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ELASTIC eD SCATTERING IN THE BETHEÄSALPETER
APPROACH FOR THE DEUTERON WITH THE
POSITIVE- AND NEGATIVE-ENERGY STATES
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Recent results obtained by the application of the BetheÄSalpeter approach to the analysis of elastic
electronÄdeuteron scattering with the separable NN kernel are presented. We analyze the impact of the
P waves (negative-energy components) on the electromagnetic properties of the deuteron and compare
it with experimental data. It was shown that the contribution of the P waves must be taken into account
to explain tensor polarization and charge form factor of the deuteron.

�·¥¤¸É ¢²¥´Ò ·¥§Ê²ÓÉ ÉÒ · ¸Î¥Éµ¢ Ê¶·Ê£µ£µ Ô²¥±É·µ´-¤¥°É·µ´´µ£µ · ¸¸¥Ö´¨Ö ¢ ¶µ¤Ìµ¤¥ �¥É¥Ä
‘µ²¶¨É¥·  ¸ ¸¥¶ · ¡¥²Ó´Ò³ Ö¤·µ³ ´Ê±²µ´-´Ê±²µ´´µ£µ ¢§ ¨³µ¤¥°¸É¢¨Ö. �´ ²¨§¨·Ê¥É¸Ö ·µ²Ó
P -¸µ¸ÉµÖ´¨° (±µ³¶µ´¥´Éµ¢ ¤¥°É·µ´´µ°  ³¶²¨ÉÊ¤Ò �¥É¥Ä‘µ²¶¨É¥·  ¸ µÉ·¨Í É¥²Ó´µ° Ô´¥·£¨¥°) ¶·¨
µ¶¨¸ ´¨¨ Ô²¥±É·µ³ £´¨É´ÒÌ ¸¢µ°¸É¢ ¤¥°É·µ´  ¨ ¶·µ¢µ¤¨É¸Ö ¸· ¢´¥´¨¥ ¸ Ô±¸¶¥·¨³¥´É ²Ó´Ò³¨ ¤ ´-
´Ò³¨. �µ± § ´µ, ÎÉµ ÊÎ¥É ¢±² ¤µ¢ P -¸µ¸ÉµÖ´¨° §´ Î¨É¥²Ó´µ Ê²ÊÎÏ ¥É ¸µ£² ¸¨¥ § ·Ö¤µ¢µ£µ Ëµ·³-
Ë ±Éµ·  ¨ ±µ³¶µ´¥´Éµ¢ É¥´§µ·  ¶µ²Ö·¨§ Í¨¨ ¤¥°É·µ´  ¸ Ô±¸¶¥·¨³¥´É ²Ó´Ò³¨ ¤ ´´Ò³¨.

INTRODUCTION

The study of electromagnetic properties of the deuteron helps us to construct the theory of
strong interactions and, in particular, the nucleonÄnucleon interaction (see, for example, [1]).
Theoretical research in this ˇeld is of topical interest, which is re�ected in recent review
articles [2Ä8]. A large amount of available experimental data stimulate a further development
of theoretical methods, which are often restricted to qualitative predictions. The forthcoming
experiments are expected to provide high-precision data, which will allow us to explore the
region of large-momentum transfer in elastic, inelastic and deep inelastic (DIS) electronÄ
nucleus reactions.

The fact that nuclei consist of bound nucleons introduces a major problem for theoretical
description of relativistic l−A interactions. The deuteron is naturally the ˇrst object in the
row of many other nuclei, and has received a vast number of treatments within many different
approaches. One also ˇnds that nonrelativistic schemes of calculations are widely employed
in the analysis, which can be justiˇed for a few particular cases. On the other hand, the
consistent consideration of the relativistic bound states is offered within the BetheÄSalpeter
(BS) formalism (see, for example, review [8]), which allows a qualitatively new interpretation
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of the physics of the relativistic bound state and should not be regarded as an alternative
scheme only.

We emphasize the covariant description of the BS formalism by taking the separable
interaction, which is still at a stage of infancy. In particular, the role of the abnormal parity
states has not yet been confronted with experimental data, though the necessity is demonstrated
in this paper.

1. BASIC FORMALISM OF THE BETHEÄSALPETER APPROACH

We start with the BetheÄSalpeter Equation (BSE) for NN T matrix:

Tαβ,δγ(P, p′, p) = Vαβ,δγ(P, p′, p)+

+ i

∫
d4k

(2π)4
Vαβ,ελ(P, p′, k)Sεη(P/2 + k)Sλρ(P/2 − k)Tηρ,δγ(P, k, p), (1)

where P is the total momentum; p and p′ are the relative 4-momenta of the two nucleons
before and after the interaction. They are connected with 4-momenta of the ˇrst (q1) and
second (q2) particles: P = q1 + q2, p = (q1 − q2)/2, q1 = P/2 + p, q2 = P/2− p. Sαβ(k) is
the one-particle Green function: Sαβ(k) = [1/(k · γ − m + iε)]αβ .

The bound state corresponds to a pole in T matrix at P 2 = M2
B (MB is the mass of

bound state) and takes the form:

Tαβ,δγ(P, p′, p) =
Γαβ(P, p′)Γ̄δγ(P, p)

P 2 − M2
B︸ ︷︷ ︸

bound state (mass=MB)

+ Rαβ,δγ(P, p′, p)︸ ︷︷ ︸
other states

, (2)

where Γαβ is the vertex function of BSE, and Rαβ,δγ is regular at P 2 = M2
B .

We can express the BS amplitude by the vertex function as

Φαβ(P, p) = Sαγ

(
P

2
+ p

)
Sβδ

(
P

2
− p

)
Γγδ(P, p), (3)

and we obtain the equation for the BS amplitude from Eqs. (1)Ä(3):

Φαβ(P, p) = iSαη

(
P

2
+ p

)
Sβρ

(
P

2
− p

) ∫
d4k

(2π)4
Vηρ;γδ(P, p, k)Φγδ(P, k). (4)

2. PARTIAL-WAVE DECOMPOSITION OF THE BS AMPLITUDE

We determine two-particle spinor basis in c.m. frame as Uρ1
µ1

(1)(p)⊗Uρ2
µ2

(2)T (−p), where
µ is the spin projection, ρ1,2 is the so-called ρ spin, which distinguishes the positive- and
negative-energy states. Both of them are necessary to prepare the complete set for the two-
particle bound state. The spinors Uρ1

µ1
(p) are connected with the Dirac free spinors uµ(p)

and vµ(p) as

Uρ
µ(p) =

{
uµ(p), ρ = +,
v−µ(−p), ρ = −.

(5)
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The connections between the propagators and the spinors can be written as

[S(P/2 + p)]−1 Uρ
µ

(1)(p) = ρ Sρ
(1)−1 Uρ

µ
(1)(−p),

[S(P/2 − p)]−1 Uρ
µ

(2)(−p) = ρ Sρ
(2)−1 Uρ

µ
(2)(p),

where Ep =
√

p2 + m2,

S
(1)
± = 1/(

√
s/2 + p0 ∓ Ep), S

(2)
± = 1/(

√
s/2 − p0 ∓ Ep). (6)

Here, we can write the partial wave expansion of the BS amplitude as

ΦJM
αβ (P, p) = Sαγ(P/2 + p)ΓJM

γδ (P, p)ST
δβ(P/2 − p) =

=
∑

LSρ1ρ2

S(1)
ρ1

S(2)
ρ2

gJLSρ1ρ2(p0, |p|)ΓJLSρ1ρ2(p)Uc, (7)

where Uc = iγ2γ0, and ΓJLSρ1ρ2(p) is the spin-angular function deˇned as

ΓJLSρ1ρ2(p)Uc = iL
∑

µ1µ2mLmS

(LmLSmS |JM)
(

1
2
µ1

1
2
µ2|SmS

)
×

× YLmL (p̂)Uρ1
µ1

(1)(p) ⊗ Uρ2
µ2

(2)T (−p). (8)

We introduce the symmetrical notation of ρ spin for convenience, the radial part of the
BS amplitude can be written as

φJLSρ(p0, |p|) =
∑
ρ′

Sρρ′ (p0, |p|) gJLSρ(p0, |p|), (9)

where Sρρ′ is

S+ = S++ = (
√

s/2 + p0 − Ep)−1(
√

s/2 − p0 − Ep)−1,

S− = S−− = (
√

s/2 + p0 + Ep)−1(
√

s/2 − p0 + Ep)−1,

Se = See = Soo = (s/4 − p2
0 − E2

p)
(
(s/4 − p2

0 − E2
p)2 − 4p2

0E
2
p

)−1
,

So = Seo = Soe = (2p0Ep)
(
(s/4 − p2

0 − E2
p)2 − 4p2

0E
2
p

)−1
, others = 0.

(10)

The BS amplitude for the deuteron has 8 states: 3S+
1 , 3D+

1 , 1P e
1 , 1P o

1 , 3P e
1 , 3P o

1 , 3S−
1 ,

3D−
1 . 3S+

1 , 3D+
1 are positive-energy states and the others include negative-energy states.

3. SOLUTION OF THE BSE

After the partial wave decomposition, the BS equation for T matrix has the following
form:

Tαβ(p′0, |p′|, p0, |p|; s) = Vαβ(p′0, |p′|, p0, |p|; s)+

+
i

2π2

∫
dk0 k2 d|k|

∑
γδ

Vαγ(p′0, |p′|, k0, |k|; s)Sγγ(k0, |k|; s)Tγβ(k′
0, |k|, p0, |p|; s), (11)

here the indexes of Greek character correspond to the partial states (α : JLSρ).
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We introduce separable ansatz to transform the BSE to a system of the linear equation in
the following manner:

Vαβ(p′0, |p′|, p0, |p|; s) =
N∑

i,j=1

λij g
(α)
i (p′0, |p′|) g

(β)
j (p0, |p|), λij = λji. (12)

Then, the solution for the radial part of the BS amplitude can be written as

φJLSρ(p0, |p|) =
∑
ρ′

N∑
i,j=1

Sρρ′(p0, |p|; s)λijg
(JLSρ′)
i (p0, |p|)cj(s), (13)

where ci(s) satisfy the following system of equations:

ci(s) −
N∑

k,j=1

Hik(s)λkjcj(s) = 0, (14)

Hij(s) =
i

2π2

∑
LSρρ′

∫
dk0 k2d|k|Sρρ′ (k0, |k|; s)g(JLSρ)

i (k0, |k|)g(JLSρ′)
j (k0, |k|). (15)

4. COVARIANT GRAZ-II INTERACTION + P WAVES

To calculate various electromagnetic observables, we use the kernel which added p-wave
parts based on covariant Graz-II interaction. In covariant Graz-II interaction (only positive-
energy states are taken into account: 3S+

1 , 3D+
1 ), the functions gi have the following form [9]:

g
3S+

1
1 (p0, |p|) =

1 − γ1(p2
0 − p2)

(p2
0 − p2 − β2

11)2
,

g
3S+

1
2 (p0, |p|) = − (p2

0 − p2)
(p2

0 − p2 − β2
12)2

,

g
3D+

1
3 (p0, |p|) =

(p2
0 − p2)(1 − γ2(p2

0 − p2))
(p2

0 − p2 − β2
21)(p

2
0 − p2 − β2

22)2
,

g
3D+

1
1 (p0, |p|) = g

3D+
1

2 (p0, |p|) = g
3S+

1
3 (p0, |p|) ≡ 0.

(16)

Parameters of covariant Graz-II are given in the Table.
In addition, we take into account the negative-energy states: 1P e

1 and 1P o
1 . We take gi of

P waves as follows:

g
3S+

1
4 (p0, |p|) = g

3D+
1

4 (p0, |p|) = g
1P e,o

1
1,2,3 (p0, |p|) ≡ 0,

g
1P e

1
4 (p0, |p|) =

|p|
(p2

0 − p2 − β2
3)2

,

g
1P o

1
4 (p0, |p|) = γ3

p0

m

|p|
(p2

0 − p2 − β2
3)2

.

(17)



Elastic eD Scattering in the BetheÄSalpeter Approach for the Deuteron 21

Parameters of covariant Graz-II interaction

γ1 28.69550 GeV−2 λ11 2.718930 · 10−4 GeV6

γ2 64.9803 GeV−2 λ12 Ä7.16735 · 10−2 GeV4

β11 2.31384 · 10−1 GeV λ13 Ä1.51744 · 10−3 GeV6

β12 5.21705 · 10−1 GeV λ22 16.52393 GeV2

β21 7.94907 · 10−1 GeV λ23 0.28606 GeV4

β22 1.57512 · 10−1 GeV λ33 3.48589 · 10−3 GeV6

The solution of the BSE can be written as

φ3S+
1
(p0, |p|) = (c1λ11 + c2λ12 + c3λ13 + c4λ14)S+g

3S+
1

1 (p0, |p|)+

+ (c1λ12 + c2λ22 + c3λ23 + c4λ24)S+g
3S+

1
2 (p0, |p|), (18)

φ3D+
1
(p0, |p|) = (c1λ13 + c2λ23 + c3λ33 + c4λ34)S+g

3D+
1

3 (p0, |p|),

φ1P e
1
(p0, |p|) = (c1λ14 + c2λ24 + c3λ34 + c4λ44)(Seg

1P e
1

4 (p0, |p|) + Sog
1P o

1
4 (p0, |p|)),

φ1P o
1
(p0, |p|) = (c1λ14 + c2λ24 + c3λ34 + c4λ44)(Seg

1P o
1

4 (p0, |p|) + Sog
1P e

1
4 (p0, |p|)).

(19)

φ1P e
1

is even and φ1P o
1

is odd under p0 → −p0, which are decided by Eq. (7).

5. ELASTIC ELECTRONÄDEUTERON SCATTERING

In the relativistic impulse approximation, the deuteron current matrix element can be
written as

〈D′M′|Jµ|DM〉 = i e
∫

d4p

(2π)4
Tr

[
ΦM′(P ′, p′)Γ(p+n)

µ (q)ΦM(P, p) (S(2)T (q2))−1
]
, (20)

Γ(S)
µ (q) = γµF

(S)
1 (q2) − γµq̂ − q̂γµ

4m
F

(S)
2 (q2), (21)

where ΦM(P, p) is BS amplitude of the deuteron; P ′ = P + q and p′ = p + q/2. q is the
momentum transfer and η = −q2/4M2 = Q2/4M2, where M is the deuteron mass. The

vertex of γNN interaction Γ(S)
µ (q) is of on-mass-shell form. The isoscalar form factors

of the nucleon F
(S)
1,2 are the summation of two nucleons. To calculate the deuteron form

factors, one should know at least three matrix elements with different total angular momentum
projections and current component, for example, 〈0|J0|0〉, 〈1|J0|1〉 and 〈1|J1|0〉. The electric
FC(q2), quadrupole FQ(q2) and magnetic FM (q2) form factors are normalized as FC(0) = 1,
FQ(0) = M2QD, FM (0) = µDM/m, where m is the nucleon mass, QD and µD are
quadrupole and magnetic moments of the deuteron, respectively. The tensor polarization
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components of the ˇnal deuteron are expressed through the deuteron form factors as follows:

T20

[
A + B tan2 θe

2

]
= − 1√

2

[
8
3
ηFCFQ +

8
9
η2F 2

Q +
1
3
η

(
1 + 2(1 + η) tan2 θe

2

)
F 2

M

]
,

T21

[
A + B tan2 θe

2

]
=

2√
3
η

(
η + η2 sin2 θe

2

)1/2

FMFQ sec
θe

2
, (22)

T22

[
A + B tan2 θe

2

]
= − 1

2
√

3
ηF 2

M ,

where A and B are the deuteron structure functions.

6. CALCULATIONS AND RESULTS

To see the contribution of P waves, we ˇx the Graz-II parameters in the Table. And we
introduce the conditions to limit the freedom of the parameters for P waves:

λ14 = −
√

λ11u4, λ24 =
√

λ22u4, λ34 =
√

λ33u4, λ44 = u2
4, (23)

H44|s=M2 =
i

2π2

∫
dk0 k2 d|k|

[
Se (g

1P e
1 2

4 + g
1P o

1 2
4 ) + So (g

1P e
1

4 g
1P o

1
4 )

]∣∣∣
s=M2

= 0. (24)

The deuteron binding energy Ed can be ˇxed under the condition of Eq. (24). Now we have
two free parameters for P waves: u4, γ3. For example, to ˇt the FC node, we calculate
the changing point of the sign, at γ3 = −15. Then the parameter is decided as u4 � −10
or 9.75. The results of calculations using the set of parameters: γ3 = −15, u4 = −10,
β3 = 0.4819 GeV, are given in Figs. 1Ä5. In Figs. 1Ä3 the experimental data are taken
from [12]; in Figs. 4, 5 the experimental data are taken from [13] and [14], respectively.
Curve 4 denotes calculation for the covariant Graz-II interaction with only positive-energy
states: 3S+

1 , 3D+
1 [8] and with the dipole-type nucleon form factors. Curves 1, 2, and 3

represent calculations with the dipole-type, Vector Meson Dominance Model (VMDM) [10]
and Relativistic Harmonic Oscillator Model (RHOM) [11] nucleon form factors, respectively.

Fig. 1. Charge form factor FC(q2) Fig. 2. Quadrupole form factor FQ(q2)
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Fig. 3. Tensor polarization T20(q
2) calculated

at θe = 70◦
Fig. 4. Tensor polarization T21(q

2) calculated

at θe = 70◦

Fig. 5. Tensor polarization T22(q
2) calculated at θe = 70◦

CONCLUSION

We made an attempt to extract information about P waves by analyzing the charge
form factor of the deuteron FC . Why the FC is appropriate characteristic of the deuteron?
To receive answer to this question, we can remember that in nonrelativistic approach, to
explain properties of the FC , one must take into account mesonic exchange currents especially
the so-called pair currents, which have the direct connections with negative-energy states in
the deuteron [8]. We could see the contribution of the negative-energy states (1P e

1 , 1P o
1 )

by ˇtting FC , at a certain set of parameters. We reproduced the FC , FQ, and T20 at over
Q2 = 2 (GeV/c)2 and T21 at 0 < Q2 < 0.7 (GeV/c)2. Furthermore, we can calculate the
form factors to ˇt FM or B. Of course, this consideration has qualitative character only and
the further investigation in this direction must be done.
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