ,1,IERFLG)
ARGLIS(1) = 0.
CALL MNEXCM(FCNKO,’SET PRINT’, ARGLIS ,1,IERFLG)
CALL MNEXCM(FCNKO, MIGRAD’, ARGLIS ,0,IERFLG)
CALL MNEXCM(FCNKO, MINOS’, ARGLIS ,0,IERFLG)
CALL PRTERR
ARGLIS(1) = 5.
CALL MNEXCM(FCNKO, RELEASE’, ARGLIS ,1,IERFLG)

36 Chapter 6. A complete example

CALL MNEXCM(FCNKO, MIGRAD’, ARGLIS ,0,IERFLG)

CALL MNEXCM(FCNKO, MINOS’, ARGLIS ,0,IERFLG)
ARGLIS(1) = 3.

CALL MNEXCM(FCNKO,’CALL FCN’, ARGLIS , 1,IERFLG)
CALL PRTERR

CALL MNEXCM(FCNKO,’STOP ’, 0,0,IERFLG)

STOP

END

SUBROUTINE PRTERR
C a little hand-made routine to print out parameter errors
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
C find out how many variable parameters there are
CALL MNSTAT(FMIN,FEDM,ERRDEF,NPARI ,NPARX,ISTAT)
C and their errors
DO 50 I= 1, NPARI
CALL MNERRS(-I,EPLUS,EMINUS,EPARAB,GLOBCC)
WRITE (6,45) I,EPLUS,EMINUS,EPARAB,GLOBCC
45 FORMAT (5X,I5,4F12.6)
50 CONTINUE
RETURN
END

The FCN is exactly the same in Fortran-callable mode as in data-driven mode.

Chapter 7: Interpretation of the errors on parameters as given by Minuit

It often happensthat the solution of a minimization problem using Minuitisitself straightforward, but the
calculation or interpretation of the resulting parameter uncertaintiesis considerably more complicated.
The purpose of this chapter isto clarify the most commonly encountered difficulties in parameter error
determination. These difficulties may arise in connection with any fitting program, are discussed here
with Minuit terminol ogy.

The most common causes of misinterpretation may be grouped into three categories:

(1) Proper normalization of the user-supplied chi-squareor likelihood function, and appropriate ERROR
DEF.

(2) Non-linearitiesin the problem formulation, leading to different errors being cal culated by different
techniques, such asMIGRAD, HESSE and MINOS.

(3) Multiparameter error definition and interpretation.
All thesetopicsare discussed in some detail in Eadie et al.[5], which may be consulted for further details.
7.1 Function normalization andERROR DEF

In order to provide for full generality in the user-defined function value, the user is allowed to define a
normalization factor known internally as UP and defined by the Minuit user on an ERROR DEF command
card. The default value is one. The Minuit error on a parameter is defined as the change of parameter
which would produce a change of the function value equal to UP. Thisis the most general way to define
the error, although in statistics it is more usua to define it in terms of the second derivative of the x 2
function — with respect to the parameter in question. In the simplest linear case (when the function is
exactly parabolic at the minimum), the value UP=1. 0 corresponds to defining the error as the inverse of
the second derivative at the minimum. Thefact that Minuit definesthe error in terms of afunction change
does not mean that it always calculates such a function change. Indeed it sometimes (HESSE) calculates
the second derivative matrix and inverts it, assuming a parabolic behaviour. Thisdistinctionis discussed
in section 7.2.

The purpose of defining errors by function changesis threefold:

(1) to preserve its meaning in the non-parabolic case (see section 7.2);

(2) to alow generality when the user-defined function is not a chi- square or likelihood, but has some
other origin;

(3) to dlow calculation not only of “one-standard deviation” errors, but also two or more standard
deviations, or more genera ’ confidence regions’, especially in the multiparameter case (see section
7.3).

7.1.1 Chi-square normalization

If the user’s function value F is supposed to be a chisguare, it must of course be properly normalized.
That is, the “weights” must in fact correspond to the one-standard-deviation errors on the observations.
The most general expression for the chi-sgquare y is of the form (see[5], p.163):

xX* =Y (2 — yia))Vij(z; — y;(a))

4,3

37

38 Chapter 7. Interpretation of the errors on parameters as given by Minuit

where z is the vector of observations, y(a) is the vector of fitted values (or theoretical expressions for
them) containing the variablefit parametersa, and V' istheinverse of the error matrix of the observations
z, also known as the covariance matrix of the observations.

Fortunately, in most real cases the observations z are statistically independent of each other (e.g., the
contentsof the binsof ahistogram, or measurements of pointson atrajectory), sothematrix V' isdiagonal
only. The expression for x? then simplifies to the more familiar form:

(z: — yi(a))®
X' = Z e?
where e? is the inverse of the diagonal element of V, the sguare of the error on the corresponding
observation z. In the case where the z are integer numbers of eventsin an unweighted histogram, for

example, the e? are just equal to the x (or to they, see [5], pp.170-171).

The minimization of x? above is sometimes called weighted least squaresn which case the inverse
quantities 1/e? are called the weights. Clearly thisis simply a different word for the same thing, but in
practice the use of these words sometimes means that the interpretation of ¢? as variances or squared
errors is not straightforward. The word weight often implies that only the relative weights are known
(“point two is twice as important as point one”) in which case there is apparently an unknown overall

normalization factor. Unfortunately the parameter errors coming out of such afit will be proportional to
thisfactor, and the user must be aware of thisin the formulation of his problem.

The e? may also be functions of the fit parameters a (see [5], pp.170-171). Normally this resultsin
somewhat slower convergence of the fit since it usually increases the nonlinearity of the fit. (In the
simplest case it turnsalinear problem into a non-linear one.) However, the effect on the fitted parameter
values and errors should be small.

If the user’s chi-square function is correctly normalized, he should use UP=1. 0 (the default value) to get
the usual one standard-deviation errors for the parameters one by one. To get two-standard-dev.eviation
errors, use ERROR DEF 4.0, etc., since the chisquare dependance on parametersis quadratic. For more
general confidence regionsinvolving more than one parameter, see section 7.2.

7.1.2 Likelihood normalization

If the user function is a negative log-likelihood function, it must again be correctly normalized, but the
reasons and ensuing problems in this case are quite different from the chisquare case. The likelihood
function takesthe form (see [5], p. 155):

F=— Zlnf(:z:i,a)

where each z representsin genera a vector of observations, the a are the free parameters of the fit, and
the function f representsthe hypothesisto be fitted. Thisfunction f must be normalized:

/f(:z:l, a)dz;dez,...dz, = constant
that is, theintegral of f over all observation space z must be independent of the fit parameters a.

The consequence of not normalizing f properly is usualy that the fit simply will not converge, some
parameters running away to infinity. Strangely enough, the value of the normalization constant does

7.2. Non-linearities: MIGRAD versus HESSE versus MINOS 39

not affect the fitted parameter values or errors, as can be seen by the fact that the logarithm makes a
multiplicative constant into an additive one, which simply shifts the whole log-likelihood curve and

affectsitsvalue, but not the fitted parameter valuesor errors. In fact, the actual value of the likelihood at
the minimum is quite meaningless (unlike the chi-sguare value) and even depends on the unitsin which

the observation space z isexpressed. The meaningful quantity isthe difference inlog-likelihood between

two pointsin parameter-space, which isdimensionless.

For likelihood fits, the value UP=0.5 corresponds to one-standard-deviation errors. Or, alternatively, F

may be defined as —2log(likelihood), in which case differences in F' have the same meaning as for
chi-square and UP=1.0 is appropriate. The two different ways of introducing the factor of 2 are quite
equivalent in Minuit, and although most people seem to use UP=0.5, it is perhaps more logical to put the
factor 2 directly into FCN.

7.2 Non-linearities: MIGRAD versusHESSE versusMINOS

In thetheory of statistics, one can show that in the asymptoticlimit, any of several methodsof determining
parameter errors are equivalent and will give the same result. Let usfor the moment call these methods
MIGRAD, HESSE, and MINOS (SIMPLEX is a specia case). It turns out that the conditlons under which
these methods yield exactly the same errors are either of the following:

(1) Themodel to befitted (y or f) isexactly alinear function of the fit parameters a, or
(2) The amount of observed dataiisinfinite.

It may happen that (1) is satisfied, in which case you don't really need Minuit, a smaller, simpler, and
faster program would do, since a linear problem can be solved directly without iterations (see [5], p.
163-165), for example with CERN library program LSQQR. Nevertheless, it may be convenient to use
Minuit since non-linear terms can then be added later if desired, without major changes to the method.
Condition (2) is of course never satisfied, although in practice it often happens that there is enough data
to make the problem “amaost linear”, that is there is so much data that the range of parameters alowed
by the data becomes very small, and any physical function behaves linearly over a small enough region.

The following sections explain the dirrerences between the various parameter errors given by Minuit.

7.2.1 Errors printed by Minuit

The errors printed by Minuit at any given stage represent the best symmetric error estimates available at

that stage, which may not be very good. For example, at the first entry to FCN, the user’s step slzes are
given, and these may bear no resemblance at al to proper parameter errors, although they are supposed to
be order-of-magnltude estimates. After crude minimizerslike SEEK or SIMPLEX, arevised error estimate
may be given, but thistoo is only meant to be an order-or-magnitude estimate, and must certainly not be
taken serioudly as aphysical result. Such numbers are mainly for the internal use of Minuit, which must
after all assume a step size for future minimizations and derivative calculations, and uses these “errors”

as afirst guess to be modified on the basis of experience.

7.2.2 Errors after MIGRAD (or MINIMIZE)

The minimizing technique currently implemented inMIGRAD isastablevariation (the* switching” method)
of the Davidon-Fletcher-Powell variable-metric algorithm. Thisalgorithm convergesto the correct error
matrix as it converges to the function minimum.

40 Chapter 7. Interpretation of the errors on parameters as given by Minuit

This algorithm requires at each step a “working approximation” of the error matrix, and a rather good
approximation to the gradient vector at the current best point. The starting approximation to the error
matrix may be obtained in different ways, depending on the status of the error matrix before MIGRAD
is called aswell asthe value of STRATEGY. Usualy it isfound to be advantageousto evaluate the error
matrix rather carefully at the start point in order to avoid premature convergence, but in principle even the
unit matrix can be used as a starting approximation. Usually the Minuit default isto start by calculating
the full error matrix by calculating al the second derivatives and inverting the matrix. If the user wants
to make sure thisisdone, he can call HESSE before MIGRAD.

If aunit matrix is taken to start, then the first step will be in a steepest descedirection, which is not
bad, but the estimate of EDM, needed to judge convergence, will be poor. At each successive step,
the information gathered from the change of gradient is used to improve the approximation to the error
matrix, without the need to calculate any second derivatives or invert any matrices. The algorithm used
for thisupdatingis supposed to be the best known, but if there are alot of highly correlated parameters,
it may take many steps before the off-diagonal elements of the error matrix approach the correct values.
In practice, MIGRAD usually yields good estimates of the error matrix, but it is not absolutely reliable for
two reasons:

(1) Convergence to the minimum may occur “too fast” for MIGRAD to have agood estimate of the error
matrix. Inthe most flagrant of such cases, MIGRAD realizes this and automatically introduces an
additional call to HESSE (described below), informing the user that the covariance matrix is being
recalculated. Since, for n variable parameters, there are n(n + 1)/2 elementsin the error matrix,
the number of FCN calls from MIGRAD must be large compared with n? in order for the MIGRAD
error matrix calculation to be reliable.

(2) MIGRAD gathersinformation about the error matrix asit proceeds, based on function values cal cu-
lated away from the minimum and assuming that the error matrix isnearly constant as afunction of
the parameters, asit would beif the problemwere nearly linear. If the problem ishighly non-linear,
the error matrix will depend strongly on the parameters, MIGRAD will converge more slowly, and
the resulting error matrix will at best represent some average over the last part of the trajectory in
parameter-space traversed by MIGRAD.

If MIGRAD errors are wrong because of (1), HESSE should be commanded after MIGRAD and will give
the correct errors. If MIGRAD errors are wrong because of (2), HESSE will help, but only in an academic
sense, since in this case the error matrix is not the whole story and for proper error calculation MINOS
must be used.

Asageneral rule, anyone serioudly interested in the parameter errors should always put at least a HESSE
command after each MIGRAD (or MINIMIZE) command.

7.2.3 Errors after HESSE

HESSE simply calculates the full second-derivative matrix by finite differences and invertsit. It therefore
calculates the error matrix at the point where it happensto be when it iscalled. If the error matrix is not
positive-definite, diagnosticsare printed, and an attempt ismadeto form apositive-definite approximation.
The error matrix must be positive-definite at the solution (minimum) for any real physical problem. It
may well not be positive away from the minimum, but most algorithms including the MIGRAD algorithm
require a positive-definite “working matrix”.

The error matrix produced by HESSE isused to cal culate what Minuit printsasthe parameter errors, which
therefore contain the effects due to parameter correlations. The extent of the two-by-two correlations can

7.3. Multiparameter errors 41

be seen from the correlation coefficients printed by Minuit, and the global correlations (see [5], p. 23)
are also printed. All of these correlation coefficients must be less than one in absolute value. If any of
them are very close to one or minus one, thisindicates an illposed problem with more free parameters
than can be determined by the model and the data.

7.2.4 Errors by MINOS

MINOS isdesigned to calculate the correct errorsin all cases, especially when there are non-linearities as
described above. The theory behind the method is described in [5], pp. 204-205 (where *non-parabolic
likelihood” should of course read “non-parabolic log-likelihood”, which is equivalent to “nonparabolic
chi-square”).

MINOS actualy follows the function out from the minimum to find where it crosses the function value
(minimum + UP), instead of using the curvature at the minimum and assuming a parabolic shape. This
method not only yields errors which may be different from those of HESSE, but in general also different
positiveand negative errors (asymmetric error interval). Indeed the most frequent result for most physical
problemsisthat the (symmetric) HESSE error lies between the positive and negative errors of MINOS. The
difference between these three numbers is one measure of the non-linearity of the problem (or rather of
its formulation).

In practice, MINOS errors usually turn out to be close to, or somewhat larger than errors derived from the
error matrix, although in cases of very bad behaviour (very little data or ill-posed model) anything can
happen. In particular, it is often not true in MINOS that two-standard-deviation errors (UP=4) and three-
standard-deviation errors (UP=9) are respectively two and three times as big as one-standard-deviation
errors, asistrue by definition for errors derived from the error matrix (MIGRAD or HESSE).

7.3 Multiparameter errors

In additionto the difficultiesdescribed above, a special class of problemsarisein interpreting errors when
thereismore than one free parameter. These problems are quite separate from those described above and
are really much simpler in principle, although in practice confusion often arises.

7.3.1 The Error Matrix

The error matrix, also caled the covariance matrix, is the inverse of the second derivative matrix of
the (log-likelihood or chisguare) function with respect to its free parameters, usualy assumed to be
evaluated at the best parameter values (the function minimum). The diagonal elements of the error matrix
are the squares of the individual parameter errors, including the effects of correlationswith the other
parameters.

Theinverse of the error matrix, the second derivative matrix, has as diagonal elements the second partial
derivatives with respect to one parameter at atime. These diagonal elements are not therefore coupled
to any other parameters, but when the matrix is inverted, the diagonal elements of the inverse contain
contributions from all the elements of the second derivative matrix, which is “where the correlations
come from”.

Although a parameter may be either positively or negatively correlated with another, the effect of
correlations is always to increase the errors on the other parameters in the sense that if a given free
parameter suddenly became exactly known (fixed), that would always decrease (or at least not change)
the errors on the other parameters. In order to see this effect quantitatively, the following procedure can
be used to “delete” one parameter from the error matrix, including its effects on the other parameters:

42 Chapter 7. Interpretation of the errors on parameters as given by Minuit

(1) Invert the error matrix, to yield the second-derivative matrix.
(2) Remove the row and column of the inverse corresponding to the given parameter.
(3) Re-invert the resulting (smaller) matrix.

Thisreduced error matrix will have itsdiagonal elements smaller or equal to the corresponding elements
in the original error matrix, the difference representing the effect of knowing or not knowing the true
value of the parameter that was removed at step two. Thisprocedureis exactly that performed by Minuit
when aFIX command is executed. Note that it isnot reversible, since information has been lost in the
deletion. The Minuit commandsRESTORE and RELEASE therefore cause the error matrix to be considered
lost and it must be recalculated entirely.

7.3.2 MINOS with several free Parameters

TheMINOS agorithmisdescribedinsomedetail in part 1 of thismanual. Herewe add some supplementary
“geometrical interpretation” for the multidimensional case.

Let us consider that there are just two free parameters, and draw the contour line connecting all points
where the function takes on the value F,;, + UP. (The CONTOUR command will do this for you from
Minuit). For alinear problem, this contour line would be an exact ellipse, the shape and orientation of
which are described in [5], p.196 (fig. 9.4). For our problem let the contour be asin figure 7.1. If MINOS
is requested to find the errorsin parameter one (the x-axis), it will find the extreme contour points A and
B, whose x-coordinates, relative to the x-coordinate at the minimum (X), will be respectively the negative
and positive MINOS errors of parameter one.

A Parameter 1

7.3. Multiparameter errors 43

Figure 7.1: MINOS errorsfor parameter 1

7.3.3 Probability content of confidence regions

For an n-parameter problem MINOS performs minimizationsin (n — 1) dimensionsin order to find the
extreme points of the hypercontour of which a two-dimensional example is given in figure 7.1, and in
thisway takes account of al the correlationswith the other n — 1 parameters. However, the errors which
it calculates are still only single-parameter errors, in the sense that each parameter error is a statement
only about the value of that parameter. Thisis represented geometrically by saying that the confidence
region expressed by the MINOS error in parameter one isthe grey area of figure 7.2, extending to infinity
at both the top and bottom of the figure.

>
A Parameter 1

Figure 7.2: MINOS error confidence region for parameter 1

If UP is set to the appropriate one-standard-deviation value, then the precise meaning of the confidence
region of figure 7.2 is. “The probability that the true value of parameter one lies between A and B is

44 Chapter 7. Interpretation of the errors on parameters as given by Minuit

68.3%" (the probability of a normally-distributed parameter lying within one std.-dev. of its mean).
That is, the probability content of the grey area in figure 7.2 is 68.3%. No statement is made about
the simultaneous values of the other parameter(s), since the grey area covers all values of the other
parameter(s).

If it is desired to make simultaneously statements about the values of two or more parameters, the
situation becomes considerably more complicated and the probabilities get much smaller. The first
problem isthat of choosing the shape of the confidence region, sinceitisno longer simply aninterval on
an axis, but a hypervolume. The easiest shape to expressis the hyperrectangle given by:

A < param 1 < B
C < param 2 < D
E < param 3 < F , e€tC.

A

Parameter 2

>
A Parameter 1

Figure 7.3: Rectangular confidence region for parameters 1 and 2

This confidence region for our two-parameter example isthe grey areain figure 7.3. However, there are
two good reasons not to use such a shape:

(1) Someregionsinsidethe hyperrectangle (namely the corners) havelow likelihoods, lower than some
regionsjust outside the rectangle, so the hyperrectangleis not the optimal shape (does not contain
the most likely points).

7.3. Multiparameter errors 45

(2) One does not know an easy way to calculate the probability content of these hyperrectangles
(see[5], p.196-197, especidly fig. 9.5a).

For these reasons one usually chooses regions delimited by contours of equal likelihood (hyperellipsoids
in the linear case). For our two-parameter example, such a confidence region would be the grey region
in figure 7.4, and the corresponding probability statement is. “The probability that parameter one and
parameter two simultaneoudly take on values within the one-standard-deviation likelihood contour is
39.3%".

The probability content of confidence regions like those shaded in figure 7.4 becomes very small asthe
number of parameters NPAR increases, for a given value of UP. Such probability contents are in fact the
probabilities of exceeding the value UP for a chisquare function of NPAR degrees of freedom, and can
therefore be read off from tablesof chisquare. Table 7.1 givesthe values of UP which yield hypercontours
enclosing given probability contents for given number of parameters.

46 Chapter 7. Interpretation of the errors on parameters as given by Minuit

A

Parameter 2

1

Parameter

Figure 7.4: Optimal confidence region for parameters 1 and 2

Confidence level (probability contents desired inside
Number of hypercontour of x* = x2,, + UP)
Parameters 50% 70% 90% 95% 99%
1 0.46 1.07 2.70 3.84 6.63
2 1.39 241 4.61 5.99 9.21
3 2.37 3.67 6.25 7.82 11.36
4 3.36 4.88 7.78 9.49 13.28
5 4.35 6.06 9.24 11.07 15.09
6 5.35 7.23 10.65 12.59 16.81
7 6.35 8.38 12.02 14.07 18.49
8 7.34 9.52 13.36 15.51 20.09
9 8.34 10.66 14.68 16.92 21.67
10 9.34 11.78 15.99 18.31 23.21
11 10.34 12.88 17.29 19.68 24.71
If FCN is — log(likelihood) instead of x?, al values of UP
should be divided by 2.

Table 7.1: Table of UP for multi-parameter confidence regions

Bibliography
[1] L.Lamport. IATeX A Document Preparation Systedddison-Wesley, 1986.

[2] R.Brun. HBOOK users guide (Version 4.1%xogram Library Y 250. CERN, 1992.

[3] R.Brun, O.Couet, C.Vandoni, and PZanarini. PAW users guideRrogram Library Q121. CERN,
1991.

[4] FJames. Determining the statistical Significance of experimental Results. Technica Report
DD/81/02 and CERN Report 81-03, CERN, 1981.

[5] W.T.Eadie, D.Drijard, F.James, M.Roos, and B.Sadoulet. Statistical Methods in Experimental
Physics North-Holland, 1971.

[6] J.Kowalik andM.R. Osborne. Methods for unconstrained optimization problemmerican Elsevier
Publishing Co., Inc., New York, 1968.

[7] H.H. Rosenbrock. Anautomatic method for finding the greatest or least value of afunction, Compui.
J.3, 175 (1960).

[8] R. Hooke and T.A. Jeeves. Direct search solution of numerical an statistical problems. J. Assoc.
Comput. Mach. 8, 212 (1961).

[9] L.C.W. Dixon. Non-linear optimizationEnglish Universities Press, London, 1972.
[10] J.A. Nelder and R. Mead. A simplex method for function minimization. Comput. J. 7, 308 (1965).

[11] G.W. Stewart. A modification of Davidon’s method to accept difference approximations of deriva-
tives. J. Assoc. Comput. Mach 14, 72 (1967).

[12] R. Fletcher and C.M. Reeves. Function minimization by conjugate gradients. Comput. J. 7, 149
(1964).

[13] M.J.D. Powell. An efficient method for finding the minimum of a function of several variables
without cal culating derivatives. Comput. J. 7, 155 (1964).

[14] L.D. Landau and E.M. Lifshitz. The classical theory of field$\ddison-Wesley Publ. Co., Inc.,
Reading, Mass., 1951.

[15] R. Fletcher and M.J.D. Powell. A rapidly converging descent method for minimization. Comput. J.
6, 163 (1963).

[16] W.C. Davidon. Variance algorithm for minimization. Comput. J. 10, 406 (1968).

[17] M.JD. Powell. Rank one methods for unconstrained optimization, appearing in Integer and Non-
linear ProgrammingJ. Adabie, editor. North-Holland Publ. Co., Amsterdam, 1970.

[18] R. Fletcher. A new approach to variable metric agorithms. Comput. J. 13, 317 (1970).

[19] C.G. Broyden. Quasi-Newton methods and their application to function minimization. Math. Com-
put. 21, 368 (1967).

47

48 BIBLIOGRAPHY

[20] I.M. Gelfand and f.L. Tsetlin. The principle of non-local search in automatic optimization systems.
Soviet Phys. Dokl. 6, 192 (1961).

[21] A.A. Goldstein and J.F. Price. On descent from local minima. Math. Comput . 25, 569 (1971).

[22] R. Fletcher. Methods for the solution of optimization problems. Comput. Phys. Commun. 3, 159
(1972).

[23] M.J.D. Powell. A survey of numerical methods for unconstrained optimization. SIAM Rev. 12, 79
(1970).

[24] M.J.D.Powell. A method for minimizing asum of squaresof non-linear functionswithout cal culating
derivatives. Comput. J. 7 303 (1965).

[25] J. Greenstadt. On the relative efficiencies of gradient methods. Math. Comput. 21, 360 (1967) .

[26] R.W.H. Sargent and B.A. Murtaugh. Computational experience with quadratically convergent min-
imization methods. Comput. J. 13185 (1970).

[27] A.A.Goldsteinand J.F. Price. An effective algorithm for minimization. Num. Math. 10, 184 (1967).

[28] PE. Gill, W. Murray and M.H. White. Practical OptimizationAcademic Press, 1981.

Index
batch run, 14

CAL1, 19

CLEar, 19, 31
CONtour, 7, 19, 29, 80
correlations, 79
covariance matrix, 76, 79

data driven mode, 12

END, 13, 16, 18, 20, 20

END RETURN (obsolete), 20
error matrix, 78, 79

errors, 6

EXIT, 13, 16, 18, 20, 20, 25
external parameter, 3, 4

FCN, 3—7, 10, 11, 11, 12-14, 16, 18-24, 26-28,
30, 31, 77, 78, 83

FIX,6,7,20, 21,28, 31,79

Fortran-callable mode, 12

FUTIL, 10, 12

HELP, 14, 20, 24
HELP SHOw, 14
HESse, 6, 10, 18, 20, 29, 75, 77-79

IMProve, 20, 26
input/output units, 13
interactive session, 14
internal parameter, 3, 4
INTRAC, 9, 14, 15

least squares
weighted, 76
likelyhood, 76

metropilis agorithm, 26
MIGrad, 6, 7,17, 18, 20, 21, 26-30, 75, 77-79
minimization

multidimensional, 27
MINImize, 20, 21, 77, 78
MINOs, 4, 6, 7, 10, 14, 17, 18, 21, 21, 26, 28, 29
MINos, 75, 77-81
MINTIO, 13,13 21
MINUIT, 13, 32
MNCONT, 8, 18

49

MNContour, 7, 10, 18, 19, 21, 21
MNEMAT, 17
MNERRS, 17, 18
MNEXCM, 16, 16, 18, 19
MNINIT, 12,13, 15, 18, 21
MNINTR, 18, 18
MNPARM, 12, 16, 16
MNPOUT, 16
MNSETI, 15, 24
MNSTAT, 17

mode

datadriven, 12
Fortran-callable, 12

Monte Carlo, 26
multidimensional minimization, 27

PARameters, 14, 19, 21, 31
parameters

externd, 3, 4
internal, 3, 4
number of, 9

RELease, 6, 21, 28, 31, 79
REStore, 21, 79
RETurn, 13, 18, 20, 21, 21
REWIND, 22

SAVe, 21,21
SCAn, 22, 28, 29, 31
SEEk, 22, 24,77

SET,

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

14,20

BATch, 15, 22
EPSmachine, 10, 22, 22, 26, 30
ERRordef, 5-7, 20, 21, 22, 24, 29, 75, 76
GRAdient, 22, 23

INPut, 14-16, 22
INTeractive, 15, 23
LIMits, 23 31
LINesperpage, 15, 23
NOGradient, 23
NOWarnings, 23
OUTputfile, 23
PAGethrow, 23, 25
PARameter, 23, 28, 31
PRIntout, 7, 8, 23
RANdomgenerator, 24

50 INDEX

SET STRategy, 5, 24, 26
SET TITle, 14,24

SET WARnings, 23, 24
SET WIDthpage, 15, 24
SET XXXX, 24

SHOw, 14, 20, 23

SHOw CORrelations, 6,24
SHOw COVariance, 6, 24
SHOw EIGenvalues, 6,24
SHOw FCNvalue, 24

SHOw INTeractive, 15
SHOw MINos, 7

SHOw PRInt, 23

SHOw RANdom, 24

SHOw XXXX, 24,24
SIMplex, 21, 24, 26, 27, 77
STAndard, 25

standard deviation, 76
STOP, 13, 16, 18, 25

TOPofpage, 23, 25

variable, 9
version, 9

weighted least squares, 76

