
�¨¸Ó³ ¢ �—�Ÿ. 2005. ’. 2, º 4(127). ‘. 91Ä101

“„Š 519.254

THE HISTOGRAMMING TOOL hparse
V. Nikulin a,1, G. Shabratova b,2

aSt. Petersburg Nuclear Physics Institute, Gatchina, Russia
bJoint Institute for Nuclear Research, Dubna

A general-purpose package aimed to simplify the histogramming in the data analysis is described.
The proposed dedicated language for writing the histogramming scripts provides an effective and �exible
tool for deˇnition of a complicated histogram set. The script is more transparent and much easier to
maintain than corresponding C++ code. In the TTree analysis it could be a good complement to the
TTreeViewer class: the TTreeViewer is used for choice of the required histogram/cut set, while the
hparse enables one to generate a code for systematic analysis.

�¶¨¸Ò¢ ¥É¸Ö ¶·µ£· ³³ µ¡Ð¥£µ ´ §´ Î¥´¨Ö, ¶·¥¤´ §´ Î¥´´ Ö ¤²Ö Ê¶·µÐ¥´¨Ö ¶·µÍ¥¸¸ £¨¸Éµ-
£· ³³¨·µ¢ ´¨Ö ¶·¨ ´ ²¨§¥ Ô±¸¶¥·¨³¥´É ²Ó´ÒÌ ¤ ´´ÒÌ ¢ · ³± Ì ¸¨¸É¥³Ò ROOT. �·¥¤² £ ¥³Ò°
¸¶¥Í¨ ²¨§¨·µ¢ ´´Ò° Ö§Ò± ¤²Ö ´ ¶¨¸ ´¨Ö ¸Í¥´ ·¨¥¢ £¨¸Éµ£· ³³¨·µ¢ ´¨Ö ¶·¥¤µ¸É ¢²Ö¥É £¨¡±¨° ¨
ÔËË¥±É¨¢´Ò° ¨´¸É·Ê³¥´É ¤²Ö µ¶·¥¤¥²¥´¨Ö ¸²µ¦´µ£µ ´ ¡µ· £¨¸Éµ£· ³³. ‘Í¥´ ·¨° µ± §Ò¢ ¥É¸Ö
¡µ²¥¥ ¶·µ§· Î´Ò³, Î¥³ ¸µµÉ¢¥É¸É¢ÊÕÐ¨¥ ±µ¤Ò ´ ‘++; µ´ ¶µ§¢µ²Ö¥É ¶·µÐ¥ ³µ¤¨Ë¨Í¨·µ¢ ÉÓ ´ -
¡µ· £¨¸Éµ£· ³³. ‚ ¸²ÊÎ ¥ ´ ²¨§ ¤ ´´ÒÌ ¨§ TTree ¸Í¥´ ·¨° ³µ¦¥É ¸É ÉÓ Ìµ·µÏ¨³ ¤µ¶µ²´¥´¨¥³ ±
¢µ§³µ¦´µ¸ÉÖ³, ¶·¥¤µ¸É ¢²Ö¥³Ò³ ±² ¸¸µ³ TTreeViewer: £· Ë¨Î¥¸±¨° ¨´É¥pË¥°¸ ¨¸¶µ²Ó§Ê¥É¸Ö ¤²Ö
¢Ò¡µ· ± ·É¨´µ±, hparse ¶µ§¢µ²Ö¥É £¥´¥·¨·µ¢ ÉÓ ±µ¤ ¤²Ö ¸¨¸É¥³ É¨Î¥¸±µ£µ ´ ²¨§ .

INTRODUCTION

The histogramming is rather time-consuming element of both data analysis and acquisition
monitoring. Typically the booking of the histograms with meaningful names, ˇlling it at right
place with right parameters is a tedious procedure. Very often the histogramming-related
actions are not localized, but distributed over the program (the ˇll-as-soon-as-you-get-variable
approach). The algorithm modiˇcation becomes a nontrivial task for the user other than the
author of the code.

The primary goal of the tool described here is to simplify the histogramming, to make the
scenarios logically transparent. We propose to adopt the program architecture as illustrated
in ˇgure. The histogramming is independent of the analysis procedure, it is done in parallel:
as soon as the event analysis is completed, the booked histogram ˇlling according to the
predeˇned algorithm starts (taking into account the cuts, weights, etc.). The only requirement
to the analysis classes is availability of the access methods to all the information of eventual
interest (by means of Getters). Normally, such kind of the class architecture is already
implemented, and minor modiˇcations are required.

We extensively exploit the fact that the histograms have a lot of common features: the
similar detectors use similar electronic blocks, having similar data structure and similar vari-
ables of interest. The groups of histograms are ˇlled within the same cut applied. This

1E-mail: nikulin@mail.cern.ch
2E-mail: gshabrat@sunhe.jinr.ru

92 Nikulin V., Shabratova G.

Flow chart of the generic data analysis. The histogramming
is separated from the analysis. The algorithm is deˇned in
metaˇles, the parser generates the C++ code for histogram
booking, ˇlling and storing

similarity allows one to deˇne (quite limited amount of) generic variables (arguments) and
cuts which could describe all the variety of possible combinations of variables.

The histogram title is generated automatically: it consists of the variable titles, optionally,
the titles of the cuts applied, and weight. Thus we minimize possible errors of wrong
histogram increment or attributing the wrong name.

A dedicated scripting language is proposed for deˇnition of the histogramming scenario.
The user should specify:

• The generic arguments Å values or functions to be histogrammed, providing corre-
sponding access methods and the titles.

• The cuts, also providing the appropriate access methods and their titles.
• The ˇlling scenario:

Å the cut range;

Å the histogram deˇnition (type, variable names, number of channels, axis info, optionally
weight). The order of the lines deˇnes the ˇlling algorithm Å the order, weight and
applied cuts.

Section 1 describes the script usage, installation and trouble-shooting. The script language
syntax is presented in Sec. 2. The conclusions are in the ˇnal section. The Appendix contains
the examples of the histogramming scenario and the generated code.

1. INSTALLATION NOTES

The Perl script hparse.pl parses the scenario ˇles and generates the code for the his-
togram booking, ˇlling and saving. Perl is normally installed on your machine. You should
be sure that the script has execution privileges:

> ls -o hparse.pl
-rwxrwxr-x 1 your_login 11697 Jul 24 17:04 hparse.pl

that is, x should be among the string -rwxrwxr-x; otherwise type

> chmod a+x hparse.pl

Make a link to the script in the directory, which is in your PATH like this:

The Histogramming Tool hparse 93

> ln -sf $PATH_TO_HPARSE/hparse.pl $DIRECTORY_IN_PATH/hparse

Here $PATH TO HPARSE stands for location of the hparse.pl, $DIRECTORY IN PATH stands
for any user directory mentioned in environment variable $PATH (typically $HOME/bin or
$ALICE ROOT/bin). In this case the script can be executed in any directory just typing
hparse.

The usage information can be displayed as

> hparse -h or
> hparse -?

The script interprets the histogramming scenario ˇles (suggested extension is hsf). In order
to run it, type

> hparse [-p prefix] [his_scenario_file_name]

By default it will start to process the ˇle main.hsf. Using preˇx (key -p), one can create
histogramming ˇles for several projects: script will use as primary input the ˇle with name
preˇxmain.hsf and store the output in ˇles [preˇx]hist.h, [preˇx]funct.h and [pre-
ˇx]Histogramming.C. The include ˇle [preˇx]hist.h normally contains the pointers to the
generated histograms. The ˇle [preˇx]funct.h is used for cuts and argument deˇnitions,
namely for the interface with the function FillHisto(). The ˇle [preˇx]Histogramming.C
contains the generated functions BookHisto() (for histogram booking), FillHisto() for
ˇlling, ResetHisto(Option t opt) for resetting (obsolete?) and WriteHisto() for his-
togram saving in the root ˇle.

That is, invoking

> hparse -p anal_

will parse the ˇle anal main.hsf and all the ˇles included, the results can be found in ˇles
anal hist.h, anal funct.h and anal Histogramming.C.

In case the script errors are detected by parser, it exits with an error code, thus stopping
the make process.

2. SCRIPT SYNTAX

2.1. General. The line started with the sign # is ignored during parsing, becoming a
comment line. No in-line comments are currently supported. The argument separators are
blanks (spaces or tabs); they are ignored during parsing, thus the indenting is allowed. In
case the blanks are required, the double quotes (” . . . ”) should be used as item separators,
e.g., the statement that cut GoldenTrack(0.5, 0.5) should be applied:

if GoldenTrack(0.5, 0.5) {

94 Nikulin V., Shabratova G.

would cause an error, the correct spelling is either

if "GoldenTrack(0.5, 0.5)" {

or

if GoldenTrack(0.5,0.5) {

(note blanks between 0.5 and 0.5).
2.2. Arguments and Cuts. The variables and cuts should be predeˇned. The arguments

and cuts could be deˇned as follows:

cut name [value title]
arg name [value title]

That is, the lines

cut myCut myPointer->GetFoo()>25 "cut name"
arg myValue myPointer->GetBar() "argument name"
if "myCut" {

H1F myValue 100 0 1
}

will be translated into

#include "hist.h"
void BookHistos()
{
h00000 = new TH1F("h00000", "argument name {myCut} ", 100, 0, 1);

}
void FillHistos()
{
if (myPointer->GetFoo() > 25) {
h00000->Fill(myPointer->GetBar(), 1);

} // end of the cut "myCut"
}

In case the title and value are not present, it is assumed that the argument name is the
name of the function which should be deˇned in the ˇle funct.h.

The cut and variable titles are used for automatic generation of the histogram titles.
Reserved letter sequences, which will be processed during the parsing:

%i To be replaced with the argument i of the appropriate function (i=0, 1, 2. . .).
$argi To be replaced with the argument i of the include ˇle at current level; (i=0, 1 or

2).

The Histogramming Tool hparse 95

If ArgTitle is substituted literally, without the conversion to the character string, the
double-quoted (” . . . ”) string is processed automatically. The title without double quotes is
interpreted as char * variable. This would enable overriding the default histogram title.

The cut could be applied as: if cutName {. The title of the appropriate cut will be
appended to the automatically generated titles of all histograms deˇned inside the braces {}.

2.3. C++ Statements. One can add �exibility and optimization (beware: not transparen-
cy! :) Å use with moderation) including the pieces of C++ code in the histogramming
algorithms. The following options are foreseen:

` stands for verbatim insert of the rest of the line in the function FillHisto()

' stands for verbatim insert of the rest of the line in the function BookHisto()

@ stands for verbatim insert of the rest of the line in the ˇle func.h

2.4. Histogram Deˇnitions. The one- and two-dimension procedures are supported.

H1X argName nChannels x0 xF [weight]
H2X argName1 argName2 nChannels1 x0 xF nChannels2 y0 yF [weight]

Here X stands for I, F, U, D, S (all possibilities deˇned by root TH1 and TH2). Weight is
an optional argument.

2.5. Include Files. Directive to process lines in a ˇle RuleFileileName

include RuleFileileName arg1 arg2 arg3

Up to 3 arguments are currently supported; they are referenced as $argN (N=0,1,2) in the
included ˇle. It is easy to increase this number if needed.

2.6. Control Statements. The do-loops could be used for the deˇnition of the repetitive
histograms. The following syntax is implemented:

do doVar= ind_beg ind_fin [step]
.......

enddo

By default the value of the optional argument step is 1. The text between the do and the
enddo statements repeats (ind fin-ind beg)/step times, each occurrence of the doVar is
literally replaced by current value of the index (changing from ind beg to ind fin-1). That
is why it is strongly recommended to use unusual character sequences for the doVar; e.g.,

do i_= 1 3
SomethingUseful(i_)

enddo

will be translated into

SomethingUseful(1)
SomethingUseful(2)

96 Nikulin V., Shabratova G.

while

do i= 1 3
SomethingUseful(i)

enddo

will generate the following code:

Someth1ngUseful(1)
Someth2ngUseful(2)

Currently the folded do-loops are not supported; however, if needed, there is a simple work-
around to place the inner do-loops in the included ˇles; for example,

do i_= 1 5
do j_ =02
SomeLines(i_,j_)

enddo
enddo

will not work as naively expected, while the same effect could be achieved by

do i_= 1 5
include FileWithDoLoop i_

enddo

The contents of the FileWithDoLoop is

do j_ =0 2
SomeLines($arg0,j_)

enddo

The end statement terminates parsing of the current ˇle.
2.7. Comments. The keyword starting with Comm deˇnes the comment string to be included

in the titles of the histograms between the cut list and weight. Examples:

At the beginning of the include file processing
the comment string is automatically reset.
No comments below

...
Comment "my comment"
the string "my comment" will be inserted in histo titles
...

Comm "$arg1"
the value of the current include file argument 1 will be used as

The Histogramming Tool hparse 97

comment in the histos below
...

Comm ""
resetting comment string
...

CONCLUSIONS

The described facility is general-purpose; it could be used in conjunction with any ROOT-
based analysis code which provides access to its intermediate results. More speciˇcally, as
advantages one can mention:

• The script is compact, modular, well structured, and more readable/understandable than
the regular C++ code, especially in case of complicated histogramming scenario.

• The correspondence of the histogram names given at booking time and ˇlling algorithm
is normally automatic.

• Multilevel script coding by means of the ˇle including and the argument passing features
allows the code modularity, re-usability and ease of the conˇguration.

• The generated code is one-level, straightforward and well optimized.
• The resulting code is more easily maintainable and changeable.
However, the alpha testers pointed out the drawbacks of the approach:
• One should learn new (though simple) language prior to use it.
• The error-ˇnding procedure is not straightforward: in order to ˇx the logical errors one

should analyze the C++ ˇle and only then correct the appropriate script.
• Lack of the run-time parameters support. That is, one can book/process only predeˇned

number of histograms. The workaround (using included C++ code) is not transparent enough.

Plans:
• To implement the statement ‘for i A B C .. {..}’ that executes the operators in

parenthesis with i equal to each of the list.
• The parser needs improved error detecting facility.
• It may (??) be useful to implement the Folded do-loops.
• The GUI for automatization of the script might be useful.

Known Bugs. The following unpleasant features should be mentioned:
• The do-loop variable should not contain the $ sign.
• The argument and cut names are global within the project. In some sense this is

an advantage; on the other hand, the double deˇnition would cause a compilation error in
generated code.

• The function arguments are not checked during the parsing.

Acknowledgements. The authors would like to thank L. Luquin, J.-P. Cussenau and
Ch. Finck of the Nantes SUBATECH team for their hospitality and useful discussions. The
work was supported by INTAS, grant 00-00538.

98 Nikulin V., Shabratova G.

A. EXAMPLES

A.1. Scripts.
A.1.1. main.hsf. Demonstrates the modularity, usage of the cuts and do loops:

@// Analysis classes definitions:
@#include "MyStuff.h"

Definition of a histogramming argument as macro
arg evLeng gDate->Event()->Length() "Event length (words)"

And 1-D histogram using this argument
H1I evLeng 100 0 5000

Define raw histos for 1 C-RAMS input 0 (i_ stands for loop index)
do i_=0 1
include RawCrams.hsf i_

enddo

Definition of a cut as function
@// example of the functional cut:
cut GoldenTrack
Function body optionally stored in the file func.h
@ int GoldenTrack(Float_t chiX, Float_t chiY){
@ if (gDateMuonTracker->GetChi2X() < chiX &&
@ gDateMuonTracker->GetChi2Y() < chiY) return 1;
@ else return 0;
@ }

One can use pointers to the objects to pass the arguments
from the analysis to the histogramming routines:
@ MyClass *myPointer;
cut GoodCluster "myPointer->GetCluster($arg0) > 0"

Present chamber 0 and 1 info for good tracks only
if "GoldenTrack(0.5, 0.5)" {
do i@j = 0 2
include Chamber.hsf i@j

enddo
}
end

A.1.2. RawCrams.hsf

include in FillHisto(): get pointers to the frequently used objects

The Histogramming Tool hparse 99

‘ AliDareEvent *ev = gDate->Event(); // Current event
Here include file argument 1 ($arg0) is the C-RAMS input number
‘ AliDateCramsInput *cr = gDate->Event()->Crams($arg0); // Current C-Rams

In

arg leng ev->CramsDataL($arg0) #title
arg ampl cr->GetAml(i) #title
arg chan cr->GetChan(i) #title

BookHisto(): generate the title
’ // This is an example of the self-made histogram title
’ char title[80];
’ sprintf(title,"C-RAMS %d Event length",

gDate->Header->GetCramsSerN($arg0));
H1I leng 200 0 2000

’ Short_t nClocks=gDate->Header->GetCramsNofClocks($arg0);
’ sprintf(title,"CRAMS %d Channel hitted",

gDate->Header->GetCramsSerN($arg0));
‘ for (int i=0; i<gDate->Event->CramsDataL($arg0); i++){

H1I chan nClocks 0 nClocks
’ sprintf(title,"C-RAMS %d Ampl at Channel hitted",
’ gDate->Header->GetCramsSerN($arg0));

H1I chan nClocks 0 nClocks ampl
‘ } // End of FillRawCrams

end

A.2. Chamber.hsf. A rather simpliˇed version of the Chamber presentation histos:

arg resY (gDateMuonChamber->Chamber($arg0))->GetResY()
"Y-resolution of CPC-$arg0"

arg resX (gDateMuonChamber->Chamber($arg0))->GetResX()
"X-resolution of CPC-$arg0"

H1F resY 200 0 2.

if "GoodCluster" {
do i_j = 1 2

H1F resX 200 0 2.
enddo
}

end

A.3. Parsing Results. We do not present here the resulting header ˇle hist.h and
functions ResetHisto() and WriteHisto() as they are trivial.

100 Nikulin V., Shabratova G.

A.3.1. BookHistos()

// Automatically generated by hparse v 0.005
// at 21:30:34 on February, 10 2002
//
#include "hist.h"
void BookHistos()
{
h00000 = new TH1I("h00000", "Event length (words) ", 100, 0, 5000);
// This is an example of the self-made histogram title
char title[80];
sprintf(title,"C-RAMS %d Event length",gDate->Header->GetCramsSerN(0));
h00001 = new TH1I("h00001", title, 200, 0, 2000);
Short_t nClocks = gDate->Header->GetCramsNofClocks(0);
sprintf(title, "CRAMS %d Channel hitted",
gDate->Header->GetCramsSerN(0));
h00002 = new TH1I("h00002", title, nClocks, 0, nClocks);
sprintf(title, "C-RAMS %d Ampl at Channel hitted",
gDate->Header->GetCramsSerN(0));
h00003 = new TH1I("h00003", title, nClocks, 0, nClocks);
h00004 =

new TH1F("h00004", "Y-resolution of CPC-0
{GoldenTrack(0.5, 0.5)} ", 200, 0, 2.);

h00005 =
new TH1F("h00005",

"X-resolution of CPC-0 {GoldenTrack(0.5, 0.5) &
GoodCluster} ", 200, 0, 2.);

h00006 =
new TH1F("h00006", "Y-resolution of CPC-1

{GoldenTrack(0.5, 0.5)} ", 200, 0, 2.);
h00007 =

new TH1F("h00007",
"X-resolution of CPC-1 {GoldenTrack(0.5, 0.5) &
GoodCluster} ", 200, 0, 2.);

}

A.3.2. FillHistos()

// Automatically generated by hparse v 0.005
// at 21:30:34 on February, 10 2002
//
#include "hist.h"
void FillHistos()
{
h00000->Fill(gDate->Event()->Length(), 1);
AliDareEvent *ev = gDate->Event(); // Current event
AliDateCramsInput *cr = gDate->Event()->Crams(0); // Current C-Rams In

The Histogramming Tool hparse 101

h00001->Fill(ev->CramsDataL(0), 1);
for (int i = 0; i < gDate->Event->CramsDataL(0); i++) {
h00002->Fill(cr->GetChan(i), 1);
h00003->Fill(cr->GetChan(i), cr->GetAml(i));

} // End of FillRawCrams
if (GoldenTrack(0.5, 0.5)) {
h00004->Fill((gDateMuonChamber->Chamber(0))->GetResY(), 1);
if (myPointer->GetCluster($arg0) > 0) {
h00005->Fill((gDateMuonChamber->Chamber(0))->GetResX(), 1);

} // end of the cut "GoodCluster"
h00006->Fill((gDateMuonChamber->Chamber(1))->GetResY(), 1);
if (myPointer->GetCluster($arg0) > 0) {
h00007->Fill((gDateMuonChamber->Chamber(1))->GetResX(), 1);

} // end of the cut "GoodCluster"
} // end of the cut "GoldenTrack(0.5, 0.5)"

}

A.3.3. funct.h

// Automatically generated by hparse v 0.005
// at 21:30:34 on February, 10 2002
#ifndef ALIDATEFUNCT_H
#define ALIDATEFUNCT_H
#ifndef __CINT__
#include "TROOT.h"
#include "TH1.h"
#include "TH2.h"
#endif
// Analysis classes definitions:
#include "MyStuff.h"
// example of the functional cut:
int GoldenTrack(Float_t chiX, Float_t chiY)
{
if (gDateMuonTracker->GetChi2X() < chiX &&

gDateMuonTracker->GetChi2Y() < chiY)
return 1;

else
return 0;

}

MyClass *myPointer;
#endif

Received on May 19, 2004.

