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NONLOCAL CHIRAL QUARK MODEL
WITH CONFINEMENT
A. E. Radzhabov 1, M. K. Volkov 2

Joint Institute for Nuclear Research, Dubna

The nonlocal version of the SU(2) × SU(2) symmetric four-quark interaction of the NJL type is
considered. Each of quark lines contains the form factors. These form factors remove the ultraviolet
divergences in quark loops. The additional condition for constituent quark mass function m(p) ensures
the absence of the poles in the quark propagator (quark conˇnement). The model contains minimal
numbers of the arbitrary parameters because the constituent quark mass m(0) is equal to the cut-off
parameter Λ = 340 MeV in the chiral limit. These parameters are ˇxed by the experimental value of
the weak pion decay constant Fπ = 93 MeV and allow us to describe the mass of the light scalar meson
and decays ρ → ππ and a1 → ρπ in the qualitative agreement with experimental data.

� ¸¸³µÉ·¥´  ´¥²µ± ²Ó´ Ö ¢¥·¸¨Ö SU(2)×SU(2)-¸¨³³¥É·¨Î´µ£µ Î¥ÉÒ·¥Ì±¢ ·±µ¢µ£µ ¢§ ¨³µ¤¥°-
¸É¢¨Ö. Š ¦¤ Ö ±¢ ·±µ¢ Ö ²¨´¨Ö ¸µ¤¥·¦¨É Ëµ·³Ë ±Éµ·. ”µ·³Ë ±Éµ·Ò Ê¸É· ´ÖÕÉ Ê²ÓÉ· Ë¨µ²¥Éµ-
¢Ò¥ · ¸Ìµ¤¨³µ¸É¨ ¢ ±¢ ·±µ¢ÒÌ ¶¥É²ÖÌ. „µ¶µ²´¨É¥²Ó´µ¥ Ê¸²µ¢¨¥ ´  ³ ¸¸µ¢ÊÕ ËÊ´±Í¨Õ ±µ´¸É¨ÉÊ-
¥´É´µ£µ ±¢ ·±  µ¡¥¸¶¥Î¨¢ ¥É µÉ¸ÊÉ¸É¢¨¥ ¶µ²Õ¸µ¢ ¢ ¶·µ¶ £ Éµ·¥ ±¢ ·±  (±¢ ·±µ¢Ò° ±µ´Ë °´³¥´É).
Œµ¤¥²Ó ¸µ¤¥·¦¨É ³¨´¨³ ²Ó´µ¥ Î¨¸²µ ¶·µ¨§¢µ²Ó´ÒÌ ¶ · ³¥É·µ¢, É ± ± ± ±µ´¸É¨ÉÊ¥´É´ Ö ±¢ ·±µ-
¢ Ö ³ ¸¸  m(0) · ¢´  ¶ · ³¥É·Ê µ¡·¥§ ´¨Ö Λ = 340 ŒÔ‚ ¢ ±¨· ²Ó´µ³ ¶·¥¤¥²¥. �É¨ ¶ · ³¥É·Ò
Ë¨±¸¨·ÊÕÉ¸Ö ¶µ Ô±¸¶¥·¨³¥´É ²Ó´µ³Ê §´ Î¥´¨Õ ±µ´¸É ´ÉÒ ¸² ¡µ£µ · ¸¶ ¤  ¶¨µ´  Fπ = 93 ŒÔ‚ ¨
¶µ§¢µ²ÖÕÉ µ¶¨¸ ÉÓ ³ ¸¸Ê ²¥£±µ£µ ¸± ²Ö·´µ£µ ³¥§µ´  ¨ · ¸¶ ¤Ò ρ → ππ ¨ a1 → ρπ ¢ ± Î¥¸É¢¥´´µ³
¸µ£² ¸¨¨ ¸ Ô±¸¶¥·¨³¥´É ²Ó´Ò³¨ ¤ ´´Ò³¨.

INTRODUCTION

Recently it has been proposed that the nonlocal SU(2)×SU(2) chiral quark model allows
us to describe the intrinsic properties and strong interaction of the scalar, pseudoscalar, vector
and axial-vector mesons [1]. Unlike the local NambuÄJona-Lasinio (NJL) model [2], in this
model ultraviolet (UV) divergences are absent and the quark conˇnement takes place. These
properties of the model are provided by the form factors which are connected with each of the
quark ˇelds. The existence of these form factors is motivated by the instanton model [3Ä6].
It has been shown that the main low-energy theorems are fulˇlled in the framework of this
model. The model [1] is the development of a number of similar models [5Ä8].

This work is devoted to further development of these models. Before describing our
approach let us shortly recall the basic method used in [1]. There the special condition,
Eq. (8), for the form of the quark mass function was proposed which provided the absence of
the poles in the quark propagator (quark conˇnement) (see Sect. 3). This method was close to
the works [9]. Eq. (8) can be motivated by the existence of the nonlocal quark condensate [8].
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As a result, several solutions to the quark mass function m(p) appeared. Of these solutions
only one satisˇes the general requirement of the form-factor behaviour in the whole domain
of the p2 and leads to satisfactory physical predictions. It is self-consistent only at deˇnite
values of the model parameters.

In the present work we propose the new representation for the quark propagator which
leads to a simpler solution to the dynamical quark mass. This representation can also be
connected with the nonlocal quark condensate which appeared in the gap equation. As a
result, we obtain a simple expression for the dynamical quark mass that contains only one
arbitrary parameter. The value of the quark mass at p2 = 0 is equal in the chiral limit to
the cut-off parameter Λ, m(0) = Λ = 340 MeV. This value corresponds to the experimental
value of the pion weak decay constant Fπ = 93 MeV. The mass of the scalar meson and
decays ρ → ππ and a1 → ρπ are described in qualitative agreement with experimental data.
The πÄa1 transitions in this model, like in other models of this kind, are very small and can
be omitted [1,7].

The paper is organized as follows. In Sect. 1, we consider a nonlocal four-quark interaction
and after bosonization derive the gap equation for dynamical quark mass. The quark mass
function m(p) is deˇned in Sect. 2. In Sect. 3, the masses and couplings of the scalar and
pseudoscalar mesons are obtained and the main parameters of the model are ˇxed. In Sect. 4,
calculations of the four-quark coupling constant Gρ, Ga1 , a1, ρ-meson coupling constant, and
the decays ρ → ππ, a1 → ρπ are given. The πÄa1 transitions are considered. The last section
is devoted to the discussion of our results.

1. SU(2)× SU(2) QUARK MODEL WITH NONLOCAL INTERACTION

The SU(2) × SU(2) symmetric action with the nonlocal four-quark interaction has the
form

S(q̄, q) =
∫

d4x

{
q̄(x)(i∂̂x − mc)q(x) +

Gπ

2
(Jσ(x)Jσ(x) + Ja

π(x)Ja
π (x)) −

−Gρ

2
Jµa

ρ (x)Jµa
ρ (x) − Ga1

2
Jµa

a1
(x)Jµa

a1
(x)

}
, (1)

where q̄(x) = (ū(x), d̄(x)) are the u and d quark ˇelds; mc is the diagonal matrix of the
current quark masses. The nonlocal quark currents JI(x) are expressed as

JI(x) =
∫ ∫

d4x1d
4x2 f(x1)f(x2) q̄(x − x1) ΓI q(x + x2), (2)

where the nonlocal function f(x) is normalized by f(0) = 1. In (2) the matrices ΓI are
deˇned as

Γσ = 1, Γa
π = iγ5τa, Γµ a

ρ = γµτa, Γµ a
a1

= γ5γµτa,

where τa are the Pauli matrices and γµ, γ5 are the Dirac matrices.
In this article, we mainly consider the strong interactions. The electroweak ˇelds may be

introduced by gauging the quark ˇeld by the Schwinger phase factors (see, cf. [6, 7]).
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After bosonization the action becomes

S(q, q̄, σ, π, ρ, a) =
∫

d4x

{
− 1

2Gπ
(σ̃(x)2 + πa(x)2)+

+
1

2Gρ
(ρµa(x))2 +

1
2Ga1

(aµa
1 (x))2 + q̄(x)(i∂̂x − mc)q(x)+

+
∫ ∫

d4x1d
4x2 f(x − x1)f(x2 − x)q̄(x1)(σ̃(x)+

+πa(x)iγ5τa + ρµ a(x)γµτa + aµa
1 (x)γ5γµτa)q(x2)

}
, (3)

where σ̃, π, ρ, a are the σ, π, ρ, a1 meson ˇelds, respectively. The ˇeld σ̃ has a nonzero
vacuum expectation value 〈σ̃〉0 = σ0 �= 0. In order to obtain a physical scalar ˇeld with zero
vacuum expectation value, it is necessary to shift the scalar ˇeld as σ̃ = σ + σ0. This leads
to the appearance of the nonlocal quark mass m(p) instead of the current quark mass mc:

m(p) = mc + mdyn(p), (4)

where mdyn(p) = −σ0f
2(p) is dynamical quark mass. From the action, Eq. (3), by using〈

δS

δσ

〉
0

= 0, (5)

one can obtain the gap equation for dynamical quark mass

mdyn(p) = Gπ
8Nc

(2π)4
f2(p)

∫
d4

Ekf2(k)
m(k)

k2 + m2(k)
. (6)

The right-hand side of this equation is the tadpole of the quark propagator taken in the
Euclidean domain. Eqs. (4), (6) have the following solution:

m(p) = mc + (mq − mc)f2(p), (7)

where mq ≡ m(0).

2. DYNAMICAL QUARK MASS

Let us recall the representation for the quark propagator in the chiral limit used in our
last work [1]. We demand the absence of pole singularities in the scalar part of the quark
propagator:

m(p2)
m2(p2) + p2

≡ 1
2
Q(p2), (8)

where Q(p2) is considered as an entire function in the complex p2 plane decreasing in the
Euclidean domain as p2 → ∞. Note that the Gaussian function was used for Q(p2):

Q(p2) =
1
µ

exp
(
− p2

Λ2

)
, (9)
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where µ and Λ are arbitrary parameters. Eq. (8) has the following solutions:

m±(p2) = Q−1(p2)
(
1 ±

√
1 − p2Q2(p2)

)
. (10)

Then three different situations occur at various values of the parameters µ and Λ:
1. There is some region of real p2 where p2Q2(p2) > 1. This situation leads to the

appearance of complex values of the quark mass. This case was not considered in [1].
2. The relation p2Q2(p2) < 1 is fulˇlled in the whole domain of real p2. Then, from

two possible solutions only the solution m−(p) can be used which decreases as p2 → ∞.
However, this solution predicts the σ-meson mass and decays σ → ππ, ρ → ππ that are in
disagreement with the experiment.

3. The function p2Q2(p2) equals 1 at a single real point p0. In this case the continuous
mass function is

m(p2) = Q−1(p2)
(
1 − sgn (p2 − p2

0)
√

1 − p2Q2(p2)
)

. (11)

The last case is deˇned by the conditions

p2Q2(p2)|p2=p2
0

= 1, (p2Q2(p2))′|p2=p2
0

= 0. (12)

As a result, we come to a complicated form of solution that exists only under a special
choice of model parameters.

Here we propose a somewhat different representation for the quark propagator that leads
to a simpler solution to the quark mass function

m2(p2)
m2(p2) + p2

≡ Q̃(p2), (13)

where

Q̃(p2) = exp
(
− p2

Λ2

)
, (14)

Note that the left-hand side of Eq. (13) corresponds to the integrand in the gap equation (6)
taking into account Eq. (7). In contrast to Eq. (8), Eq. (13) leads to a simpler solution to the
mass function1

m(p2) =

√
p2

Q̃−1(p2) − 1
=

√
p2

2

(
cth

(
p2

2Λ2

)
− 1

)
. (15)

Note that we also have only one free parameter Λ; m(p2) does not have any singularities
in the whole real axis and exponentially drops as p2 → ∞ in the Euclidean domain. From
Eq. (10) it follows that the form factors that provide the absence of UV divergences in our
model behave similarly. At p2 = 0 the mass function is equal to the cut-off parameter Λ,

1We use only the solution with positive sign.
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m(0) = Λ. The pole part of the quark propagator also does not contain singularities that
provide quark conˇnement1

1
m2(p2) + p2

=
1 − Q̃(p2)

p2
. (16)

When taking into account current quark mass, Eq. (13) is modiˇed as follows:

m2(p2) − m2
c

m2(p) + p2
= Q̃c(p2), (17)

where

Q̃c(p2) = exp
(
−p2 + m2

c

Λ2

)
. (18)

Here m2
c is introduced in the form that conserves the analytical properties of the mass function

m(p). Then the mass function takes the form

m(p2) =

√
m2

c + p2Q̃c(p2)
1 − Q̃c(p2)

. (19)

3. PSEUDOSCALAR AND SCALAR MESONS

Let us consider the scalar and pseudoscalar mesons. The meson propagators are given by

Dσ,π(p2) =
1

−G−1
π + Πσ,π(p2)

=
g2

σ,π(p2)
p2 − M2

σ,π

, (20)

�

k+

k−

ΓI ΓI

Fig. 1. Meson polarization
operator. The thick lines

are mesons. All loops in
Figs. 1, 3Ä5 consist of con-

stituent quarks (thin lines)

where Mσ,π are the meson masses; gσ,π(p2) are the functions
describing renormalization of the meson ˇelds, and Πσ,π(p2)
are the polarization operators (see Fig. 1) deˇned by

Πσ,π(p2) =

= i
2Nc

(2π)4

∫
d4kf2(k2

−)f2(k2
+) Sp [S(k−)Γσ,πS(k+)Γσ,π] ,

(21)

where k± = k ± p/2. The meson masses Mσ,π are found from
the position of the pole in the meson propagator

Πσ,π(M2
σ,π) = G−1

π , (22)

and the constants gσ,π(M2
σ,π) are given on meson mass shell by (see also Fig. 2)

g−2
σ,π(M2

σ,π) =
dΠσ,π(p2)

dp2

∣∣∣∣
p2=M2

σ,π

. (23)

1Note that similar functions were used in [10, 11] in order to describe the quark conˇnement.
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Fig. 2. Momentum dependence of the mesons strong coupling constants

In the chiral limit the pion constant gπ(0) is given by [4]

g−2
π (0) =

Nc

4π2m2
q

∞∫
0

du u
m2(u) − u m(u)m′(u) + u2m′2(u)

(u + m2(u))2
. (24)

The gap equation in the chiral limit takes the simple form

GπΛ2 =
2π2

Nc
. (25)

The quark condensate in the chiral limit is

〈q̄q〉0 = − Nc

4π2

∞∫
0

du u
m(u)

u + m2(u)
. (26)

As is shown in [1,6, 7], in model of this kind the GoldbergerÄTreiman relation holds:

fπ =
mq

gπ
. (27)

From Eqs. (24), (27) the value of the parameter Λ = mq = 340 MeV in the chiral limit can
be obtained. Then, from Eqs. (25)Ä(27) we obtain

gπ(0) = 3.67, Gπ = 56.6 GeV, 〈q̄q〉0 = −(188 MeV)3. (28)

In the description of pion mass it is necessary to introduce the nonzero current quark
mass mc. In our model M2

π � Λ2. Therefore, we can consider only the lowest order of the
expansion in small p2. Then, one gets from Eq. (20)

M2
π = g2

π(0)


 1

Gπ
− Nc

2π2

∞∫
0

du u
f(u)4

u + m2(u)


 . (29)
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�σ
k + q1

π

k

π

k − q2

q2

q1

p

Fig. 3. Decays σ → ππ, ρ → ππ

By using the expression for Gπ from the gap equation
(6), the Gell-MannÄOakesÄRenner relation can be repro-
duced:

M2
π = −2

mc〈q̄q〉0
F 2

π

+ O(m2
c). (30)

From Eq. (30) with Mπ = 140 MeV we obtain
the value of the current quark mass mc = 13 MeV.
The other model parameters in this case change very
little:

Λ = 343 MeV, gπ(Mπ) = 3.57, Gπ = 56.5 GeV, 〈q̄q〉0 = −(189 MeV)3. (31)

Thus, in calculations of the amplitudes of various processes we can use the values of para-
meters taken in the chiral limit.

With the help of the parameters (28) we get for sigma meson Mσ = 420 MeV and
gσ(Mσ) = 3.85. The amplitude of the decay σ → ππ, described by the diagram in Fig. 3, is
equal to A(σ→π+π−) = 1.67 GeV. Then, the total decay width is

Γ(σ→ππ) =
3A2

(σ→π+π−)

32πMσ

√
1 −

(
2Mπ

Mσ

)2

= 150 MeV. (32)

Comparing these results with experimental data, one ˇnds that Mσ is in satisfactory agreement
with experiment; however, the decay width is very small.

4. VECTOR AND AXIAL-VECTOR MESONS

The propagators of the vector and axial-vector mesons have the transversal and longitudinal
parts:

Dµν
ρ,a1

= T µνDT
ρ,a1

+ LµνDL
ρ,a1

, (33)

where T µν = gµν − pµpν/p2, Lµν = pµpν/p2 and

DT
ρ,a1

=
1

G−1
ρ,a1 + ΠT

ρ,a1
(p2)

=
g2

ρ,a1
(p2)

M2
ρ,a1

− p2
, DL

ρ,a1
=

1
G−1

ρ,a1 + ΠL
ρ,a1

(p2)
. (34)

Here, ΠT
ρ,a1

and ΠL
ρ,a1

are the transversal and longitudinal parts of the polarization operator

Πµν
ρ,a1

(p2):

Πµν
ρ,a1

(p2) = i
2Nc

(2π)4

∫
d4kf2(k−)f2(k+) Sp [S(k−)Γρ,a1S(k+)Γρ,a1 ] .
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The constants Gρ,a1 are ˇxed by physical meson masses:

G−1
ρ,a1

= −ΠT
ρ,a1

(Mρ,a1)

and numerically equal Gρ = 6.5 GeV−2, Ga1 = 0.67 GeV−2. Note that there is no pole in
the longitudinal part of the vector meson propagators.

The constants gρ,a1(M2
ρ,a1

) are equal to

g−2
ρ,a1

(M2
ρ,a1

) = −
dΠT

ρ,a1
(p2)

dp2

∣∣∣∣
p2=M2

ρ,a1

. (35)

From Eq. (35) we obtain gρ(Mρ) = 1.23, ga(Ma1) = 0.43. At p2 = 0 we have gρ(0) = 2,
ga(0) = 1 (see Fig. 2).

The decay ρ → ππ is described by the triangle diagram similar to the diagram in Fig. 3.
The amplitude for the process is

Aµ
(ρ→ππ) = a(ρ→ππ)(q1 − q2)µ, (36)

where qi are momenta of the pions. We obtain a(ρ→ππ) = 5.72 and the decay width

Γ(ρ→ππ) =
a2
(ρ→ππ)Mρ

48π

(
1 −

(
2Mπ

Mρ

)2
)3/2

= 135 MeV, (37)

which is in qualitative agreement with the experimental value (149.2 ± 0.7) MeV [12].

�
π

k+

a1

k−

iγ5 γ5γµ

Fig. 4. Transition loop describ-

ing π−a1 mixing

The decay a1 → ρπ is described in a similar manner. The
amplitude for the process a1 → ρπ is

Aµν
(a1→ρπ) = a(a1→ρπ)g

µν + b(a1→ρπ)p
νqµ, (38)

where p, q are momenta of a1, ρ mesons, respectively. We
obtain a(a1→ρπ) = −1.26 GeV, b(a1→ρπ) = 26.8 GeV−1. As a
result, the decay width is equal to Γ(a1→ρπ) = 170 MeV. This
value has the same order as experimental data 250Ä600 MeV.
Note that the width of the decay a1 → ρπ strongly depends on

mass of the a1 meson. Indeed, for Ma1 = 1.3 GeV we have Γ(a1→ρπ) = 260 MeV.
The longitudinal component of the a1-meson ˇeld is mixed with the pion, as is illustrated

in Fig. 4. The amplitude describing this mixing has the form

Aµ
(π→a1)(p

2) = iΛga1(p
2)gπ(p2)C(π→a1)(p2)pµ = id(p2)pµ, (39)

where C(π→a1)(p2) at the point p2 = 0 in the chiral limit is

C(π→a1)(0) =
Nc

4π2Λ3

∞∫
0

du u
m2(u)

(u + m2(u))2
(2m(u) − um′(u)) = 0.061. (40)

As a result, d(0) is equal to 80 MeV.
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�
π πa1

Fig. 5. Diagram describing additional renormalization of the pion ˇeld

The diagram (see Fig. 5) gives the additional pion kinetic term ∆Lkin = ∆ · p2

2
πa(p)2.

Let us estimate this term in the chiral limit:

∆ =
(Λga1(0)gπ(0)C(π→a1)(0))2

g2
a1

(0)(G−1
a1 + ΠL

a1
(0))

≈ Λ2g2
π(0)C2

(π→a1)(0)Ga1 ≈ 0.004. (41)

As one can see, ∆ is very small and the effect of the πÄa1 mixing can be neglected.

DISCUSSION AND CONCLUSION

In this work we have considered one more possibility of constructing the nonlocal chiral
quark model providing the absence of UV divergences and quark conˇnement. These features
of the model are speciˇed by the nonlocal kernel which appears in the four-quark interaction.
Such a structure of the four-quark interaction can be motivated by the instanton model [4Ä6].

Similar models were considered in [1,5Ä8]. Thus, in [7] nonlocal form factor was chosen
in the Gaussian form that exponentially decreases in the Euclidean domain of momenta.
In [1,8] it was proposed to relate the functions deˇning the nonlocal kernel with the nonlocal
quark condensate. This relation provides quark conˇnement. However, Eq. (8), which was
used in [1], leads to complicated solutions for the mass function at different values of model
parameters. Therefore, in the present work we have changed conditions for quark mass
function, Eq. (13), in order to obtain a simpler solution for it. We preserve all requirements
providing the absence of UV divergences and the conˇnement quarks in our model. It is
worth noting that, though the quark mass and the cut-off parameter are connected by the
condition m(0) = Λ, we can satisfactorily describe the scalar meson mass and strong decays
ρ → ππ, a1 → ρπ.

Note that in our model, like in all models of this kind, πÄa1 transitions can be neglected.
Actually, in local models additional renormalization of pion ˇeld with allowance made for
the πÄa1 mixing is about 40 %, whereas in model of this kind it is almost one order smaller.
In particular, in our model this correction does not exceed 1 %.

The worst prediction of our model is the decay σ → ππ. The failure of the model to
describe the σ meson is expectable. Similar problems appeared in the QCD sum rule method.
In the scalar channel with vacuum quantum numbers the corrections from different sources
may be valuable. Indeed, it has recently been shown that the 1/Nc corrections in this channel
are rather big [13], and the HartreeÄFock approximation may be inadequate in this case.
Moreover, for correct description of the scalar meson it is necessary to take into account the
mixing with the four-quark state [14] and the scalar glueball [15].

In conclusion, let us summarize the main results of the present work. The pseudoscalar,
scalar, vector and axial-vector sectors of the model have been considered. The masses and
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strong coupling constants of the mesons were calculated. The strong coupling constants of
the mesons were shown to noticeably decrease with increasing p2 in the physical domain (see
Fig. 2). Among satisfactory predictions of the model are the decays widths ρ → ππ, a1 → ρπ
and the mass of the sigma meson.

In the future, we plan to describe electromagnetic interactions in the framework of this
model, calculate the e. m. pion radius, polarizability of the pion and consider the processes
π0 → γγ, γ∗ → γπ (here γ∗ is a virtual photon). We also plan to generalize this model
to the U(3) × U(3) chiral group by introducing new parameters: mass of strange quark ms

and cut-off Λs, which allows us to describe intrinsic properties and interactions of strange
mesons.
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