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' INTRODUCTION

The actual rapid progress in computers stimulates the development of the mathematical models which
are aimed to describe the real processes in the nature. Upgrading of such models involves, as a rule,
taking account of more factors, as well as their dynamics and interaction. As a result, sometimes one
obtains a model involving a great number of obscure parameters, a model within which it is already
impossible to select the main factors determining the phenomenon under study.

Much the same situation is now in the field of the numerical modeling of crystal lattice dynamics. The
variety of methods to calculate the electronic energy of many electron systems have been developed in
quantum mechanics (or more precisely, in «quantum chemistry»). In’ principle, they allow us to
construct the adiabatic potential surface of a crystal lattice and to calculate all the dynamical
properties. However, the success of such an approach depends on a lucky choice of the quantum-
chemical approximation (the basis set, the parametrization of the local density functional, etc.).
Besides, the self-consistent solution of a many electron problem for a crystal with dozens of atoms in
the unit cell is still beyond the potentiality of modern programs and computers. The theoretical and
computing difficulty grows essentially when one tries to account the anharmonic effects and to model
the thermal properties.

At the same time, recent publications give us some examples when it was possible, by using a
simple but reasonably chosen analytical approximation of the adiabatic potential, to obtain a
comprehensive description of the dynamical properties of complex crystals, including such complicate
phenomena as phase transitions and polymorphism. Successfulness of these potential models is based
on an appropriate combination of the quantum and classical methods. First, the electronic energy of
the isolated clusters (which serve to model the analogous crystal fragments) is calculated by a non-
empirical quantum-mechanical method. Then by means of numerical interpolation, the analytic
interatomic potentials are drown. Finally, these potentials are used to simulate the lattice dynamics.
The conceptual simplicity of this approach raises the numerical efficiency as well as facilitates the
interpretation of the obtained results. Every term within such a potential model corresponds to the
certain type of physical interaction, so it become possible, by revealing their relative roles, to answer
not only the question «How?», but also «Why?».

Actually, there are several programs to simulate the dynamical property of crystals within a
potential models (Unisoft, Climax, Molecular Simulations etc.). Each of them has the advantages and
shortcomings (completeness, convenience of use, graphics etc.). We have tried to take into account
disadvantages of other programs, and to develop the program package LADY (LAttice DYnamics
toolkit), which allows you, having determined a potential model, to simulate different properties of a
crystal, including:

crystal structure

dynamical properties - phonon states, elastic and piezoelectric constants

IR, Raman and neutron scattering spectra

thermodynamic properties - temperature and pressure dependence of the crystal structure and all
the above listed dynamical properties

AN NANAN

LADY incorporates many widely used potential models.

LADY accomplishes an automatic account of the crystal symmetry for both the crystal structure
and the phonon states. '

LADY is applicable for a crystal of arbitrary chemical and spatial constitution.

LADY includes a graphics.routines which allow you to visualize crystal structure, the calculated
eigenvectors, phonon dispersion relations, DOS and many other calculated dependencies.

LADY has the user-friendly interface (Win-9x, Win-2000).

YV VYV VYV

4



- CHAPTER 1
THEORETICAL BACKGROUND

0

A. Zone-center lattice vibrations and elasticity-

We use the following notations:

x; - atomic coordinates (the Cartesian indexes are omitted for simplicity);

In this section only zone-center (translationally invariant) lattice deformations are considered,
and hence, x, - is the position of i-th sub-lattice in the unit cell.

u, - homogeneous strains which are defined by relation

Axia = ua[i xéﬁ ? .
and the Voigt notations [of =11,22,33,23,13,12] > [ =1,2,3,4,5,6] are implied.
(A1) V(x;,u,) - potential function, static potential energy per unit cell;
(A.2) V= AN forces on atoms;
dxi
A%
(A.3) V, =—— - homogeneous stresses;
Uy
I 74 .
(A4) Vit = - atomic force constants;
: dx,dx;
Xu sz . . . e .
(A.5) Vi = Todn. forces on atoms driven by the infinitesimal homogeneous
i uu
strains
w 4V .
(A.6) Vi = - «external» elastic constants
du,du,
_dp . . o
(A7) P, = effective atomic charges, where P(x,,u,) - the polarization per
unit cell
dpP . .
(A.8) P, = —— - «external» piezoelectric constants
u
o
(A9) €7 (r;) - dielectric constant
(A.10) e = £ . atomic derivatives of the dielectric constant

i
Being evaluated, the quantities (A.1 — A.10) allow us to calculate the following dynamical
properties: lattice vibrations, infrared intensity, Raman scattering 1ntens1ty, elastic and
piezoelectric constants.




Al. Lattice vibrations

Lattice vibration calculation consists in evaluation and diagonalization of the dynamic matrix

1
(Al.1) D, = V> > > Db, =Ah,.

i W i z]; g
Thus determined eigenvalues A, and eigenvectors 4, enable to detrmine the phonon
frequencies :

(A1.2) o, =2,

and the corresponding atomic displacements (mass-weighted eigenvectors)

(AL.3) e, =L p =L

in in = ‘
Jm aQ, .
The latter relation defines the normal coordinates Q, which give rise to the following
potential energy expressions:

(A14) V@) =4>2,0]

A2. Infrared intensity

is proportional to the square of the oscillator strength

(A2.1) g =9

do,’
which is evaluated by means the quantities defined in Eqs.(A.7) and (A1.3) as
(A2.2) § =2 Pe -

The corresponding contribution of the mode # to the static dielectric constant is

4
(A2.3) Ag, v,
Other important characteristics of the IR spectrum are longitudinal (LO) frequencies, which
are determined from the transversal (TO) frequencies (Al.2) and the dielectric strengths
(A2.3) as the roots of the dielectric function
§12

o -0’

2, where v, is the unit cell volume.

(A2.4) e(@)=¢" +i—”2

A3. Raman scattering intensity

Raman scattering intensity is proportional to the square of the derivative
(A3.1) g, = E‘L,

do,
which is evaluated by means the quantities defined in Eqs. (A.8) and (A1.3) as

(A32) o= e, -

Ad. Elastic constants

The elastic constant expression includes «external» term (A.6) and the atomic relaxation
contribution. The latter can be easily written by introducing the magnitude of the atomic
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relaxation along the normal coordinate @, under homogeneous strain u,
do, 1

A4.1 =—t=—-—V .
(44D Qo du,, A, ™
where ‘
2
(A4.2) V, = dav__ Y vie, .
dg,du, =%
Then the total elastic constant expression can be written as
1 uu
(A4.3) Cy = V-[VW - 2,00, ]

AS. Piezoelectric constants

The piezoelectric constant expression also includes «external» term (A.7) and the atomic
relaxation contribution. The latter can be easily determined through the quantities defined in
Eqgs. (A2.2) and (A4.1). The total piezoelectric constants can be expressed as

(A5.1) E, =vi[Pu —ZéQw)

A6. Symmetry analysis

Symmetry analysis of the vibrational states consists in using the symmetry coordinates — the
linear combinations of the atomic displacements - which have a specific transformation
character with respect to the symmetry operations S§,, i. e. which belong to different
irreducible representations of the crystal symmetry group. Such combinations can be written
through the character of the irreducible representation x f as follows:

(A6.1) st =Y 288, (x)
8

After orthogonalization of all the possible s* belonging to the same considered irreducible

representation R, one obtains the basis of this representation. Being transformed to this basis,
the dynamic matrix get a quasi-diagonal block form, and every block corresponds to different
irreducible representation.

A7. Frequency differentiation

Frequency differentiation with respect to the potential model parameters serves for two
purposes. First of all this is an effective tool to adjust the parameters in order to concord the
calculated and observed spectra. Secondly, this helps to elucidate the microscopic origin of
the vibrational states. Let us consider an arbitrary parameter p of the potential function. The
dynamic matrix (Al.1), its eigevalues (A1.2) and eigenvectors (Al.3) would depend on p.
From Eq. (Al.1 - A1.3) one can derive the following relation between these quantities:

(AT.D) A, (P)= X e (PIVy (Pe,u (P).

In order to calculate the first derivatives of the eigenvalues A, with respect to p, one can
neglect the p-dependence of the eigenvectors. So, the following relation is valid:



dv,
(A72) a4, _ Ye,—Le,.
dp 57 dp

Thus, only implicit p-dependence of the adopted potential function should be taken into
account in Eq.(A7.2). The peculiarity of this procedure within all the possible potential
functions are discussed in Sec. D.

AS8. Elastic constant differentiation

Elastic constant differentiation with respect to the potential model parameters is not so easy
task because of complexity of Eq. (A4.3) No simplifying relation, analogous to (A7.2), is
valid in this case. However, we can offer an approximation, which was found to be quite
accurate. Usually, the model potential function is expressed in terms of variation of any
internal coordinates g, - inter-atomic distances or valence angles. Then, the elastic constants

an be written as

dqg . 2
(A8.1) Cpp = | S M yyoa Y0 5yo 4 dn |
Ve \ men duu duﬂ n du“duv
where the derivatives
2
(A8.2) v =4V nqve =4V
dq,dq, dq,

can be explicitly expressed in frame of a particular potential model. It is also implied that the
dependence g, on u, includes the atomic relaxation contribution described in Eq. (A4.1):

dg, _9q 9q
A83 R NS LEFI Y L5 S
(483) du, Ou, b) ax, "
where ’
(A8.4) Xy =l

Numerical calculations show that the second term in Eq. (A8.1) is of minor importance with
respect to the first one. Hence a good approximation for the derivative of the elastic constant
with respect to potential model parameter p is following:

dC 94
(A8.5) L 1| dan Vol da,
~dp Vo | mmdu, dp du,

<
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B. Phonon states
B1. Phonon dispersion

The phonon dispersion study consists in analysis of the phonon frequencies variation along
some chosen directions in the Brillouin zone (BZ).

When considering the finite wave-vector lattice vibrations one should consider the individual
atomic displacements. Hence, index i in the above sub-lattice coordinates x, must be replaced

by a combination (i,1,,1,,f,), where i is as previously the number of a sub-lattice and the
3D index I=(I,,I,,I,) numerates the cells in the lattice, i.e. shows the number of
translations along a, b and c-axes correspondingly.
At finite wave-vector k the dynamic matrix is defined as
1 . .

(B1.1) D,,l.(k)=—ZV,.,‘j, explik(x;, —x,)]
1“’l’lii’f'l i J
Diagonalisation of this  complex (self-conjugated) matrix gives the phonon frequencies
@, (k) and phonon eigenvectors e, (k), and the relations analogous to (Al.1 - A1.4) are valid.

The same symmetry analysis procedure (A6.1) is applicable in the phonon dispersion
study,. But now the symmetry subgroup corresponding to the chosen wave-vector direction
must be considered. This subgroup includes only those symmetry operations which keep k-

vector invariant. The phonon dispersion symmetry analysis provides a powerful tool to solve
the problem of the phonon branches crossing.

B2. Brillouin-zone scanning

Brillouin-zone scanning is necessary to obtain the information about the whole phonon
spectrum. Such a scanning consists in D(k) -matrix diagonalization over the 3D-net of wave-

vector  k =(a_é_c_] at  n,n,,n;=-=N,.,N. In total, this includes
n, n, n,

N, = (2N + 1)° points in BZ. The volume of calculations is drastically diminished

by taking into account the symmetry relations in k-space:

(B2.1) ,(S, (k) =0,k)

€, (S, (k) =S, (e, (k)
B3. Density-of-state

Density-of state (DOS) function is determined by summation over all the phonon states:

®B3.1) 8@ =~ Y 50-0,0)

t nk
B4. Partial atomic density-of-state

Partial atomic density-of-state shows the contribution of different atoms to DOS. They are
9



defined as

. ) k 2
(B4.1) gl(w)=iz5(w_wn(k)) Iem( )| _.
N Ze,,,(k)l

BS. Thermodynamic functions

Thermodynamic functions "(more exactly, the corresponding phonon contribution) are
calculated within harmonic approximation as follows:

(BS.1) Free energy: F/(T) = k]\'}—TZm(z sinh(B,,))
t nk
(B5.2) Entropy: S(T) = 2;[[3  coth(B,,) In(2sinh(B,, )]
2
(B5.3) Heat capacity: C(T) = _,nzk‘[m%(kﬁj}
where 3, =hz%:;)

B6. Atomic thermal parameters (ATP)

Atomic thermal parameters (ATP), or atomic thermal amplitudes, are determined by the
expression:

(B6.1) 8,0 (T) = Z h(k) coth(B,, )e, (K)es (k)

B7. Pair distribution function (PDF)

Pair distribution function (PDF) - the probability distribution of the interatomic distances -
within the quasiharmonic approximation is determined by the expression:

1 R-R)
(B7.1) f(R,T):Zrexp{—( ) ]

n
Here R, is the temperature-dependent distance between atoms i and j which is related to the
static equilibrium interatomic distance R, by the relation:

R2(T)=R%, +0,

And o, is the corresponding dispersion determined by the relation:
O, =<uu, >+ <uu; >-2<uu >

The isotropic atomic displacement correlation is defined by the relation similar to (B6.1):

(B7.2) <uu >—-T%2a) B

th(ﬂnk )(eur Jx + elye/y + elze‘/z) °
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C. Geometry optimization

The self-consistent harmonic approximation demands that all second energy derivatives (A.4-
A.6), which determine the dynamical properties, should be taken at the static equilibrium
lattice configuration. It means that the first derivatives (A.2-A.3) must be equal to zero. This
is the Static Equilibrium Condition (SEC):
Vi‘x =0
Vi=0
Generally, there are two manners to deal with SEC. The fist one is to use the experimental
geometry and to impose the conditions (C.1) thus adjusting the potential model parameters.
The second approach is non-empirical. It involves the solution of the Eq.(C.1) within the
adopted potential model. In such a case, the agreement between calculated and experimental
geometries serves as an important criterion of validity of the model.
The computational solution of Eq.(C.1) consists in step-by-step variation of the geometry
parameters (atomic positions and the unit cell dimensions and angles), thus diminishing the
potential energy. The steepest descent method provides us a simple and effective way to solve
this task. It seems to be quite suitable because we have possibility to calculate the second
derivatives (A.4-A.6) Two types of the geometry parameters — the atomic positions and the
unit cell dimensions — have rather different scale of variation. The unit cell parameters can be
easily optimized by means of relation:
(C2) Au, ==Y (v.C,,)) 'V,

4

(€1

So, by using this relation one can find the optimal cell parameters in few steps. The atomic
position optimization is a more difficult task because of great number of degrees of freedom
and the strong coupling between them. In principle, the same steepest descent relation

(€3) Ax, ==Y V;'V}
i

can be used. The last expression describes the transformation in space of 3N Cartesian
displacements. To diminish the symmetry breaking due to the finite numerical accuracy, it is
highly advisable to transform this relation in space of the normal coordinates. The relation
(C.3) in the normal coordinate space is very simple:

1

C4 AQ, = V.,
(C4) o, R
where

(C.5) V, =Y Ve,

is the force conjugated to normal coordinate Q,. The most advantage is that only the totally
symmetric coordinates (belonging to the symmetry representation Al or Ag) should be taken
into consideration in (C.4). This conserves the lattice symmetry and diminishes the volume of
calculation. _

C1. Pressure-induced geometry variation

The static equilibrium conditions (C.1) are valid for a crystal at zero temperature and in
absence of the external pressure. In order to simulate the crystal structure at non-zero external
pressure p these conditions must be changed as follows:

11



AR
(CL.1) Va=V,=V,=-
Ve=Vi=Vy=0
The same geometry optimization procedure enables us to solve the Eq.(C1.1). The only
change is to replace in Eq.(C.3) V, by V,+pv, for v =xx,yy,zz. The concomitant
calculation of the phonon states, the elastic and piezoelectric properties provides us a tool to
study the influence of external pressure on the dynamical properties of the crystal under

study.
C2. Finite-temperature simulation

On studying the crystal structure at finite temperature, one should minimize not the static
potential energy but the free energy. Often, for this purpose one uses the quasiharmonic
approximation (QHA) which consists in applying the phonon representation (A1.4), i.e. the
second order decomposition of the potential function around the thermodynamically average
lattice configuration X . In this case the phonon frequencies become geometry dependent:

(C2.1) V()_C,Q)=V(J_C)+%Zln(f)Qj‘

Here for simplicity the summation over n implies the summation over all the phonon branches
and over all the wave vectors in BZ as well. Within QHA, the free energy is the sum of
potential energy and the phonon contribution (B5.2):
(C2.2) Fx,T)=VX)+F'A,(*x),T).
It is important to emphasize that the phonon frequencies are geometry dependent in QHA.
Then the condition of the thermodynamic equilibrium is as follows:

dF _ dF?(A,,T) dA,(X)
C23 —=-Vx+) ———2 =
( ) dx, ) 2 dA, dx,
The last term in this expression can be considered as the temperature -induced phonon force
A8
(C2.4) V,(®) =V (ET).
By replacing X; in (C2.3 - C2.4) by i, we obtain the equation for the temperature-induced

homogeneous strains, which determine the thermal expansion. Thus, by solving the equation
(C2.3 - C2.4) at a gradually increased T value one obtains the dependencies x(7") and u,(T)

which completely describe the temperature-induced structure evolution. The derivatives of the
phonon frequencies with respect to the geometry parameters (the so called Gruneisen
constants) can be easily calculated by means of the expression analogous to (A7.2).

In the same way as in the static energy optimization (C.4), it is recommended to
replace the individual atomic coordinates by the normal zone-center coordinates Q,. This
reduces the volume of calculations and ensures the symmetry conservation. As concerns to
differentiation with respect to homogeneous strains, it should be noted that at finite wave &
one must deal with not an individual mode but with the sum over the star S, (k). Thus the
corresponding derivative in Eq.(C2.3) must be taken as: zd’l (8, (6) _.2 A, s,

A duy, i du,g
The concomitant calculation of the phonon states, the elastlc and plezoelectrlc properties
provides us a tool to study the 1nﬂuence of temperature on the dynamlcal properties of the
crystal under study.



&=

D. Potential models

LADY calculates all the quantities (A.1-A.11) within the adopted potential model
whenever it is possible. The following restrictions are inherent to different models:

Model v Undefined quantities
VFF 1-3

IAP 7-10

RIM 9-10

PIM -

SM o -

D1. Valence force field (VFF)

This model is based on considering the variation of the valence coordinates g, , which include
the bond stretching s, and the valence angle bending b, . PF is considered as a quadratic form
in the space of the valence coordinate increments:

(D1.1) V(@) =1y F,.Aq,Aq,

The coefficients F,, are valence force constants. All the calculation within VFF involve B*-
matrix - the first derivatives of g, with respect to atomic displacements:

(D1.2) B =%,
dxi
and the B"-matrix - the first derivatives of g, with respect to homogeneous strains:
(D1.3) By, = %
du,
Then the second derivatives (D1.4-D1.6) are expressed as following:
(D1.4) V, =F,, BB,
D1.5) Vy=F,B,B,,
(D1.6) Vy =F,,B,.B,

mn = mp ey
here and further the summation over the repeated indexes is implied.
To calculate the IR and Raman intensities, VFF model is supplied by valence bond
polarization scheme. This involves representation of crystal polarization and polarizability as
an additive sum of contributions of valence bonds:

(D1.7) P=>p,

(D1.8) e” =Zen

In addition, it is supposed that
- the valence bond dipole moment p,, is directed along the bond, and its magmtude depends
on bond length;

- the valence bond polarizability &, has two independent component &) and &7,

13




correspondingly parallel and perpendicular to the bond direction, and their magnitude also
depend on the bond length.

Thus, every valence bond s, is characterized, besides force constant

2
(D1.9) F v

nn = 2
ds,

by three polarization parameters:

(D1.10) 7, =% g e g9
ds, ds, ds,

n n

The valence angle b, is built of two atom-shared valence bonds s, and s?. General VFF
model (D1.1) takes into account not only diagonal force constants (like (D1.9)) but non-
diagonal ones (with n # m) as well. Within LADY it is possible to deal with s} -s2, b, -s

and b,- s cross-terms.

Thus, every valence angle b, is characterized, besides diagonal force constant

dv
D1.11 F,=—r,
( ) "=
by three non-diagonal force constants:
2 2 2
(D1.12) H, = dv . dv , _ dV

sias M dar M T
The set of VFF parameters (D1.9-D1.12) enables us to calculate the phonon states, IR and
Raman scattering intensities, elastic and piezoelectric constants.

Usually one considers VFF model as an essentially harmonic approximation, i.e. only
linear relation (D1.2-D1.3) between valence coordinates and atomic displacements are taken
into account. At such approach, the given crystal geometry is considered to correspond to
static equilibrium, and nor geometry optimization neither temperature or pressure dependence
could be studied within this model. However, one can overcome this shortcoming by
extrapolating Eq. (D1.1) to the finite valence coordinate variation. In addition, it is possible to
incorporate the «proper» anharmonicity by supposing the valence force constants to be
coordinate-depended. Then one obtain the following potential function:

(D1.13) Vg(x) =13 F,. (@), —a2)a, —4q°).

where the true g(x) dependence is implied. In order to calculate the second derivatives (D1.4-
D1.6) with potential function (D1. 13) one needs the second-order B-matrixes

d’
(D1.14) B =— 1
dx,dx,

2
(D1.15) B, =L
dx,du,,

2
(D1.16) T

" du,du,
D2. Inter-atomic potentials (IAP)
Within this model only pair-wise interactions -are considered. They are described by any

14



analytical function ¢(R;)of inter-atomic distance R, = ‘x f —x,,|. The corresponding potential
function is expressed as

V=3 ¢R,)

i<j
Let us define vector r = x; —x; (atomic indexes i and j are omitted for simplisity). Then the

corresponding contributions’to all the quantities (A.2-A.6) can be easily expressed through
two parameters A =¢” and B=¢’/R (so called longitudinal and transversal force

constants) as follows:

(A2) vV, =Br,

(A3) Vo = Br, rg

(A4) Vigp = (A= B)—’—"—+5 B

(A5) xaﬁy =(A-B)—— o ﬂ i %B(6GI3 4 +9 rﬁ)
(A6) Vg = [(A B) Ll +6MB}

Within LADY 1 aJ = 10™%J is assumed as the energy unit and 1 A for all the spatial
dimensions. Several standard analytic expressions for ¢(r) are available. All of them involve

two parameters a and b: These standard functions as well as the corresponding parameter
units are listed in following table:

Type of function Key o(r) a unit b unit
Born-Karman model |BKM a=¢" b=¢'/r |al/A al/A?
Harmonic function |HAR Lotr—b)? aJ A

. 2
Exponent function EXP ' [ r ] aJ A

aexp| ——
Power function POW ar™® al/A? -
Coulomb low Cou ab e _ e
r

D3. Rigid ion model (RIM)

Within RIM a crystal is considered to consist of isolated spheric ions with ionic charges z;,
and the potential function is presented as a sum of non-Coulomb and electrostatic
contributions:

4

(D3.1) v (x)=U(x)+lz -

. wi T .
Non-Coulomb contribution is usually treated by the above considered IAP potentials. The
electrostatic interaction gives the following contributions in the first and second energy
derivatives:

15
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z,r
(D3.2) V,=U, - ze,, where e, = 3 —=
j

D3.3) V, =U, -2,C;z,, where C, = 5";1(3@;;#”—60,,, ]

y

The convergence of the Coulomb sum in ( D3.1-D3.3) is very slow and conventional, i.e. the
result depends on the choice of partial sums. Physically, it means that the electrostatic field in
dielectrics depends on the shape of the sample. Usually, one can neglect this effect, and so,
one needs to eliminate this conventionally converged contribution. It is easily done by means
of Ewald transformation. Below, the final expressions of this method are presented.

Let us consider at site r the Coulomb potential which is due to a simple crystal lattice of the

i

unit charges @(r) = z , here I=(i,a,i,b,i,c) is the 3D lattice vector. Within the Ewald
- .

1
|I + r|
method, this sum is transformed into two absolutely and quickly converged sums over the

direct (I) and reciprocal (K) lattices: ¢(r) = ZH (|I+r|, g)+4—nZCOS(Kl‘)G(K ,g), where
i vV K

. 2
H(x,g):M and G(x,g)=-12—exp(— X 5 ]
x x 4g

The optimal value of the splitting constant g is taken as g = £7IT Let us denote R=I+r.

v

Then the first and the second derivatives with respect to r, and uy, can be expressed as
follows:

o, =Y o M G &nGK, K,
1 R V 'k
R,R, 4r K K
’ = Hl nov _on K G5 +Gl__ﬁ___!_
Puv Ex: = zx“cos( r)[ v - ]
” z | H ., H'\RqRp

#25)" expli(K + ORXK + ) (K +0)§G(K +4.)
K

SouRy +0gv R H’ \RyR, R,
” _E: Qo T Oy ity ” oty fty
I

K K, K
LA E cos(Kr)[G(éavK# +84,Ky)+ G’_.‘_"_If‘__f_}
1%
m .

R R "\R_R;R R
Drg =Z[6WH'—“R Y +[H”——I; )——————————“ ;Z” V]+———4”2cos(Kr)[G(5aﬂ5ﬁv +68,,8, )+
I VK

’

, G KKK, K, G . ) '
+(G —?]T+?(SWKI,KV+6,,”KaKV+6aVK,,KM+6,,VK‘,K”+6MK‘,K/,)
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D4. Polarizable ion model (PIM)

Polarizable Ion Model (PIM) is an extension of RIM, which takes into account the proper
ionic polarizability ¢;. Within this model all ions in the crystals possess a proper dipole
moment p, =,e,, where ¢; is the electric field strength. The corresponding extension of the
potential function is as follows:

1
V™ (x,p) =V (x) +52s,, (X)p;p;— Y, pie;(x)
i i

v 1
L= =—95.-C.(x
! apiapj a; ! U( )
4
api p=0
4 0 0
= o, =-C;z;—06,d; , where d; =;Cijzj
Then the following relations are valid:
%V— =0 = p° =87V, -static polirization
D

V(x,p)=V"™(x)- —i— p°V, - static energy

4 . :
e =142 2 (S - ),.j - dielectric constant
c i
@ _ g7y, - dynamic polarizati
- = - dynamic polarization
2 .
L;x—‘zl =V, - -;—VWS 'IVP)c - force constants

dp,
7, =z +2% - effective charges

J i
DS. Shell model (SM)

Shell model (SM) is an extension of RIM, which takes into account the proper ionic
polarization induced by the electric field and by the short-range interactions as well. Within
this model all ions in the crystals possess proper dipole moment:
P =06 +KU,;,

where ¢; is the electric field strength and U; is the force caused by the short-range interactions.
An additional parameter k; is incorporated within SM in comparison with PIM. This
representation of SM model differs from the more common description of SM, which
considers the ionic polarization as displacements of the massless ionic shells with the charges
yi. In fact, the relation

ai
K, =—

Yi .
is valid, and both the definitions are equivalent. Below we shall use the ‘traditional’
parameters y;. The corresponding extension of the potential function is as follows:

17



R 4 R |
V¥ (x,p)=U(x, +%>+52——’-+52s,~, (X)p,p; - Y., pie,(x)
i ij i

i i ij
U,“ 1 dlo u‘-o
S, =—C,:,.(x)+—’—+6ij[—————+—2 , where u =2Uij
Y L& i i j
U,
Vp =e ——
Vi

U, 0
Vi = =-C,z;+——+9,; u_‘_dz‘o
9p;0x, Vi¥, Vi



CHAPTER 2
SCHEME OF ORGANIZATION. ROUTINES AND FILES

The package LADY consists of several computational routines which serve to solve different
tasks. There are 5 principal routines:

% Structure

< Optic modes & elasticity

+ Geometry optimization

* Phonon dispersion relations
%+ Brillouin zone scanning

and several auxiliary routines (Fig. 1):

53

¥

Valence bonds

VFF list

Rigid Molecules

Frequency differentiation
Potential energy distribution
Valence coordinate variation
Phonon density-of-state
Atomic thermal parameters
Pair distribution function

¢ Thermodynamics

*,
B

53

*

o
DORE

5
v o

+
*¥

-,
o

3

¥

03

LADY CALADY\MgE:

Figure 1. LADY program shell
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The input-output data exchange between all the routines is accomplished by means of
several files. All these files have the same extension .I/dy but different names:

inp.ldy input data
cry.ldy output for Structure, Valence bonds and Rigid Molecules

output for Optic modes & elasticity:

pot.ldy potential energy and its first and second derivatives
vib.ldy zone-center vibrations, elastic and piezoelectric constants
iirldy infrared spectrum simulation

ira.ldy Raman spectrum simulation

dff.ldy output for Frequency differentiation

ped.ldy output for Potential energy distribution

dgl.ldy output for Valence coordinate variation

opx.ldy output for Geometry optimization

dsp.ldy output for Phonon dispersion relations

scn.ldy output for Brillouin zone scanning

dos.ldy output for Phonon density-of-state

atp.ldy output for Atomic thermal parameters

pdf.ldy output for Pair distribution function

tdm.ldy output for Thermodynamics

The package also includes some standard data (space symmetry groups, atomic
parameters, the table of irreducible representations and the list of subgroups) which are stored
in lady.dat file. The auxiliary inf.ldy file is opened automatically, and some brief information
about LADY running is written there. You can look there for diagnostics in case of some

€ITorS.

Structure

This routine uses the input data from the STRUCTURE section of inp.ldy file (Space
symmetry group, elementary unit cell parameters and atomic composition) and generates an
extended description of the crystal structure (the table of symmetry transformations, the
atomic coordinates and the interatomic distances). When running, this program applies to
lady.dat file, which contains all the space symmetry groups and the list of standard atomic
parameters. }

The results are written in cry.ldy file, and the generated crystal structure can be
visualized by Structure & Modes viewer (Fig 2).

&=

Valence bonds

This is an auxiliary routine which can follow the Structure routine. It provides us the useful

information about the coordination pelyhedra around the atoms. Before initiating this routine

you should mark some interatomic distances (namely those which you consider as valence

bonds) in cry.ldy by asterisk in first position. This routine builds the valence environment for
20



Figure 2. Structure & Modes viewer

all the atoms, i.e. the number and orientation of the valence bonds and gives the list of valence
angles. This information is written in the end of cry.ldy file.

&

VEFF list

This is an auxiliary routine which can follow the Valence bonds routine. It is very useful if
you wish to use the VFF contribution. This routine creates the complete list of valence
coordinates in the POTENTIAL section of inn.ldy file. Afterwards you can choose the
necessary valence coordinates and to assign the force constants values. All other valence
coordinates could be omitted for simplicity.

&

Optic modes & elasticity

This command initiates consequent execution of several routines.

The first one elaborates the input data from POTENTIAL section in inp.ldy file and
calculates the lattice energy and all its first and second derivatives with respect to atomic
displacements and homogeneous strains: forces on atoms, external tensions, atomic force
constants, polarization and polarizability derivatives. All these data are written in pot.Idy file.

The second routine performs the '2x_?lm~cenler vibrational states calculation. It



calculates frequencies, eigenvectors, polarization and polarizability derivatives and gives the
symmetry assignment for all the zone-center modes.

These results are written in vib.Idy file, and the calculated eigenvectors can be
visualized by Structure & Modes viewer.

The list of the Raman-active modes are written in ira.ldy file, and the calculated
Raman band intensities can be visualized by Raman Spectrum viewer. The list of the IR-
active modes, their intensities and the values of LO frequencies are written in iir.ldy file. The
calculated IR intensities can be visualized by Infrared Spectrum viewer (Fig. 3).

The third routine fulfills the elastic and piezoelectric constant calculation. These
results are also written in the end of vib.ldy file.

Figure 3. Infrared Spectrum viewer

&

Frequency ditferentiation

This auxiliary routine may follow Optic mode & elasticity. This routine evaluates the
derivatives of the calculated frequencies and elastic constants with respect to the potential
model parameters. These data are written in dif.ldy file. This is a highly instructive procedure
if you intend to fit the calculated frequencies to the experimental data.
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Potential energy distribution

This is an auxiliary routine which can follow Optic mode & elasticity. 1t calculates the
potential energy distribution - decomposition of the calculated squared frequencies into
contributions of different interactions. These data are written in ped.ldy file. This a highly
instructive procedure if you are interested in a detailed microscopic analysis of the calculated

spectrum.

Valence coordinate variation

This is an auxiliary routine which can follow Optic mode & elasticity. This programs
provides us the eigenvectors in terms of the valence coordinate variation. These data are
written in dgl.ldy file. The list of internal coordinates is taken from the Valence bonds section
of cry.ldy file. This a highly instructive procedure if you would like to thoroughly analyze the

calculated vibrational states.’

Geometry optimization

This routine serves to find the crystal geometry (atomic positions and the unit cell parameters)
which corresponds to zero forces and stresses. This problem is solved by means of Newton
method. The second derivatives with respect to the atomic positions-are estimated from the
calculated normal mode frequencies and eigenvectors. The second derivatives with respect to
the unit cell parameters are evaluated from the calculated elastic constants. All this
information is taken from vib.ldy file. Therefore this routine can be run only after executing of
the Optic mode & elasticity routine.

This problem involves the optimization of the atomic positions and the unit cell
parameters as well. For both the tasks the convergence criterion (the residual force F,,, and
homogeneous stress Sy.qx) and the maximal number of iterations (V;) should be specified.

The routine consists in consequent executing of the atomic positions optimization and
unit cell parameter optimization. One can to execute only one type of optimization (with
respect to atomic positions or with respect to unit cell parameters). In this case a zero value of
the convergence criterion should be assigned to Fugx OF Spax, correspondingly.

This routine also enables us to simulate the static equilibrium lattice geometry at finite
external pressure P,y. Its value should be given as an input parameter.

Thus, the input data of this routine should include Fuux, Smax, Vi and P,y. -

The results of geometry optimization are written in opx.Idy file.

%

Phonon dispersion relations

This routine serves to calculate the phonon dispersion along a chosen line in the Brillouin
zone (BZ). If the chosen direction has a spe<2:i3fic symmetry, this will be taken into account



automatically, and the calculated phonon states line will be assigned according to irreducible
representations of the corresponding symmetry subgroup.

The input information for 'this routine includes two wave vectors (g, and gz) and the
number of intervals between them (N).

The calculated phonon frequencies are written in dsp.ldy file, and the corresponding
curves can be visualized by Dispersion Curves viewer (Fig. 4).

Dispersion: zdt.idy

Figure 4. Dispersion Curves viewer

"

Brillouin zone scanning

This routine serves to calculate the phonon states over the regular wave vector net into the
whole BZ. This net includes all the wave vectors

I

a b ¢ -
k=|—,—,— |,at n,,n,,ny ==N,.,N.
o Ry My

The symmetry of the lattice is taken into account automatically, and the calculations are
carried out only for one of the symmetry equivalent wave vectors.

The only number N should be given in the input data. On choosing this value, be cautious!
The total number of wave vectors in the net is equal to N , = (2N + 1) *  and an

unreasonably high N value would lead to a rather voluminous calculation.

The output data (phonon frequencies and eigenvectors) are written in scn.ldy file.
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Phonon density of states

This routine calculates the phonon density-of-states (DOS), e.g. the frequency distribution of
the phonon states. The frequency range from 0 up to @y, is divided onto N intervals, and the
corresponding histogram is calculated by scanning over the phonon state data stored in scn.ldy
file. Besides the total DOS, this routine calculates the partial atomic (weighted with respect to
atomic amplitudes) DOS’s.

The only number N should be given in the input data.

The results are written in dos.ldy file, and the corresponding curves can be visualized
by Phonon Density viewer (Fig. 5).

Figure 5. Phonon Density viewer

&

Atomic thermal parameters

This routine calculates the thermal atomic amplitudes at the given temperature values. These
quantities are calculated by scanning over the phonon state data stored in scn.ldy file. The
input data include the number of T-values (N) and these values (T}, T3, ..., Tw). The results are
written in atp.ldy file.

A
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Pair distribution function

This routine calculates the pair distribution function - the probability distribution of the
interatomic distances - from O up to Ry, at the given temperature value. This function is
calculated by scanning over the phonon state data stored in sen.ldy file. The input data include
T and R,u values. If it is necessary, this function may be weighted by the neutron or electron
scaltering cross-section in order to be comparable with the corresponding .experimental
curves. The results are written in pdf.ldy file and the corresponding curve can be visualized by
Pair Distribution function viewer (Fig. 7).

Figure 6. Pair Distribution Function viewer

2

Thermodynamics

This routine calculates the phonon contribution to the thermodynamic functions (entropy and
heat capacity) within the chosen temperature interval. These quantities are calculated by
scanning over the phonon state data stored in scn.ldy file.

The input data include the number of T-values (¥) and these values (17, 15, ..., T).
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The results are written in tdm.ldy 'filc, and the corresponding curves can be visualized by

Thermodynamics viewer (Fig. 7).

| =
=
)
[
o |
[
)
=
=
=
=
@
Iz}
=
&=
@
o

Reduced entropy

7. Thermodynamics viewer

Figure
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CHAPTER 3
KEYWORDS

Space symmetry group

The space symmetry group should be specified by Name of group - the notation given in the
International Tables. Within LADY, these notations are chosen to correspond to those of the
widely used crystal structure database.

Name of group
is taken to correspond as much as it is possible to the standard notations in the International

Tables. One can to look at all the adopted space symmetry groups within Build New Structure
regime (Fig. 8).

Figure 8. Build New Structure regime

Elementary unit cell

is specified by three cell dimensions a, b, ¢ (in A) and by three angles a=b"c, f=a"c, and
1=a"b (in degrees). Take care that the given parameter values should correspond to the chosen
crystal symmetry. In all the actual calculations throughout the LADY routines the primitive
unit cell is used. If the latter differs from the elementary unit cell, it is determined according
to the common convention. ’
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Atomic composition

includes names of atoms and the atomic positions in the elementary umt cell. An additional
atomic parameter - atomic charge -'should be also given.

Names of atoms

are the three character words. The two first characters must coincide with the standard
chemical symbol, e.g. Ca, CI . If the chemical symbol consists of only one character, the
underline symbol must be added, e.g. F_, S_ . The third character is the label of position, e.g.
Cal, F_a. If there is only one position occupied by these atoms, the label of position (as well
as the underline symbol) can be omitted. For example, the following names of atoms are
admitted: Mgl, F_2, Mg, F, etc.

Atomic positions

are defined by three numbers which are the partial atomic coordinates in the space of the
elementary unit cell vectors d ,l; ,C.

Atomic coordinates

The program applies the space symmetry group transformations in order to generate all the
symmetry equivalent atomic positions from the given ones. Thus, the degeneracy of the
position is determined, and all the atomic coordinates (partial as well as Cartesian) are written
in cry.ldy file. The complete address of the atom in an infinite regular crystal consists of:

- name of atom,

- number within the symmetry degenerate positions

- 3D unit cell index.
For example the address 0_21[5, 2,0, -1] corresponds to 5-th of O_2 atoms in the (2,0,-1)
unit cell.

Interatomic distances
are written in cry.ldy file. The list includes all the distances shorter than 10 A. The symmetry
degeneracy of the distance and corresponding address of atom for a pair of representatives are

shown. The first of the atoms is implied to be located within (0,0,0) unit cell. So, the record

Ca F 218772 8 24 0-10

denotes that the distance between atoms Ca [2, 0, 0, 0] and F_2 [4, O, -1, 0] is equal to
1.8772 A, and there are 8 of such symmetry equivalent pairs of atoms.

Atomic parameters
Different atomic parameters are used within some LADY’s routine. They are atomic charge,
atomic mass, atomic radius, neutron and x-ray scattering cross-sections. The standard atomic

parameter values are taken from lady.dat file and are stored in fab.ldy file. One can see and
edit the content of the zab.ldy file by clicking on the corresponding icon.
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- CHAPTER 4
INPUT

0

Inp.ldy file

It is strongly recommended to use a separate directory for every project under study.

First of all you must open in this directory the inp.ldy file and write there the input
information. This can be done automatically within the Build new crystal regime or manually
as well. The typical inp.ldy could look as follows:

FePO4 - Name of project

STRUCTURE : - An obligatory key line

P 31 21 - Name of the space symmetry group

5.036 5.036 11.35 - Unit cell dimensions a,b,c

90 90 120 - Unit cell angles bc,ac,ab

Fe - Name (i.e. chemical symbol ) of the 1" atom

0.45197 0 0.3333333 1.4 55.8 0.7- Position, charge, mass and radius of the I*' atom

P _ - 2" atom

0.4452 0 0.8333333 3.4 0 0 - (the standard mass and radius values will be taken)
o_1 _ - Name (i.e. chemical symbol and label of position) of

the 3™ atom
0.4361 0.3254 0.4 -1.2 0 0

o_2 : - 4" atom

0.40888 0.2597 0.8793 -1.2 0 0

end - Key line

POTENTIAL: - Key line

IAP . - Inter- Atomic Potential contribution

Fe O_* EXP
0 20 3200 0.216

Fe O_* POW

0 20 -30 6

P O_* EXP

0 20 1447.5 0.19264

P o_* POW

0 20 -3.2 6

O_* O_* EXP

0 20 222.48 0.36232

O_* O_* POW,

0 20 -28.035 6

end - Key line
VFF . - Valence Force Field contribution
O_1 Fe P

i1 0 0 o0 3 0 O O

0.2, 0.1, 0.1, 0.2

O_2 Fe P

3 0 0 1 1 0 O O

0.15, 0.11, 0.1, 0.2 ‘

end - Key line
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SHM - Shell Model contribution

o_1
-2.7, 1.2, 0, 0
o_2
-2.7, 1.2, 0, 0
end -Key line
END -Key line
IAP input

begins with the key line «IAP» and finishes by the key line «end». Between them the
definition of the pair-wise potentials is written. This consists of two lines for every potential.
The first line consists of three 3-character words:

name of first atom, name of second atom, type of interaction

In the second line the four numeric values are given:

Rmm,Rmm,a,b

here Ryin and Ry, are the minimal and maximal radii of interaction, a and b are two potential
parameters. For example, the record

Fe O_1 EXP
0 20 3200 0.216

corresponds to the potential ¢(r)=3200exp(~r/0.216), which acts between atoms Fe and O_1
within 0 < r <20.

Several standard analytic expressions for ¢(r) are available in LADY. All of them involve two

parameters a and b. These standard functions as well as the corresponding parameter units are
listed in the table:

Description Type - |Expression a unit " | b unit
Born-Karman model BKM |A=a,B=b al/A® al/A?
Harmonic function HAR Lor—p)? al A
: 2
Exponent function EXP ( r ) aJ A
. aexp| ——
Power function POW ar™® al/A? -
Coulomb low COU ab e E -
. .

If you want to use the same potential for all the chemically equivalent atoms in different
crystal positions, then you should write asterisk (*) in the third position of atom name. So, the
record ’ : ‘
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Fe O_* EXP
0 20 3200 0.216

is equivalent to the combination

Fe O_1 EXP
0 20 3200 0.216
Fe O0O_2 EXP
0 20 3200 0.216.

0

VFF input

begins with the key line «VFF» and finishes by the key line «end». Between them the
definition of the valence coordinates and values of corresponding force constants are written.
This consists of three lines for every valence coordinate.

The first line consists of two-character words for every valence bond:
name of first atom, name of second atom,

or of three 3-character words for every valence angle:
name of first (central) atom, name of second atom, name of third atom

In the second line the address of the second and third atoms are given (the address of the
first atom is always implied to be [1, 0, O, 0] ).

In the third line the four numeric values are given:

2 d 1 2
an=d‘2/’ Zn= p'l 4 Erll=d8n 4 E3=d£n
ds, ds, ds, ds,

for valence bond, and correspondingly
d’v v, _dv  ,_ dV
Fp=—s H,=—5, A = T A= 2
db, ds,ds, db,ds, db,ds,

for valence angle.

For example, the record

Fe O_1
1 0o 0 0
0.5, 0.1, 0.2, 0.3

corresponds to the valence bond Fe(1 0 0 0)-O_1(1 000),
and the parameters

Fp Hy Ay A

whereas, the record

O_1 Fe P

1 0 0 0 3 0 0 O
0.5, 0.1, 0.2, 0.3

corresponds to the valence angle Fe (‘1 000)-0_1(1000-P@3 0 0 0), and the force

constants F,,,H,, A}, A’
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PIM and SM input

begins with the key line «PIM» or «SM» and finishes by the key line «end». Between them
the definition of the atomic polarizability parameters are written. This consists of two lines
for every polarizable atom.

The first line consists of one 3-character word:
name of atom

In the second line the four numeric values are given:
shell charge, Oy, 04y, O,
here 04, Oy and o are the components of the atomic polarizability tensor. The latter may be
set different in order to take into account the crystal anisotropy.
The shell charge value is not used within PIM model, so it can be set arbitrarily.

There is an example of the SM input data:

SHM

o_1

-2.7, 1.2, 1.2, 1.2
o_2

-2.7, 1., 1., 1.
end

0

RIM input
does not need any additional data. The atomic charges are taken from the atomic composition
section.

The basic units used in LADY

Length -A
Energy —al (1a)=10"% =1 mdyn-A)
Mass —am.u. (1 am.u. = 1.660056-107 kg)
Charge —e(1e=1.60211-10"°C; 1 €%/A =2.306 aJ)
Frequency —em™ (1 em™ =1 aJ/A/am.u=1.6973-10° cm™®)
Pressure —GPa (1 GPa = 10” aJ/A® = 10 kbar = 0.01 Mbar)
Elastic constants ~ — GPa (1 GPa = 10™ aJ/A% = 10 kbar = 0.01 Mbar)
Bulk module * —GPa (1 GPa= 10" al/A’ = 10 kbar = 0.01 Mbar)
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- LIMITATIONS

The present version has the following limits:

Atoms in the unit cell — 100, if RGM option is not used
Atoms in the unit cell — 300 if RGM option is used "
Rigid Molecules — 50

IAP terms — 100

VFF terms — 100

Valence bonds — 1000

Valence angles — 1000

DOS, ATP, TDM points — 1000

" The true limitation is the number of degrees of freedom (DF), which determines the
dimension of the dynamic matrix. Each free atom has 3 DF, whereas each rigid molecule has
6 DF. So, the exact limits is determined as 3N;+6N,,<300, where N; is the number of the free
atoms and N, is the number of the rigid molecules.

Received by Publishing Department
on August 1, 2001.
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Cwmupros M.B., Kazumupos B.10. E14-2001-159
LADY: nporpaMMa 1j1sl MOIEJIMPOBaHMs IUHAMHUKHM PCLICTKH

IMporpamma LADY no3Bosisi€T MOAEIMPOBATh Pa3IMYHbIE CBOMCTBA KPUCTANI-
JIOB B 3aBMCHUMOCTH OT aguiabaTHYecKOi MOTEHUMaIbHON (hyHKLMHU, TaKue Kak
— PAaBHOBECHYIO KPUCTAUTMYECKYIO CTPYKTYpY,

— IMHAMHMYECKHME CBOMCTBA,

— UH(paKpacHble CIEKTPhl M CIIEKTPH! KOMOMHALMOHHOTO PacCesHus,

— TepMOAWHAMHYECKHE CBOMCTBA — 3aBUCHMOCTb OT TEMIIEPATYPHl M NaBJIECHUSA
KPUCTAUIMYECKOH CTPYKTYPhl M BCEX BBILUENEPEUYUCIICHHBIX IUHAMUYECKHX
CBOMCTB.

LADY mno3Bonger UCHONb30BaTh OOJBLIMHCTBO LIMPOKO PaclpOCTPaHEHHBIX
MOTEHLIMATIBHBIX MOJENEH.

LADY aBromaruyecku NpPOBOAUT CUMMETPHMHBIN aHAIN3 KPUCTALIMYECKOU
CTPYKTYPBI U (DOHOHHBIX COCTOSHMIA.

LADY npuMeHuma [uld KPUCTALUIOB NPOH3BOJIBHOIO XHMHYECKOIO COCTaBa
U [IPOCTPAHCTBEHHOTO CTPOEHHMS.

Pa6ora BeimonHeHa B JlaGoparopuu HeHTpoHHOI (u3uku uM. U.M.®DpaHka
01503158

Coobiuenre OObeIHHEHHOTO HHCTUTYTA SAEPHBIX HccneqoBaHuid. ly6Ha, 2001

Smirnov M.B., Kazimirov V.Yu. E14-2001-159
LADY: Software for Lattice Dynamics Simulations

This program LADY is capable of simulating different crystal properties de-
pending on the adiabatic potential function such as:
— equilibrium crystal structure;
— dynamical properties — phonon states, elastic and piezoelectric constants;
— IR, Raman spectra;
— thermodynamic properties — temperature and pressure dependence
of the crystal structure and of all the above mentioned dynamical properties.

LADY incorporates many widely used potential models.

LADY accomplishes an automatic account of the symmetry for the crystal
structure and for the phonon states as well.

LADY is applicable for a crystal of arbitrary chemical and spatial constitution.

The investigation has been performed at the Frank Laboratory of Neutron
Physics, JINR.
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