

QUADRICS

LINKER

USER MANUAL

Quadrics and TAO are trademarks of Alenia Spazio S.p.A.

APE100 and ZZ are project names of the I.N.F.N. (Istituto Nazionale di Fisica Nucleare)

First Edition: May 1995

APE100 is the parallel computer architecture designed by the I.N.F.N.

Quadrics is the family of parallel computers of the Alenia Spazio S.p.A.

Edited by E.Panizzi & R.Simonazzi

�

CONTENTS

�\SOM \o�

1. Introduction	1

2. Writing programs composed of several modules	2

3. Compilation of programs made of several modules	4

4. Use of mmq	6

5. Examples	8

��
�seq chapter\r1�1�. Introduction

Linq, the Quadrics Linker, is used to save the time spent in compilation (and re-compilation) of TAO programs. Dividing your TAO code into modules which contain the main program and the subroutines, you need only to recompile the changed module with TAO (thus requiring much less time than if you had to recompile the whole zzt code) and then link all the modules to�gether.

Linq needs ".iar" files as input files. The ".iar" file is produced by the compilation chain instead of the ".iac" file when a suitable command line option is specified. The ".iar" file is an intermedi�ate, reallocable code. Linq relocates all the ".iar" files and builds a unique code which is then passed on to the deepest stages of the compilation chain in order to produce the ".zex" executable code.

The structure of this manual is the following:

�\SIMBOLO 183 \f "Symbol" \s 10 \h��	The first chapter deals with the structure of a TAO program divided into modules and with the differences in variable and type declaration.

�\SIMBOLO 183 \f "Symbol" \s 10 \h��	The second chapter deals with the compilation of the modules and about the linking itself.

�\SIMBOLO 183 \f "Symbol" \s 10 \h��	Another chapter describes the use of a tool which builds up makefiles for automatic recompilation and re-linking of TAO programs.

�\SIMBOLO 183 \f "Symbol" \s 10 \h��	The last part is devoted to the examples and describes a com�plete compilation and linking chain for a real program.

�

�seq chapter�2�. Writing programs composed of different modules

A TAO program is made of a main routine and one or more sub�routines. It is possible to split this program into modules. One module, called the main module, must contain the main routine body and eventually some subroutines while the other modules can contain one or more subroutines each. Modules other than the main can not include executable instructions out of subroutines because these instructions would be not reachable. You can face problems like these in modules including, besides declarations, also variables initialization. To correctly compile the program, you need to provide the compiler and the linker with some infor�mation about the declarations of types and variables common to several modules.

An accustomed use of linker is writing down the code splitted it in modules in the following way:

·	a leading module containing the declarations of global vari�ables and executable instructions block (main routine)

	

·	one or more modules containing definition of subroutines not defined in the main module; moreover, these files have to in�clude the redeclaration of the global variables used inside the module.

Variables

The TAO language supports global and local variables. The for�mer are declared in the main body while the latter are declared inside subroutines. While global variables are visible in every point of the program, local variables scope ranges only inside the subroutines where they are declared.

A global variable of the first kind is one you can refer to using the same name in every point of the code; to obtain such a vari�able you have to declare it in the main module, out of the subrou�tine definition, and redeclare it in every module preceded by the extern prefix.

extern real r_array[10,20]

extern complex c_var

This rule is valid both for predefined type variables (integer, real, complex) and user defined variables (multindex and floating-point types built with the type constructor record and matrix).

It is possible to declare, at the top of the module, variables which are local to the module itself, visible to the subroutines but not local to the subroutines: you have just not to declare them in the main.

Types

In case of new type declaration, such as records or matrix user defined type, you have to repeat the type definition at the begin�ning of each module where variables of such type are used.

If you want to pass a parameter to a subroutine, you have to de�fine the type of the parameter before the subroutine definition: in case of predefined type, such as integer real and complex, there is no need of it.

Constants

Constants are always local to the only one module where they are declared in; we mean the constants must be declared in the main module as well as in all the modules which use them. So the constants behavior is lined up to the variables one.

�

�seq chapter�3�. Compilation of programs made of several modules

To obtain an executable file from several source files you need first to compile every source file invoking tao with the -c option:

% tao -c file_1

% tao -c file_2

 ...

% tao -c file_n

in this way, only the first block of the compilation runs, produc�ing “.iar” files which are intermediate reallocable files that will be linked into the “.iac” file.

Then you go on in the production of executable machine code typing the command line with the following syntax:

linq [-d] [+/-hrv] file_1 file_2...

This command links the different modules and then invokes the compilation chain block which takes care of optimization and production of machine executable code.

file_1, ..., file_n in the just shown command line are the names of the modules to link and file_1 contains the main program body. The qualifiers have the following meaning:

 -d:	debugging: the linking is performed to permit a run-time debugging session. The default is no debugging arrangement

+/-h:	on line help

 -r:	code optimization disabled

+r:	code optimization enabled (default)

+v:	verbose (shows information about variables and about reallocations made). The default is -v silent.

Here follows an example of compilation of a program made up of two modules named main.zzt and subs.zzt:

% tao -c main

% tao -c subs

% linq main subs

As told before, the previous command lines calls script files which invokes appropriate executables C programs in the compi�lation chain; in fact, the script file linq calls the actual linker named taolink together with the suitable qualifiers and then calls asmq to produce the executable ".zex" code.

The syntax of taolink is the following (although is not neces�sary to invoke taolink directly):

taolink [-h] [-v[2]] [-i headerfile]

		 [-o outputfile] [-m mapfile]

		 file_1 file_2 ... file_n

where the qualifiers meaning is

-h:	on line help

-v:	verbose (shows information about variables

		and about reallocations made)

-v2:	shows more information with respect to -v

		qualifier

 -i:	name of file to use as header file

		(default is $TAOLIB/header.iar)

-o:	name of .iac output file

		(default is file_1.iac)

-m:	name of informative .map file

		(default is file_1.map)

taolink needs ".iar" and ".ali" as input files coming from each module, and returns as output a unique ".iac" file.

�

�seq chapter�4�. Use of mmq

An useful tool is available, named mmq (Quadrics makefile maker): this tool produces a makefile that can be used to compile and link your programs. The syntax is the following:

mmq [-d] [+bqv] file_1, ..., file_n

where the qualifiers meaning is

-d:	makefile will compile for debugging.

+b:	makefile will compile executing array

		boundary check.

+q:	makefile will compile including qcd

		library.

+v:	makefile will compile executing verbose

		linking.

When you run mmq a file named makefile is written in the cur�rent directory. You can then compile your program simply typing make. make will recompile only the modules that have changed and then relinks all the modules. Note that the include ".hzt" files are considered when checking the dependencies, thus a ".zzt" file will be recompiled if the files it includes have changed. When you type mmq the new makefile that mmq pro�duces overwrites any makefile already existent in the directory. You have to specify the file names in the mmq command line in the same order you would specify them in the linq command line. You have to rerun mmq only when a new file is added to the project (both ".zzt" and ".hzt"). For further information refer to the make manual pages on your Unix system. In the following chapter of this manual an example of a makefile produced by mmq is reported. The source code of mmq is released to users, so that if you are a C programmer you can modify it according to your needs and recompile it. The source C code is in the $QLIB directory.

�

�seq chapter�5�. Examples

Here we show some simple examples of an executable program composed of manifold modules:

module main.zzt:

!!--!!

!!				PROGRAM MAIN.ZZT

!!

write " Running in the main "

constant VALUE = 77.0

record point

 real px, py, pz

endrecord

integer var_int, array_int[2,2]

real var_real, array_real[3,3]

point var_point, array_point[4,4]

matrix point mat_point.[5,5]

mat_point trix_point

multindex in [2,2] int_index

multindex in [3,3] real_index

multindex in [4,4] point_index

int_index	= [0,1]

real_index	= [1,2]

point_index	= [2,3]

var_int				= 2

array_int[0,1]		= 7

var_real			= 2.3

array_real[1,2]		= 7.3

var_point.px			= 2.4

array_point[2,3].px	= 7.4

trix_point.[3,4].px	= 7.5

write "array_int[int_index] =",array_int[int_index], ...

							" in the main "

write "array_real[real_index] = ",array_real[real_index],

							" in the main "

write "array_point[point_index].px =", ...

					array_point[point_index].px, ...

					" in the main "

write "trix_point.[3,4].px = ", trix_point.[3,4].px, ...

						" in the main "

call sub_local()

write "var_real value = ", var_real, " in the main "

call sub_extern_1()

call sub_extern_2(var_int, trix_point)

write "trix_point.[3,4].px = ", trix_point.[3,4].px, ...

		" the previous value was 7.5, modified in

		subroutine sub_extern_2() "

!!---!!

!!			SUBROUTINE DEFINITION

!!

subroutine sub_local()

 write " Running in sub_local() "

 real var_real !! different with respect to

				!! the var_real of the main

 var_real = 5.3

 write "var_real = ", var_real, " in the subroutine "

end

�

module sub_1.zzt:

!!--!!

!!			SUBROUTINE SUB_EXTERN_1()

!!

record point

 real px, py, pz

endrecord

extern integer array_int[2,2]	!! the same main

							!!array_int[] variable

extern point var_point			!! the same main

							!! var_point variable

extern point array_point[4,4]	!! the same main

							!! array_point variable

matrix point mat_point.[5,5]

extern mat_point trix_point	!! the same main

							!! trix_point variable

extern multindex in [2,2] int_index	!! the same main

							!! multindex variable

extern multindex in [4,4] point_index	!! the same main

							!! multindex variable

var_point.py = 3.6	!!wrong: assignement not reachable

subroutine sub_extern_1()

 write " Running in sub_extern_1() "

 integer var_int	!! different with respect to

				!! the integer variable of the main

 real local_x	!! different with respect to

				!! the real variable of sub_extern_2()

 var_int = 3

 write "local_x=", local_x, " NaN because uninitialized"

 write "array_int[int_index]=",array_int[int_index], ...

							" as in the main "

 write "array_point[point_index].px=",. 							array_point[point_index].px, ...

					" as in the main "

 var_point.py = 3.4		!! effective assignement

 call sub_extern_2(var_int, trix_point)

end

�

module sub_2.zzt:

!!---!!

!!				SUBROUTINE SUB_2()

!!

/include "library.hzt"

record point

 real px, py, pz

endrecord

matrix point mat_point.[5,5]

extern real array_real[3,3]

extern multindex in [3,3] real_index	!! the same

						!! variable of the main

subroutine sub_extern_2(integer dummy, ...

					mat_point trix_point)

 write " Running in sub_extern_2() "

 real local_x			!! local real variable

 write "array_real[real_index]=", ...

		array_real[real_index], " as in the main "

 write "dummy = ", dummy, ...

			", it's the variable of the calling module "

 trix_point.[3,4].px = 33.3

 local_x = 11.1

end

�

The output of the previous code is the following:

Running in the main

array_int[int_index] = 7 in the main

array_real[real_index] = 7.300000e+00 in the main

array_point[point_index].px = 7.400000e+00 in the main

trix_point.[3,4].px value = 7.500000e+00 in the main

 Running in sub_local()

var_real = 5.300000e+00 in the subroutine

var_real = 2.300000e+00 in the main

 Running in sub_extern_1()

local_x value = NaN NaN because uninitialized

array_int[int_index] = 7 as in the main

array_point[point_index].px = 7.400000e+00 as in the main

 Running in sub_extern_2()

array_real[real_index] = 7.300000e+00 as in the main

dummy = 3 , it's the variable of the calling module

 Running in sub_extern_2()

array_real[real_index] = 7.300000e+00 as in the main

dummy = 2 , it's the variable of the calling module

trix_point.[3,4].px = 3.330000e+01 !! the previous value

		!! was 7.5, modified in subroutine sub_extern_2()

�

Here is the makefile produced by mmq with the following com�mand line

% mmq -d +b +q +v main sub1 sub2

!!---!!

!!				MAKEFILE

!!

SHELL = tcsh

LIB = /qx/qx/lib

COMP_FLAGS = -v -c -d +b +q

LINK_FLAGS = -d +v

COMP = /qx/qx/bin/tao $(COMP_FLAGS)

main.zex : main.iar sub1.iar sub2.iar

	wlinq $(LINK_FLAGS) main sub1 sub2

main.iar : main.zzt

	$(COMP) main

sub1.iar : sub1.zzt

	$(COMP) sub1

sub2.iar : sub2.zzt library.hzt

	$(COMP) sub2

LINQ User Manual

		LINQ User Manual

Release 2.0	-�PAGINA�II�-	

	-�\PAGINA * ROMANO�III�-	Release 2.0

LINQ User Manual

		LINQ User Manual		

Release 2.0	-�\PAGINA �8�-	

	-�\PAGINA �7�-	Release 2.0

