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EXCLUSIVE ELECTRODISINTEGRATION OF THE
DEUTERON IN THE BETHEÄSALPETER APPROACH
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An exclusive process of the deuteron electrodisintegration is analyzed in the framework of BetheÄ
Salpeter formalism with a phenomenological Graz II rank-three separable interaction. The approxi-
mations made are the neglect of ˇnal-state interaction, two-body exchange currents, negative-energy
components of the bound-state vertex function and the scattering T matrix. The comparison of the
relativistic calculations of the exclusive cross section in the laboratory system with the experimental
data is presented within different kinematic conditions.
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¨ T -³ É·¨ÍÒ ¸ µÉ·¨Í É¥²Ó´µ° Ô´¥·£¨¥°. �·¨¢µ¤¨É¸Ö ¸· ¢´¥´¨¥ ·¥²ÖÉ¨¢¨¸É¸±¨Ì · ¸Î¥Éµ¢ Ô±¸±²Õ-
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±¨´¥³ É¨Î¥¸±¨Ì Ê¸²µ¢¨ÖÌ.

INTRODUCTION

Disintegration of the deuteron (either by photons or electrons) has been and still is a
rich source of information on the structure of electromagnetic current operators and nuclear
dynamics. Previous and current experiments provide data both for inclusive and exclusive
cases [1Ä4]. If the polarized beam and target are also used, the full experiment can be mea-
sured with all polarization observables. These experimental data give a powerful stimulation
to investigate theoretically the exclusive process of the deuteron electrodisintegration.

There are several approaches to the theoretical description of the deuteron and, in partic-
ular, the deuteron break-up reaction. Usually the nonrelativistic treatment with solving the
Schréodinger equation for the deuteron and ˇnal np pair is used. The two-body currents are
also taken into account (see, for instance, [5,6]). Some authors use a numerical solving of a
relativistic wave equation for NN system based on a relativistic one-boson-exchange (OBE)
model with one nucleon being on mass shell ([7, 8]). The other ones use a simple phenom-
enological approach with adding the lowest-order relativistic corrections to the nonrelativistic
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one-body current and including the kinematic wave function boost [9], or the model based
on a direct evaluation of those Feynman diagrams that give the dominant contributions in the
quasi-free region [10].

In the paper, the deuteron electrodisintegration within the covariant BS approach [11] with
the separable Graz II interaction kernel is considered [12]. The exclusive differential cross
section is calculated with the following approximations: the neglect of a ˇnal-state interaction,
two-body exchange currents, negative-energy components of the bound-state vertex function
and the scattering T matrix.

The main goal of the present work is to describe the deuteron electrodisintegration in
a consistent relativistic approach with some approximations discussed below. This is done
within the BetheÄSalpeter equation for the two-nucleon system. In this way it is possible to
come to general conclusions about the amplitude of the process, which are not seen in the
nonrelativistic approach. On the other hand, the nonrelativistic limit can be recovered and
some links to the nonrelativistic corrections can be established.

The paper is organized as follows: in Sec. 1 the relativistic kinematics of the reaction and
cross section are described; the deuteron problem in the BS formalism is considered in Sec. 2;
Section 3 is devoted to the electromagnetic current of the hadron system; ˇnally, results of
numerical calculations are presented in Sec. 4.

1. KINEMATICS OF THE REACTION AND CROSS SECTION

Let us consider the relativistic kinematics of the exclusive deuteron break-up process. The
initial electron l = (E, l) collides with the deuteron in the rest frame K = (Md,0), where Md

is the deuteron mass. There are three particles in the ˇnal state: the ˇnal electron l′ = (E′, l′),
proton and neutron. Concerning the one-photon approximation and neglecting the electron
mass, one can obtain the virtual photon momentum squared (q = (ω,q) is in the laboratory
system (LS) frame):

q2 = −Q2 = (l − l′)2 = ω2 − q2 = −4|l||l′| sin2 θ

2
, (1)

where θ is the electron scattering angle. The outgoing np pair is characterized by the invariant
mass s = P 2 = (pp + pn)2:

s = M2
d + 2Mdω + q2. (2)

The Lorentz-invariant matrix element of the reaction can be written in the following form
(see Fig. 1):

Mfi = −ıe2(2π)4δ(4)(K − P + q)×

× 〈l′, s′e|jµ|l, se〉
1
q2

〈np : (P, SmS)|Jµ|d : (K, M)〉 (3)
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Fig. 1. The one-photon approximation

with 〈l′, s′e|jµ|l, se〉 = ū(l′, s′e)γ
µu(l, se) being

the electron electromagnetic (EM) current. Dirac
spinors u(l, se), (ū(l′, s′e)) stand for initial (ˇnal)
electrons, and 〈np : (P, SmS)|Jµ|d : (K, M)〉 is
an electromagnetic hadron current matrix element
between the deuteron state |d : (K, M)〉 (M is a
total momentum projection) and ˇnal np pair state
|np : (P, SmS)〉 (S is a spin, and mS is a spin
projection).

Using the standard procedure the unpolarized
exclusive differential cross section can be written
as

d5σ

dE′dΩ′dΩp
=

α2

8Md(2π)3
|l′|
|l|

1
q4

R√
s

lµνWµν (4)

with the kinematical factor R describing the transition from a centre-of-mass system (CM) to
a laboratory one in the form

R =
p2

√
1 + η|p| − ep

√
η cos θp

. (5)

Three-momentum p concerns the ˇnal proton in LS, ep =
√

p2 + m2, θp is an angle between
the outgoing proton and Z axis, m is the nucleon mass, η = q2/s.

In Eq. (4) the unpolarized lepton

lµν =
1
2

∑
se s′

e

〈l′, s′e|jµ†|l, se〉〈l, se|jν |l′, s′e〉 = 2(l′
µ

lν + l′ ν lµ) + gµνq2 (6)

and hadron

Wµν =
1
3

∑
MSms

〈d : (K, M)|Jµ†|np : (P, SmS)〉〈np : (P, SmS)|Jν |d : (K, M)〉 (7)

tensors were introduced. Below the averaging of initial particles and summarizing of ˇnal
ones were performed. Introducing helicity components of the tensors and using the lepton
and hadron tensor Hermitian, one can write

d5σ

dE′dΩ′dΩp
=

σMott

8Md(2π)3
R√
s
×

×
[
l000W00 + l0++(W++ + W−−) + l0+− 2ReW+− − l00+ 2Re (W0+ − W0−)

]
(8)

with σMott =
(

α cos
θ

2
/2E sin2 θ

2

)2

being the Mott cross section and

l000 =
Q2

q2
, l00+ =

Q

|q|
√

2

√
Q2

q2
+ tan2 θ

2
, l0++ =

1
2

tan2 θ

2
+

Q2

4q2
, l0+− = − Q2

2q2
. (9)
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Taking into account the conservation of the matrix element of the EM current of the
hadron system in the form

qµ 〈np, SmS |Jµ|D, M〉 = 0, (10)

one can exclude the zero-component of the hadron current and rewrite Eq. (8) in the following
form:

d5σ

dE′dΩ′dΩp
=

σMott

8Md(2π)3
R√
s
×

×
[
Q2

q2
l000W00 + l0++(W++ + W−−) + l0+− 2ReW+− − Q

|q| l
0
0+ 2Re (W0+ − W0−)

]
. (11)

It should be noted that in the last equation in the hadron tensor index, 0 means the
longitudinal helicity instead of time component in Eq. (8). Expression (11) is gauge invariant
by construction, although the hadron EM current matrix element is not.

2. BETHEÄSALPETER AMPLITUDE FOR THE DEUTERON

The basic object describing the deuteron in the BetheÄSalpeter formalism is the amplitude
ΦM (k; K), which satisˇes the homogeneous equation

ΦM αβ(k; K) = ıS(1)
αη

(
K

2
+ k

)
S

(2)
βρ

(
K

2
− k

) ∫
d4k′

(2π)4
Vηρ,ελ(k, k′; K)ΦM ελ(k′; K), (12)

where S(�)(K/2 − (−1)�k) is a propagator of the 	th nucleon; V (k, k′; K) is the kernel of a
nucleonÄnucleon (NN ) interaction, and Greek letters denote the spinor indices. Considering
the deuteron in the rest frame, one can use the partial-wave decomposition of the BS amplitude
on the relativistic two-nucleon basic states |aM〉 ≡ |π, 2S+1Lρ

JM〉:

ΦM (k; K) =
∑

a

φa(k0, |k|)YaM (k), (13)

where S stands for the total spin; L is the orbital angular momentum, and J (J = 1 for the
deuteron) is the total angular momentum with the projection M ; relativistic quantum numbers
ρ and π refer to the total energy-spin and relative-energy parity with respect to the change of
sign of the relative energy, respectively. The function φa(k0, |k|) is a radial part, YaM (k) is
a spin-angle part of the BS amplitude (for details, see [12,13]).

In calculations it is convenient to use the BS vertex function of the deuteron deˇned as
follows1:

ΦM (k; K) = S(1)

(
K

2
+ k

)
S(2)

(
K

2
− k

)
ΓM (k; K). (14)

1For simplicity, the spinor indices are omitted.
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The radial parts of the amplitude and the vertex function are connected in a way

φa(k0, |k|) =
∑

b

Sab(k0, |k|; s)gb(k0, |k|), (15)

with Sab being the decomposed two-nucleon propagator. In current calculations only positive-
energy states of the deuteron amplitudes were taken into account (3S+

1 , 3D+
1 ) and states with

negative energy were omitted. In such a case the function Sab is diagonal: S++(k0, |k|; s) =
1/ (

√
s/2 + k0 − ek) (

√
s/2 − k0 − ek).

To solve Eq. (12), the rank-three covariant separable kernel of Graz II NN interaction is
used (see details in [12]).

3. ELECTROMAGNETIC CURRENT OF THE HADRON SYSTEM

The Mandelstam technique [14,15] provides the method to express the EM current matrix
element of the hadron system in terms of the BS amplitudes and generalized (Mandelstam)
current

〈np : (P, SmS)|Jµ|d : (K, M)〉 =

= ı

∫
d4p

(2π)4
d4k

(2π)4
χ̄Sms(p; p∗, P ) Λµ(p, k; P, K)ΦM (k; K), (16)

with p∗ being the asymptotic relative four-momentum of the np pair: Pp∗ = 0, which is
connected with s as p∗2 = s/4 − m2.

The Mandelstam current consists of one-body and two-body parts Λµ = Λ[1]
µ + Λ[2]

µ .
Taking into account the ˇrst term in the above formulae in the form

Λ[1]
µ (p, k; P, K) = ı(2π)4

{
δ(4)

(
p − k − q

2

)
Γ(1)

µ

(
P

2
+ p,

K

2
+ k

)
S(2)

(
P

2
− p

)−1

+

+δ(4)
(
p − k +

q

2

)
Γ(2)

µ

(
P

2
− p,

K

2
− k

)
S(1)

(
P

2
+ p

)−1
}

(17)

and neglecting the two-body current, one can obtain the relativistic impulse approximation
(RIA) for the electromagnetic current matrix element of the reaction

〈np : (P, SmS)|Jµ|d : (K, M)〉 = ı
∑

�=1,2

∫
d4p

(2π)4
χ̄SmS (p; P )×

× Γ(�)
µ (q)S(�)

(
P

2
− (−1)�p − q

)
ΓM

(
p + (−1)� q

2
; K

)
. (18)

The γNN vertex is chosen in the on-mass-shell form:

Γ(�)
µ (q) = γµF

(�)
1 (q2) − 1

4m
(γµq̂ − q̂γµ)F

(�)
2 (q2), (19)
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where F
(�)
1 (F (�)

2 ) is Dirac (Pauli) EM form factors of the nucleons with the following
normalization conditions:

F
(1)
1 (0) = 1, F

(1)
2 (0) = κp,

F
(2)
1 (0) = 0, F

(2)
2 (0) = κn,

(20)

and κp (κn) being the proton (neutron) anomalous magnetic moments. In the calculations
the dipole ˇt for nucleon form factors was used.

In the paper, the ˇnal-state interaction (FSI) between the outgoing nucleons is neglected,
and the ˇnal np-pair BS amplitude is considered in the plane-wave approximation (PWA):

χ̄
(0)
Sms

(p; p∗, P ) = (2π)4 δ(4)(p − p∗) χ̄
(0)
SmS

(p∗, P ) =

= (2π)4 δ(4)(p − p∗)
∑

m1m2

CSmS
1
2m1

1
2m2

ūm1

(
P

2
+ p

)
ūm2

(
P

2
− p

)
. (21)

Substituting expression (21) for the np-pair amplitude into Eq. (18), one can perform an
integration on the relative momentum p and obtain

〈np : (P, SmS)|Jµ|d : (K, M)〉 = ı
∑

�=1,2

χ̄
(0)
SmS

(p∗, P )Γ(�)
µ (q)×

× S(�)

(
K

2
− p∗ − (−1)� q

2

)
ΓM

(
p∗ + (−1)� q

2
; K

)
. (22)

Equation (22) is the basic expression used in the calculations. To move ahead, one should
transform the Dirac spinors in (21) to LS frame and perform the partial-wave decomposition.

4. CALCULATIONS AND RESULTS

The partial-wave decomposition of the deuteron and ˇnal np-pair BS amplitudes in
Eq. (22) was performed by using the program written on the REDUCE analytic calcula-
tion language. The numeric calculations were performed with the help of the FORTRAN
language programs.

Results of the calculations of the unpolarized exclusive cross section are shown in Fig. 2
(the experimental data are taken from [1,2]). The cross section is plotted as a function of the
ˇnal neutron momentum (missing momentum) in LS frame. Three calculations differ by the
initial and ˇnal electron energies and electron scattering angle (see the Table).

Different sets of kinematical conditions

E, MeV/c E′, MeV/c θ, ◦ ω, MeV/c |q|, MeV/c Q2, GeV2/c2

Set I 500 395 59 105 450 0.191
Set II 500 352 44.4 148 350 0.101
Set III 560 360 25 200 278.9 0.038
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Fig. 2. Relativistic calculations of the exclusive differential cross section. Three different kinematic

conditions: set I (1), set II (2) and set III (3). Experimental data from [1, 2]: � Å set I; � Å set II;
� Å set III

As is seen from Fig. 2, the relativistic result is overestimated compared to the experimental
data for set I and set II, and underestimated for set III. It indicates that the effects of the ˇnal-
state interaction, two-body exchange currents, negative-energy components of the bound-state
vertex function and the scattering T matrix should be taken into account. Such calculations
are in progress.
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