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I. INTRODUCTION

Nowadays, it has been well realized that a thorough and all-round study of the neutron f—decay
conduces to gain an insight into physical gist of the semiweak processes and into the elementary
particle physics in general. That is why for the past decade a great deal of efforts has been directed
to measure with a high accuracy (better than ~1%) the main characteristics of the B—decay of
free neutrons: the lifetime 7 [1], the asymmetry factors (as neutrons are polarized) of the electron
momentum distribution A [2] and the antineutrino momentum distribution B [3], the recoil proton
distribution and the electron-antineutrino correlation coeflicient a [4], the coefficient D of triple
correlation of the electron momentum, the antineutrino momentum and the neutron spin [5].
Further experiments are believed to come to fruition before long {6].

In treating the experimental data, the task is posed to inquire into the effective 4-fermion
interaction [7-9]
e(2)7a(1 = 1°)ihu (2))

x 3 BBy ) {(1ov (@) + gwm(gP)o™a,) -

Py.0u.Ppiop

_(')agA(qz)+glp(q2)qa)75}\l"n(Pme‘T)7 q= Pn_PPv (11)

ACWF(I) =

GriVidl, -
—,)(d {

the quantities [Vual, gv, ga,... herein to be specified with the same accuracy which has been
attained in the experimental measurements. This effective Lagrangian (1.1) is generally con-
sidered as descending from the Standard Model, the nowaday elementary particle theory (see,
for instance, Ref. [8]). In the expression (1.1), ¥.(z), ¥.(z) stand for the electron (positron),
(anti)neutrino fields, and Y n{Pn,on,z), N=n,p, represent the nucleon states with the momen-
ta Py and polarizations on. The system of units h=c=1 is adapted, and +*, o are defined
by v° = 1Y% %3, o =(y#v*—v*4*)/2. G is the Fermi constant and |V,q4| is the Cabibbo-
Kobayashi-Maskawa (CKM) [10] quark-mixing matrix element. By confronting the experimental
data with the results of the appropriate calculations, the |V,q4|, gv, ga... values are to be fixed so
strictly that we should be in position to fathom the principles of the elementary particle theory.

In particular, the C A" M unitarity
WVaal® + Vi P + [Vis|* = 1 (1.2)

should be verified as strictly as possible [10].



So far as the transferred momentum ¢ is very small when compared to the nucleon mass,
lg|/ Mn~0.0005, Eq. (1.1) provides the bulk amplitude M© of the neutron S—decay with presum-
ing My—>co, neglecting the terms with gwam, gip, and replacing the functions gv{q?), ga(d®)
by their values at ¢?=0 : gv(0)=1, ga{0) [7-9]. Finiteness of the nucleon mass causes the siz-
able, about 1%, corrections to the calculated decay characteristics [11] that have been taken into
consideration in experimental data processing in Refs. [1-3].

As we strive to acquire the quantities [Vual, gv, ga,... with an accuracy better than 1%, the
electromagnetic corrections are to be allowed for in treating the neutron S—decay. Therefore the
effective Lagrangian (1.1) is to be accomplished by the interactions of electrons and nucleons with

electromagnetic field A
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where f4(q) are the nucleon clectromagnetic form-factors. These interactions give rise to the
electromagnetic corrections to the bulk amplitude M°.

If the effective Lagrangian
Lepy=Lwr + Loy + Ly (1.5)
could consistently describe the radiative 8—decay of neutrons
n—=p+te +v+7, (1.6)

the actual transition amplitude M of order a would merely be presented by the set of ordinary

Feynman diagrams originating immediately from the interactions (1.1}, (1.3), (1.4)
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where the triplex lines represent various baryonic states, the blobs depict the formfactors
f¥(q) in (1.4) and the empty circle stands for the matrix element of the interaction (1.1) with
allowance for g—dependence. So, upon straightforward unsophisticated calculating, the amplitude
M and, subsequently, the observables , A, B, a,... would directly be obtained in terms of the
quantities Gr, [Vidls gv, g4, - residing into Lwr (1.1). Then, accordingly the aim proclaimed, it
would quite natural appear that these desirable quantities should be ascertained by confronting
the experimental values of 7, 4, B, a, ... with their values calculated in the aforesaid way. But,
alas, this plain calculation shows up to be contradictory because the ultra violet (UV) divergences
(the terms multiple to In A/My, A—#00) inhere in the contributions from the one-loop diagrams
(d). (). (f) in (1.7). So far the treatment is solely based upon the Lagrangian (1.5) itself, there is
no way to cope with this failure. To deal with well-defined quantities in practical evaluating the
observables 7, A, B, a, ..., the extra UV cut-off A=My =100 GeV could be set up, supplementing
the calculation based on the local interaction (1.5), see, for instance, Refs. [12-21]. Yet, this recipe
is rather untenable, and we would never be able to repose full confidence in the results obtained
in this way. Thus, the description of the radiative decay (1.6) with the effective interaction (1.5)
is not self-contained.

Although the 4-fermion local theory is quite suflicicnt for the calculations in the lowest order,
without the radiative corrections, it is not satisfactory because of its violation of unitarity and
its nonrenormalizability, which prevents us from dealing with electroweak high order effects in a
convincing way. A stringent self-contained treatment of the neutron B—decay ought to be founded
upon the Standard Model of elementary particle physics. The Standard Model Lagrangian LM
8] embodies the nowaday knowledge of the strong and electroweak interactions of the leptons and

the quarks,
LM = BV 1 L% (1.8)

There are several review articles and books available which thoroughly describe the structure of
LEW. £ In the work presented, we pursue the way paved in Refs. [8,22-25].

In Sec. II, we concisely recapitulate the structure of the basic electroweak Lagrangian Lpw
and the respective renormalization procedure in view of the current calculation of the radiative
corrections to the neutron 3—decay in the one-loop approach, with intent to attain an accuracy

about 0.1%. By introducing the nucleon weak transition current and electromagnetic formfactors,

the needful parameterizing of the effects caused by nucleon compositeness is set forth in Sec. 1L



In Secs. IV-X, we acquire successively, term by term, the total decay amplitude of order a. In
particular, the influence of nucleon structure on the calculated radiative corrections is estimated
in Secs. VI, IX. The radiative corrections to the electron momentum distribution and to neutron
lifetime are acquired in Sec. XI. In the last Sec., we fairly well try and compare our results with
the long-known noteworthy assertions of the former investigations of the radiative corrections to
the neutron B—decay. We purposely defer this needful discussion till the final stage of the work
to have at our disposal all the desirable persuasive arguments to be offered for substantiating our
inferences. Upon realizing what is the accuracy actually attainable in the nowaday calculations,
we brief a feasible way to acquire the quantities Gg, |V.4l, gv, ga,... residing in Eq. (1.1) as

precisely as possible from appropriate experimental data processing.

II. ELECTROWEAK INTERACTIONS IN DESCRIPTION OF THE NEUTRON
B—DECAY.

The basic electrowecak Lagrangian to start with,
CEW(AL, Z WE H by e, Mz, My, My, my, £), (2.1)

is expressed amenably to Refs. [22-25] in terms of the bare physical fields and parameters.
A, Z,, Wf, H, ¢ stand for the electromagnetic, Z—boson, W*—boson, Higgs-boson and
generic fermion fields, and the quantities e=Vina, Mz, Mw, Mg, my are the unit of charge
and the masses of the Z-—boson, W —boson, Higgs-boson, and fermions, respectively; £ represents
generically the gauge parameters. Taking the line of [22-24], we choose the Feynman gauge, £ = 1.
The physical fields A,, Z,, Wf are related to the isotriplet of vector fields Wi, a=1,2,3, and to
the isosinglet vector field B, by the equations [22-25]
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Chosen e, Mzw, my as input parameters,

cw = —— sfv

M, =1-d} (2.3)

are nothing but merely shorthand notations to simplify formulae. The gauge coupling constants

are given by

g2= g1="—, (24)



and the masses of physical particles are written as
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where V is the vacuum expectation value of the Higgs field, and f; stand for the Yukawa couplings

of fermions to the Higgs field. £Z% (2.1) has been constructed in Refs. [22-24] so that the bilinear

terms, i.e. the inverse propagator terms, take eventually the simplest form:
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The propagators of {ree fields are consequently
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The fictitious photon mass m, is included in (2.6), (2.8) to treat the integrals which involve the

photon propagator D4”. It is to mention that in the ensuing calculation we shall have to deal

not only with the infinitesimal photon mass m,=A—0, but also with m,=Ms specified so as

ME<Mi<ME,.

To treat thereafter the neutron S—decay in the one-loop approach, the electroweak interactions

of lepton, quark, W—, Z—boson and electromagnetic fields are to be specified [22-25]:

l:EW =LWWZ+£IVWA+£W//+LZIJ+£Af] ,
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As usual, for leptons ¥y = ¥y, i =P, Voo =1, Qi =0, @i = =1, and in the
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case of u,d quarks iy = ¥, =u, Yi- = Pe=d, Vio =Vi, Qv =€ = 2/3, Qi- =es=
—1/3. The operator T'F increases, T~ decrcases weak isospin projection by one unite: T¥3, =
b, T, =t., T a=1tby, T ¥y=vs, T =T thg=Trp, =T¥P, =0.Inthe

interactions (2.11)-(2.16) and in the analogous expressions hercupon, the Nproducts of the field

operators
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and so on, are implied. Here f specifies a sort of fermions and r stands for other quantum numbers:
spin, isospin, their projections.

In calculating the neutron —decay amplitude in the one-loop approach, we leave out the
effects of Higgs-fermion interactions, since they are of the order of the Higgs coupling to fermions
~my/Mw [8,22-25]. Also only the first generations of leptons (e, ve) and quarks (u—, d—quarks)
come into the forthcoming consideration.

The transition amplitude M of the process (1.6), when calculated in the one-loop approach
according to (2.6)-(2.16) directly in terms of the bare fields and parameters, is UV divergent, and

renormalization is necessary. The multiplicative renormalization of the Lagrangian (2.6)-(2.16) is



performed amenably to the non-minimal on-mass-shell (OMS) renormalization scheme [22-24.8],

with the renormalization constants and renormalized quantities defined in such a way that

We = (z)2We, B, = (3)'°B,,
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we obtain

LEW = [EW 4 BV (2.21)

tree

where the expression for LZ% in terms of renormalized quantities is identical with the original one,

(2.6)-(2.16), but now it contains the renormalized physical parameters and fields. The counter

term Lagrangian
LEW(A,, Z,, WE, H, ¥y, e, Mw, Mz, my; 6208, 82l SMY 4, SmY)  (2:22)

is determined by the quantities dz15° , 621{,,;, §MZ, 7, dm? in (2.19). The linear combinations
of the field renormalization constants 52?7’8 and the coupling renormalization constants 52;”‘5 are

introduced [23,24]
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Accordingly the OMS renormalization scheme [22-25], the fine structure constant a=e?/4r
=1/137.036 (defined in the Thomson limit) is used as an expansion parameter, and all the renor-
malization constants and the renormalized quantities in Egs. (2.19)-(2.23) are fixed on the mass-
shell of gauge bosons, fermions and Higgs bosons. With this condition, the renormalized masses
are identical to the pole positions of the propagators, i.e. the physical masses. All the residues
in the diagonal propagators are normalized to 1, and the residues in the non-diagonal parts of

propagators are chosen to be equal to 0 in order to forbid mixing for on-mass-shell particles, so



as no additional renormalization of wave functions is required, besides what given by Eqs. (2.19).
Thus, the OMS renormalization scheme does preserve physical meaning of the original quantities
in the electroweak Lagrangian £EW (2.6)-(2.16).

The formulated OMS renormalization conditions [22-24] allow us to obtain explicitly 62&12‘5 ,
52,{, o OMp, ;, ém% (2.19) in terms of the unrenormalized self-energies of gauge bosons,
SWE(ME, ), £4(0), £%7(0), and fermions £f(my), and their derivatives 9Z4%W(k?)/0k?,
3%/ (p)/8 p , which are calculated in the one-loop approximation amenably to the Lagrangian

(2.6)-(2.16). In particular, the fermion self-energies are given in the usual way by the graphs

W, Z, Ay
s/ p) = ﬁ% , (2.24)

where the wavy line renders the propagators of W—, Z—bosons, D"'Z (2.7), and photons, D4
(2.8), with the fictitious mass m., which hereafter takes not only the infinitesimal value m,=A—0,
but also the value m.,=Ms specified so as ME<KMEI< M.

Upon calculating the radiative corrections with the fields, masses and coupling constants renor-
malized amenably to the OMS renormalization scheme, not only the UV divergencies occurring
in the loop expansion (of propagators as well as S—matrix elements) are absorbed in the infinite
parts of the renormalization constants, 5‘7%8’ (52,{3, 5M3V’Z, 6m§, but also the finite parts of the
radiative corrections are fixed. These lead to physically observable consequences.

The essential ingredients to obtain radiative corrections are the three-particle vertex functions.

First we are to acquire the electroweak radiative corrections to the bare evW —vertex

€ v
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Fz W = 2\/53 70(1 - 75) = W~ q ’ (225)
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in LY (2.13).
The renormalized corrected evW —vertex [ (p,, —p,,, q) is determined by the matrix element
(¢} (pes Ue)lSEWI¢U(—PV7 ~a,),W™%(q)) =

= i(27)*8(q = Py = Pe)(Ee(Pe, ) T2 (Pes —Pos 0™ *(Quis(—p1s =01)) (2.26)
of the SEW —operator
SEY = T expli / A2 LEY (2)], (2.27)

with LEW(z) given by (2.10). Here T represents ordinary time ordering, ¢,(—p,, —0,) stands for

wnt

a neutrino with the momentum —p, and the polarization —o, in an initial state, and ¢.(pe,oe)



stands for an electron with the momentum p. and the polarization o, in a final state, u., indicate
the Dirac spinors of leptons. In the transition from the initial to the final state, a W~ —boson
with the momentum q = p, 4+ p, and the polarization « is absorbed (or W+ emitted).

Pursuant to the aforecited OMS renormalization scheme [22-25], we obtain in the one-loop

order, O(a),
Pes O S “ Py, — 0
((per 00 (e —pn g™ @l —pn—0)) = 77T v 2a)

xerW
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where the last diagram represents the relevant counter term

FeuW — I-\euW(;ZwW , (229
cto o

1 1
522 = (5522 + 5021 + szl —624) (2.30)

as one can infer from Eqgs. (2.11)-(2.16), (2.19)-(2.23). Here &z7" render the renormalization of
the electron and neutrino wave functions, and the difference 8z{" — §2¥ is expressed through the
zy—transition self-energy [23,24]

“l 570y = :E%A(MW). (2.31)

W s W
8z — 8z 1
T Sw

= M%swcw
Neglecting 2ll the terms of O(m./Mzw), O(p?,/ M}, z) and presuming the fictitious photon
mass in Eq. (2.9) m,=A—0, we obtain in the one-loop order, O{a),

2
W _ _ 2 [9) A Mz 95 L E)C_VV'*'_l(A _l) 939
62 4w{_nm+nm+4 S%Vlncw+$%‘,+ 4cky sty (Mz) 2 } (2:32)

In (2.31), (2.32) and thereafter, the quantities A(M;) stand for the UV divergent singular terms
for given masses M;. Within the method of dimensional regularization (see, for instance, {8,25]),

A(M;) are known to be given as



2 M?
A(A[):T_T)-—’y—lnw.

(2.33)
where D, v, p are the space-time dimension, the Euler constant and the mass scale, respectively.
Let us behold that amenably to the old-established momentum-space cut-off, A(M;) could merely

be presented as

1 A
A(M) =5 +2ln 7, (2.34)

with the momentum-space cut-off parameter A [7-9]. 1t goes as a matter of course that neither
D. ~. p,nor A will occur in the corrected renormalized vertexes, propagators and self-energy
parts of fermions and gauge bosons. The corrected renormalized evW —vertex (2.28) results as
m 9
4

Pow =W {4 11 (2% -
4m

3 6l ~ sk
—_ W W 2
3 M + + lncw)}. (-,35)
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As seen, the renormalized corrected cvW —vertexes is multiple to the bare one, and quarks are
1ot involved in (2.35), within the applied one-loop approach. The infrared divergence, ~In Afm,
occurring in (2.35) is known to disappear out of the cventual result for B—decay probability
[7-9.26].

To acquire the neutron-proton-W—bhoson vertex function fz"w we shall hercafter have to deal
with the renormalized corrected udW —vertex % for the pure quark transition d—u+W™ in the
quark system described by the electroweak Lagrangian (2.10)-(2.16), with the fictitious photon
mass m,=Ms (M} < M3« ML) adopted. In this case, the calculation involves the “massive
photon” propagator

d*  exp(—tkz)

o oxplTE) 2.36
@n) k2 — MZ+10 (2.36)

Dl(e) = dus |

In particular, the wavy line in (2.24) renders Dis(z) (2.36). What is to emphasize is that this
subsidiary mass Ms is negligible as compared to the heavy boson mass Mw, though the nucleon
mass My is, in turn, negligible as compared with Ms.

wdW

In much the same way as in the leptonic case, the corrected renormalized vertex few s

introduced by the matrix element

(d’:(puv Uu)ISEWWd(Pd’ Ud)7 W+a(q)> =

= i(27)%8(q + pa — ) (@u(Pur 0)TEY (Pus Pas Q0 *(@)ua(pas 04)) (2.37)

to describe the transition of an initial d—quark with the momentum py and polarization ¢y into a

final u—quark with the momentum p, and polarization oy, when a W+ —boson with the momentum

10



g=p, — pa and polarization « is absorbed (or W~ emitted). The quantities uy,q indicate the Dirac
spinors of quarks. Following the above expounded OMS renormalization scheme [22-25], we

acquire from the Lagrangian (2.6)-(2.16), with m,=Ms assumed, in the one-ioop order, O(a),

(ﬂu(pm Uu)f‘g‘dy (puv Pd, ‘I)w+ Q(Q)ud(pdv Ud)) = (238)

1 Ww+<2g
u d
= PuyOu Pd,0d +

+ W
Pd,0d Pus Ou
Wt<g 5
Pd.Od PusOu “ Pd, 0d
+ + As +

RudW

3

where the wavy line with the tag As stands for the “massive photon” propagator D4* (2.36).

The first graph in (2.38) depicts the bare udW —vertex

P =Vl s — (2.39)

5
-7)
\/_
originating from £%//" (2.13), and the last one accordingly Egs. (2.19)-(2.23) represents the
8

counter term
udW l u _:_[_ d W _ e WY rudW
feaw — (252L + 5021 + 82" — 82} )T (2.40)
where 6z render the renormalization of the quark wave functions, and the difference §z}¥ — §2J¥
is given by (2.31). Omitting the terms O(p2 ,/ M z s}, O(ME/M%, ;) , we obtain the corrected
renormalized vertex
[e = e . r(w), (241)

3 6ck, — s
N(W) = {1+4——(1nﬁ+7+—“’s4w—wln(cw))}, (2.42)

multiple to the bare vertex (2.39). Of course, there occurs no infrared divergence in 2% (2.42).
So, we have acquired the renormalized corrected evW— and udW —vertices which are needed

to calculate the neutron B—decay amplitude.



[I1. TREATMENT OF NUCLEON STRUCTURE IN DESCRIBING THE NEUTRON
[B3—DECAY

Up to now, we have dealt with the pure electroweak interactions CEW (2.10)-(2.16). As the

nucleon is a complex system of strong interacting quarks, the neutron S—decay (1.6) can never

be reduced to the pure transition
d=u+e +0+7. (3.1)

We are to allow for the nucleon compositeness, such as excited states and formfactors associated
with the nucleon intrinsic structure caused by the strong quark-quark interactions. Therefore, LEW
(1.8) is to be completed by L3, to describe the transition (3.1) in a system of strong interacting

str

quarks,
Lindw) = L3 () + L3(a) - (3:2)

Ignored the strong guark-quark interactions L% (z), the baryon is a free quark system described

(in terms of quark occupation numbers) by the Heisenberg wave function &} 5(Pg,0p) with the
given total momentum Py, and the spin o and polarization og; indicated as og. So far as

interactions vanish at infinity,
Lint(z) — 0, when % — Foo, (3.3)

the baryon wave function in the interaction representation is written in the ordinary form:

@%(Pp,05,2°) = Suur(z°, Foo0)O5(Pp, 05, Fo0) = Sur(z®, Fo0)®3s(PB,058) (3.4)
Sur(2® —00) = T exp(i / dzo/dxﬁii’r(ﬂﬂ)% S(t,t') - S(t',te) = S(t, o}

The operator

Sur(22,29) = T exp(i / dz® / dx L%, () (3.5)

Ty

transforms a state of the quark system at a time-point 29 to a state at a time-point 9 :
&% (Pp, 08,7y = Sst,(avg,x?)(l)qB(PB,aB,:c?). (3.6)

The transition amplitude

12



Py
—p,

M= Pe (37)
P, P,
to describe the neutron S—decay (1.6) is determined by the matrix element of Sins
M-i(20) (P — Py = pe —pv — Py) =
<¢g:(PPv Jp)’ 45:(1’6’ o—e), A(P‘r)}sinth)gn(Pm Tn), u(=ps, _ae» s (3~8)
Sni=Sueloo. —c0) = Texp(i [ deLinda)) = Texp(i [ d'alE (o) + L0 ()]). (39)

For now, there sees no option, but to parameterize the effects of strong interactions in treating
the neutron B—decay. We do not intend neither to specify an actual form of L¥}(z), nor to
procure an explicit expression of the baryon wave function ®%(Pp,0p) in (3.4)-(3.9), but we posit

an appropriate parameterization of matrix elements of the electroweak interactions LEW (2.10)-

9.16) between the baryon wave functions ®%( Py, og). In this respect, by introducing the ordinar,
Y B 1% g Y

nucleon weak transition current
TEk) = gv (k) + gwm(K)o™ &, — (v7ga(k?) + aip(k)E ), (3.10)
the matrix clement of £/ (2.13)

/\EZW(’»‘):/d"y(@Z*(Pmop)Iz/-)q(y)Fidw(k)TM)q(y)W*"(y)lﬁ(f’mGn)»Wj(k)), (3.11)
k=P, - P,

is rewritten in terms of the nucleon field operators,

Un(y)= 3 (UN(PMUN)GN(PNvGN)eXP[—iPNy]+

Prnon

UN(—PN,—UN)b;](PN,O'N)eXp[iPNyD 5 (3.12)

and the nucleon wave functions @nN,p( P, ,,0n ) describing the single-nucleon states with the given

Prp,Onyp. What results is

ASZW(’C)=/d"y(@,',”(Pp»ffp)I‘T’N(y)FZ”W(k)Tﬁ\I’N(y)W‘*X(y)l‘PnN(Pmon),W;L(k)>=
= (27)*8(Pn — Py + K)Up(Pp, o) 057" (K) TR Un(Ppy 0 )l (K),  (3.13)

wt
szW(k)= éIVud| jnpn(k)= pin

, 2\/55“’ Ta»

where

, (3.14)
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the operator T% transforms the neutron into the proton, Uy, indicate the Dirac spinors of nucle-

ns. So, the matrix element Ag”w(k), originally written in terms of the quark states, results to
be expressed through the nucleon states and the electroweak formfactors gv, ga, gwm, gip-
Hereafter we shall also have to deal with the general case of wealk transitions between the single-
baryonic states ®B(P,,0,) including, besides the neutron and proton, various excited states of the
nucleon. Alike Egs. (3.13), (3.14), the matrix elements to describe these processes are written in

terms of the baryonic field operators U5(z) and the appropriate generalized transition currents
Aget = /d"y(Q?“L(Pr»Ur)l@r(y)FQSW(k)TE‘I’s(y)VW\(y)l‘bf’(Ps»Gs)aW('f(k»’ (3.15)

where

W+

¢ Vidl r s
9\/—5 ——Trsalk) = 7. (3.16)

and T3 increases baryon charge by one unite.

I () =

In much the same way, the matrix clement of £499 (2.16) transforms as follows

A

[ a3 (Po om0 P o) A7) = 0
= —e(2m)'5(Pg: — Pg — k)<UB(PB,og)ffg'(k)UB,(PBr,ogl)) A°(k), (3.17)

where the formfactors fBP'(k) to describe the clectromagnetic transitions of baryons B'— B are

of the usual form [7-9]
FIN(R) = fYN () va + f2 N (R)h 0as (3.18)

in the case of neutron and proton (N=n, p) interactions with electromagnetic field A%, At the mo-
mentum transferred £2<SMy, the quantity gwas is given through the nucleon anomalous magnetic

moments,

Hn = Hp 3.7

2 -, 3.19
gwm R 5ar A (3.19)
the assessment

M galk?) | 2Myga(0) _ 894(0)

2
ar)~ =5 m2—m? | 2M, (3.20)

is appropriate, and the estimations

2 2 2
R N PP (1.2 1.7y —m, nn_ nn 1.2 1.93 m, 1
P > g A= (—Wp)k?_mg, 0, fIr(k) = (—QMR)——kz_mi (3.21)
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hold true within the vector-dominant model (see, for instance, Refs. [7-9]). Here m,, m, are
conceived to be of the order of the 7— and p—meson masses. Evidently, at k*«M%, Egs. (3.10),
(3.18) are reduced to

TE0) =" = 1g47°, (3.22)
rePw(0) = ;\/%%(1 —g4(017"), (3.23)
20} = va, f(0) =0, (3.24)

and the nucleon is treated as being a point-like particle, except for the residence of g4 in the

nucleon weak transition current (3.22).

IV. TRANSITION AMPLITUDE.

As dictated by Loy (3.2), the transition amplitude M (3.7)-(3.9) is represented in the one-loop

order, Ofa), by the set of diagrams

e, 0 ¢ v — e v e v
1 %W t 2 + 3 +
Pp,dp T Pm”n n

(4.1)

O

with the contents heretofore given by (2.10)-(2.16), (2.24), (3.23), (2.28), {2.38), (3.14) (3.16)

and also currently explicated hereafter, as far as used. At the lowest order in £EV (2.10)-(2.16),
that is without radiative corrections, the uncorrected Born amplitude M® presented by the first

graph in (4.1) is determined by
MO i(27)*8(Py = Py — pe — pu) = (2\[ — ? ud|/ /d4$x
X(82 (pes 0Bl (1 = 7 >wu<x>i¢y<—pu,—ou>><i>k2f—% x (42)

X /d4ye_ik(r-y)(®g:(Pp7UP)IT{d;q(y)"/ﬁ(l - )T+'¢’q Sstr}lq)On (Pryon))s



where the strong interactions intrude via Sotr=Ssr (00, —00) (3.5). With allowance for the relations
St = Sorr(00,5°)8ur (1%, —00),  OX(Pr,ow, ¥°) = Setr (y°, —00)®on PN+ ON) 5 (4.3)
the last integral in (4.2) is reduced as follows

/d"ye"ky(‘bi’):(Pp, 7)Sutr (00, 5% [Ba (9)7P (1 = 7T (1) Sutr (y°, —00) @G Pry ) =
]dqyeiky(q);+<vaap)w;q(y)')’ﬂ(l - 75)T;¢q(y)|q)?1(Pm0n)> . (44)

Applying to the expressions (3.10)-(3.14), the Born amplitude proves to be

M= Te(Pes UC)FZVWUV(-PV’ —~a,)X

x /d4y€"”y<¢2+(1’mOp)li'u(y) T5™ (q) ¥a(y)|BLUPay 0a)) - Dapla) =

= U (pe, 0 )F:M’“v(_pw -0,)" UP(PP»UP)FZPW((I)UH(Pman) . Dm(q) ) (4.5)
Iwz/VV — € n 1 — 5 , anW — ‘/u € a ,
a 2\/,25”/'7 ( 7) o ((I) I d[fZ\/ZSWJ"P(q)

g=FP.—Po—p.—p.
As @ K MI M, the quantities IW(q), Jg(q) are replaced by (3.23), (3.22), and

w _ Gop — —Gop
Dyglq) = oML My (4.6)

With allowance for the radiative corrections, the bare, uncorrected vertexes I'#% . T7P¥(q)
and W —propagator D¥;(¢) in M° (4.5}, depicted by the point, blob and thin wavy line in the graph
1 in Eq. (4.1), will give place to the corrected renormalized quantities fg"“’ R f‘ZPW(q) , D(%(q),
what counts is that the terms presented by the graphs 2,3.4 emerge in M (4.1) in the one-loop
order, O(a); [=% | [ (q), Dc‘:‘;(q) are depicted by the shaded circle, the shaded circle with
heavy core, and the heavy wavy line in the graphs 2,3, 4, respectively.

The terms presented by the graphs 5,6,7,8 describe the real y—radiation, and the graphs of
the type 9, usually called the “box-diagrams”, render generically all the irreducible four-particle
processes.

The contribution of the graph 2 is merely acquired from (4.5) by replacement of TeW in (4.5)
by I'e% (2.28), (2.35).

The corrected renormalized vertex "% in the graph 3 in (4.1) describes the n—p transi-
tion by absorbing a W+(q) boson with the polarization « and the momentum ¢ (or emitting
W=2(q)). The contribution of the graph 3 originates from (4.5) by replacing I‘Z”W=>l:",t,p:v. So,

the calculation of f‘ZPW(q) is in order.
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V. THE RADIATIVE CORRECTIONS TO THE pnW-VERTEX WITHOUT
INVOLVING STRONG QUARK-QUARK INTERACTIONS.

In the third order in the quark part of LE¥ (2.10), the vertex W (g) is defined by the matrix

element which involves besides the electroweak interactions, L2 LWes, LA LEWW | LAWW

(2.11)-(2.16), the strong quark-quark interactions L3 as well, via Sgr =Sar(00, —00) (3.5)

§2n)8(Pa = Py + @) (Op P 0) T2 (P, Py, qJw* “(@)Un{ Pryon)) = 055" () +
(=i) [ day [ d%es [ (@8] (B o) IT{ (€7 ()£ (@) £ (z3)
‘Cqu(ml)L:qu(TﬁLZWW( )+£qu(f£ ),CAqq(I )EAWW(J‘;;)

(5.1)

+ o+

L0 ) L2092 L27 (r3) + LV (@) LA (22) LA (23)) - Seir } @6 Pay o), Wi (9)) =

= A (q) + AV (g) + ATV (q) + AT () + AL )+ AT M)

The processes of different kinds contribute to f";”W(Pm Poyq) (3.1).

All the terms but last in the integrand in (5.1) prove to incorporate the propagators of heavy
gauge bosons 1)}:";2 (2.7). So, in the r.hs. of (5.1), AWWW  AWWZ - AWAW - AWZZ render the
processes where the quark-quark clectroweak interactions are due to the heavy gauge bosons ex-
change that corresponds to large momenta transferred, g?~M2Z > M}, and thercfore the short-
range, ~1/Mwz, quark-quark clectroweak interactions cause thesc processes. By emitting or
absorbing a virtual heavy gauge boson, large momenta ¢?~M%, 7 is transferred to the quarks
constituting the nucleon. As quark momenta inside the nucleon are relatively small, ¢2SM¥,
quarks possess large momenta, q2~M%'W>>M,%,, in the intermediate states between emission and
absorption of heavy gauge bosons in the vertexes £W9(z,), L%9(z;)in (5.1). What is the under-
lying inherent principle of the Standard Model to emphasize at this very stage is that the strong
quark-quark interactions die out when quarks possess the large momenta ¢%3>MF%. Consequently,
given the fact that quarks have got such a large momenta, the strong quark-quark interactions die
out, i.e. £¥ vanishes, in these intermediate states, and we deal with free quarks [8,9,22-25]. In
this respect, on rewriting {with allowance for Eqgs. (2.11)-(2.16), (3.4)-(3.6), (4.3)) the quantities

AWYWZ  AWAW iy the form

A¥WZ(q) /d"zlfd“h/d“zg (B o)IT{(@lz) Y " (20)T; (1)) Sur (25, 38) %
(G2 P27 (2,)q(a)) T (2g) W X(23) } 101 (Pry 0n), Wi (4))- DFa (21 — 2)- Dl (20 — 22), (5:2)
Ar’AW /d"xl /d412/d4z3 ‘I>q+(Pp,op 17{ zy) FW‘”(zl)T;q(zx))Ss,,(:c?,xg)x
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(§(2)eqr q(z2)) T A" (2z3)W**(z3) }[q> (Pay0a), WiH(q)) Dis(z1 — 23)-DYf (23 — 2}, (5.3)

we presume S, (20, 29)=1 herein, so far as L% (z)}=0 at z9<2%<zJ in (3.5). Then, without
involving the strong quark-quark interactions, the sum AYWEZ L AWAW transforms to the matrix
element of the T—product of quark field operators presented by the diagrams 2 and 3 in (2.38)

between the neutron and proton wave functions (3.4),

AVYE Q)+ AV (g) =

= i [ d e @ (B0 () T2 ()W X)) 04 Pra) W @) TOVZA) . (54)
Here, the bare vertex I'*** is given by (2.39) and
MV ZA)=20{ (1 2eushy) + 1+ 2eush (A(Mz) = §>+<eu — e A(Mw) — )}

+%<4(eu —eq)+ (4 + 6— In cw)[ i/v + (eqg — eu)sfv]) , (5.5)

accordingly a direct evaluation of the contribution from the diagrams 2 and 3 in (2.38). With

making use of Egs. (3.10)-(3.14), (3.22), (3.23), the expression (5.4) results as

AV (q)+ A (q) =

=i(2n)8(P, — P, + q)(Up(Pp,an)FZ"W(q)w““’(q)Un(Pn,an))I‘(WZA). (5.6)

Certainly, FZPW(O) (3.23) resides herein at ¢*<«< M%.

Recalling Egs. (2.19)-(2.24), we acquire in much the same way

AW (q) = i/d“‘ye"‘"’@’;’)*(x"p,op)lzﬁu(y) TeY WHX(y) da(y) | @4 Pa, 0n), Wi (@))%
x (821 — 623 + %&g(MW) + %5:Z(MW)) =
12748 P — Py + 9) (T Py 0) T2 ()0 (@)Un( Pay 7))

x (82} - 62" + %622(MW) + %62Z(Mw)) , (8.7)

where the difference 82}V — 8z} is given by (2.31), and the quantities

SasE(Mw) = 3622 (Mw) = 1o (A(Mw) - ok (5.8)

specify renormalization of the u—, d—quark wave functions caused by the quark self-energies (2.24)

with a virtual W—boson.
Amenably to Egs. (3.6), (4.3), (2.19)-(2.24), the quantity AWZZ ig presented likewise AWWZ,
AWAW  AWWW (5 9)-(5.8) in the form



A3 (q) = — [dtar [ dies [ d'aa( @ (B ) T{ (@z) 20 (22)q(22)) Sur (a5 20)
(@)D ()W ()T (21)a(e0))Sur (2, 38) X

x(25) 029 (23)q(23) }|@%(Pay o), Wi (9)) DZpla2 — 2a),  (59)
where we can presume the strong quark-quark interactions die out in the intermediate states,
Ssi'(x(ll$ Ig)_—-Ssir(x?’ Ig)‘_‘l )

alike in Egs. (5.2), (5.3). Then, in much the same way as AWWZ  AWAW - AWWW have trans-

formed to (5.4), (5.6), (5.7}, the quantity AW?#Z (5.9) transforms as follows

A ) = i/d‘yC“”(@"p*(Pp,ap)llﬁu(y) P WX (y) $a(y)| @4 Pay 0a), W () X
«{r(W2z)+ %6:Z(Mz) + %J:Z(MZ)} -
i(2m)5(Po = Py + ) (0p( Py o) T2 (@)wd (@)Un(Pr ) %
<{r(W2z)+ %54(1\42) + %5:{(Mz)}, (5.10)
where the value of T(W Z) is presented by the diagram 4 in (2.38) what counts is
N(WZz) = —%5;7[1 +25% (€4 — e4) — deacusty] (A(Mz) — %) , (5.11)
SWtW

and, amenably to Eqs. (2.19)-(2.23), the renormalization constants of the u—,d—quark wave

functions
LostMyy = =211+ 2eus? (A(Mz) - l) (5.12)
2k 4m 8y sty v 2/ '
Loomy = 2L 2y2 _L
S8 (Mz) = - e (1~ 2e.s%)2(A(Mz) 2) (5.13)

are caused by the self-energies (2.24) with a virtual Z—boson.
For the consistent treatment of the issue of strong interactions, we rewrite the last term AWAA
in (5.1) as follows
AWAL _ £WAA L \WAA
= —62/d4z, /d4I2/d423<¢g:(Pp,0'p)lT{ (ﬁwqq(zl)(q(xg)eq'y”q(zg) X
(Dﬁ;(m — g+ DAz, - z3)> X (5.14)

d(22)e7"q(23)) - Sur }|OBa( Pay o), WEH (D))

the propagator D4*(z; — z3) (2.8) of a virtual photon is split herein into two parts



d'k ( 1 . —M2 )
(2m)* \k? — MZ+10 ' (K — A2 +10)(k2 — MZ + 10)
= Dy (w2 ~ z3) + Df(22 — w3),

DA/\( 2—I3) guu/ e~ ikler—as) = (5.15)

with introducing the subsidiary matching parameter Ms, chosen so that M2 < M2 M}, [27,28).
The quantity D4*(z), involving only the integration over large momenta k22 M2, is natural to be
treated as the propagator of a “massive photon” with the mass M.

The corrected renormalized vertex fg”w in Eq. (5.1) is written as the sum
P = [reW L 727 (5.16)
where the quantities I7% and ™% are determined as follows

i(27)'8(Pa = Py + ) (Op( P, ) IT07 (@)w* A(q)Un(Prv ) =
AnDW +A;;VWZ_*_AWAW AE/WW +A?’ZZ+A:VﬁAA, (517)

{(27)'8(Po = Py + q) (Un( Py o) ET5Y (@) P (q)Un( Pr,a)) = ALGAA. (5.18)

So, %W is due to the electroweak quark-quark interactions mediated by W—, Z—bosons and
“massive photons”, whereas [T is due to “soft photons”. The quantity A¥44 in (5.14),
which involves the propagator D#* of a “massive photon” (2.36), (5.15), describes the pro-
cesses where quarks interact exchanging virtual “massive photons”. Consequently, the large
momenta, k~MZ3»M?, are transferred to the quark system by the electromagnetic interac-
tions thereby. Therefore quarks possess the large momenta in the intermediate states be-
tween emission and absorption of a “massive photon”, alike in the processes described by
AWWZ - AWAW - AWWW AWZZ  yhere the quark-quark electroweak interactions are mediated
by W—, Z—bosons. In this respect, the strong quark-quark interactions in these intermediate

states can be ignored in treating A¥44. Consequently, AW44 in (5.14) can be written in much

the same way as AWZZ (5.9) in the form
AWAA /d411/d412/d4z3 (Pq+ 7UP)IT{(q(IZ)eq'qu(IZ))Ss!r(xgﬂz(l)) x
x (@)D (2) W (2)) T (21)q(21)) Seer (23, 23) x

x (a(23)eq199(23)) }OL(Pr, 0), Wi () Dfgl(az — za), (5.19)

with accepting S(z,25)=5(z?,25)=1 (3.5) herein. So, we are again to treat, alike in Eqgs. (5.4),
(5.10), (5.7), the matrix element of the T—product of the pure quark field operators presented

by the graphs 5 in the expression {2.38) between the neutron and proton wave functions (3.4).
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In much the same way as in calculating A¥%Z AWWW  AWWZ - AWAW (5.4 (5.7), (5.10), we
acquire
ASA4(q) = i [ dtye (@1 (P o) luly) T W ay)| @3 Py ). WE (@) ¢
. 1., 1
<{T(WAS) + S0eH(Ms) + §5zg(M5)} =

{27 )'8( P, — By = @) (Dl Por o) T2 () (@) Un(Pay 00))

1
<{T(WAS) + 26:5(Ms) + %5:{(1\,«13)}. (5.20)
Here
U4 LNy 1
T(WAS) = Ecued(A(Mg) - 5), (5.21)
and
L (hs) + Lot (M) = — S (A ar) - L 5.22
0= (Ms) + 5851 (Ms) = ——1_77—2—( (Ms) - 5) (5.22)

provides the renormalization (2.19) of the u—, d—quark wave functions caused by the w—,d—quark
self-energics (2.24) where the wavy line stands for the “massive photon” propagator D4* (2.36),
(5.15).

Summarizing the results (5.6), (5.7), (5.10), (5.20), the quantity [% in Egs. (5.16), (5.17)

proves to be
froW =% . 1%, (5.23)

where TW and ™" are given by (2.42) and (3.14), (3.23), (3.22), (4.5).

VI. EFFECT OF STRONG INTERACTIONS ON THE npW-VERTEX.

As only the momenta k*2SM? contribute into D4 (5.15), only these comparatively small
momenta are transformed to quarks by emitting or absorbing virtual photons in the processes
described by the quantity AJY44 in (5.1), (5.14), (5.18). Possessing the comparatively small
momenta, k*SM?, quarks can be considered to constitute the baryon in the intermediate state
between emitting and absorbing a virtual “soft photon”. Then, with allowance for Egs. (3.6),

(4.3). A¥44 can be transformed as follows
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AVAA () = —e [ o / diz, / daa(®8* Py, 0,) T (alz2)eqmeq(22)) Sur (25, 29) %
x (qe) T (2 WA (20) T (21) (1)) Sr (25, 23)
* (q(zs)eq109(23)) }|O4(Pry 00), Wik (@) Dflaz —23) = (6.1)
— ¢ /d“m/d"z?/d“:chT{ (®2*(Pyy )l (a(w2)ervea(22) ) |02 Pro ) X
(03 (P, 0,)| (a2 ) T (2 )W* #(21) T} (21)g(21)) |93 Pey o), WiH(9)) x
X(@* (P, o)) (a(z)eq1pa(23)) |85 (Prr 00)) } Dg(22 = 25)

X

Here the sum runs over the intermediate quark states with relatively small momenta Pz,f,Mg
described by the baryonic wave functions ®¢ (Pr,0r,) (3.4). Of course, the proton and neutron
intermediate states are included therein too. The matrix elements of the 7 —products of quark
operators between @9 (P, ,,0.,) (3.4) are defined by Eqs. (3.11)-(3.18) in terms of the matrix
clements of the T—products of the baryon field operators ¥, between the baryon wave functions
@B, with the baryon formfactors rE%, o2 (3.14), (3.16), (3.17) introduced thereby. Defined

ordinarily the baryon ficld propagator
. = 1 —pla—
Gl = 9} = —i{ON, (D)D) = 6 s [ 490 (), (6.2

and the baryon self-energy (2.24) with the virtual “soft photon” (5.15)

In "N(k)G,(Py — k) =
r r . __M2gaB _
= Z/ i(2m)t GRS )f"N('”)(kz -3y z‘o)(slc2 —MZ+i0) (63)
Al
N . N
= fNr gr er s

the corrected renormalized vertex 77" in Eq. (5.18) proves to be

1 1
I7W = T (WAL + TP . (562" + 562" =

Tnp Tnp 2827 ) (6.4)

where the first graph represents the gquantity
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Up(Py,05) (WAI)U (Pa,on)wt %(q) =

3|‘/ud| pr A
{)\/_SW s Tp) Z/ f G (P, — k) x
X TANTE),,Gs(Pn = K} (K )DAl(k)Un(anoﬂ)w:(q)v (6.5)

and the finite renormalization constants %52””’ of the neutron and proton wave functions come
from

OEnm(P) |
8/P P=My -

52N = = (6.6)

In {6.3)-(6.5), the wavy lines tagged by Al represent the “soft photon” propagator DA (5.15),
the triplex lines generically render various baryonic states ( including the nucleon), and the blobs
stand for the N By—, BNy—, BB'v—, BB'W —vertices with the appropriate formfactors (3.14)-
(3.21). Apparently. as only the integration over the momenta k*SME contributes to (6.3)-(6.6),
no UV divergence emerges therein.

The prevailing part of {6.3)-(6.6) is obtained by retaining in the sum over r,s only the single

nucleon intermediate states r,s = N with the propagator

P+ My

iy PEMy
ROl v

(6.7)

and also presumning (3.22)-(3.24). Then, the quantity I's(W Al) (6.5) evidently vanishes, as f**=0

is utilized, and we arrive at
an 1 ? 1 n npW
e 5550 + 22‘550 o, {6.8)

with the finite renormalization constants (6.6) of the neutron and proton wave functions

Ms 9 M
2P = 9 In —% 7 —0. 6.9
LET 4(1nMp+2 4 /\), §z5 =0 (6.9)

To estimate the effect of nucleon structure on §z~, we first retain only the single nucleon
intermediate state with Gy (6.7) in (6.3)-(6.6), yet specify the nucleon formfactors into (6.3)-
(6.6) by Egs. (3.18), (3.21) which are plausible at the momenta k? transferred by a virtual “soft

photon”. Then, after a due calculation, laborious but rather plain, we arrive at the estimation

r 0 o 1.79% rd

57 = _%{—zln%ﬂug Jr) 455 (g =5 1(0)—10«)-551@)}, (6.10)
RONCRE L g7 S TR G e
52" = o= {1(0) = I(r) = 5 5.1 )}, (611

where r=m, /M, is to set, and
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1) = [ GG ) e =24 57,

I(r) = /01 @—Jr%-(xl—_;)—)[r‘(x +6) + 2r%(32% — 6z — 8) — 8(z — 3)].

For the intermediate states in (6.3) with r#N, the quantities f27, fi* describe the transitions
between these nucleon excited states r and the proton and neutron states p,n , respectively. These
intermediate states are naturally to be treated as the well-known excited states of the proton,
such as the Asz—isobar, Roper-resonance, and so on. To realize the effect of the exited states on
52~ (6.6), {6.3), we consider the contribution into (6.6) due to an intermediate As;—isobar, the
simplest proton excited state, the internal structure of which is much the same as the structure
of the nucleon ground state. In the nucleon as well as in the Ajz—resonance, all three quarks
occupy the state 182 Thercfore, the amplitude f2%% in (6.3), (6.6) does not differ substantially
from PP, Also along these lines, the very distinction of Ga,, (6.2) from G, (6.7), which is of vital
importance for the current estimation, actually results in replacing M,— Ma ( see, for instance,
Refs. [30]). What is of crucial value in evaluating (6.3), (6.6) with »#N is that

M2 - M? 1
M2 —ME~ M2, d= _AMA—Pzg (6.12)
Then, by assuming the formfactors {3.22)-(3.24), the direct estimation of the contribution to (6.6)

from the term with the As; intermediate state gives

624 = — oo {Ja(Ms/Ma) = Ja(0)},  (6:13)

172

1 dz 2 2
JA(T)=/0 TR T e —9z) =¥ = 22(1 — %)} .

The relations M23>M%, m2, M} — M}, were utilized in obtaining {6.9)-(6.11), (6.13). Let us behold
that 625, 83" are free of the infrared divergencies, unlike §zP, 627,
Now it is only a matter of straightforward numerical evaluation to become convinced that the

difference
(625 + 837 + 63™) — 825 S 0.1- 828 (6.14)

constitutes less than ~10% to the main quantity dz§ (6.9).

Except for the Azz—isobar, the structure of the nucleon excited states and the structure of the
ground state of the nucleon are disparate. Therefore, the values of 2" with r#p, Ass are anyway
substantially smaller than the f?” value. Consequently, the contribution of these excited states

into (6.3), (6.6) is still far smaller than (6.13).
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The quantity (6.5) is exclusively caused by the small formfactors f**, f°" (3.17), (3.21). It
incorporates also two baryonic intermediate states. In this respect, the contribution of (6.5) into
(6.4) is realized to be still far smaller than (6.10), (6.11), (6.13). All the more so, we may abandon
the contribution of simultaneous allowance for the nucleon formfactors and the nucleon excited
states.

Thus, with an accuracy better than ~10%, Eq. (6.8) holds true, the quantity (6.5) is negligible,
and the renormalization constants of the neutron and proton wave functions are given by (6.9). As
the whole radiative corrections constitute a few per cent to the uncorrected f—decay probability,
we commit an error S0.1% but never more, making use of (6.8), (6.9) in the further calculations.

Finally, adding (5.23) and {6.8), the corrected renormalized npW —vertex proves (with the

aforesaid accuracy) to be multiple to the uncorrected vertex {3.14):

szW(Pmvaq) = f‘?lf)xw(Pumq) + ﬁrgw(anvaQ) =

, M, A9 3 6 —s
i i 20 Po_9p gy S W WY . 15
o (”){ + (0 My St Tit gt T n(ew)) (6.15)

This quantity is just what is depicted by the shaded circle with heavy core in the graph 3 in the

amplitude (4.1).

VII. THE RADIATIVE CORRECTIONS TO THE W-BOSON PROPAGATOR.

Next, the propagator D% (q) (2.7) of the bare W —boson in (4.5) gives place to the corrected
regularized W—boson propagator D% (g) [22-25,31] ,

1 A 1
oz — = DY) ———— ———— =
S VR, (@) & — M+ 5(?)
1 1
& (—W)—— for <ML, (7.1)
w

1—%‘3}’

as represented by the graph 4 in the expression M (4.1} where the heavy wavy line stands for
DY. The renormalized W —boson self-energy 5(0) is rather not amenable to a precise reliable
evaluation because it includes light quarks contributions in the momentum region where strong
interaction effects cannot be ignored [24]. Fortunately, one can acquire from the analysis of the

pu—meson decay [24,31] that

Gu__oml48) o _11663.107°GeV™?, 4, ~ 0.006, . (7.2)

V2 oM (1- U
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The estimation 5% (0)/M2,20.066 was ascertained in Refs. {23,24].
It is expedient to redefine Mo as the sum of the amplitudes 1 and 4 in expression M (4.1},

writing hereupon My as

MO = (2 ;SW> DW(Q)“@dI("ZE(PE)VrJ(I - 75)%(—1%)) ' (Up(Pp)'Ya(l - W’SQA)Un(Pn)) . (73)

Accordingly (7.1), (7.2), the coefficient in (7.3) reads

e V- G, e _
(2 25W> DW(Q)=—7§(1-5U)=—7§~ (7.4)

The contributions from all the diagrams in (4.1) but 4 are themselves of the order a/4w, even

without allowance for replacing DY D% Therefore, in treating the a-order radiative corrections

caused by the processes depicted by these graphs, it stands to reason to set

-]
s

- -
Wosw ) My V2’ .

which is put to use henceforward.

VIII. THE RADIATIVE CORRECTIONS DUE TO THE IRREDUCIBLE
npev-VERTEX (THE “BOX DIAGRAMS”).

By now, we have considered the terms in M (4.1) which stem from the Born amplitude Mg
(4.5) by replacing the vertices rew | W and the W—boson propagator DW with the corrected
renormalized quantities [‘g””’ R ngW , D". Besides these terms, which are due to the aforesaid
modification of the separate blocks in the graph 1 {4.1), the total amplitude M (3.7), (3.8)
incorporates also the part represented by the graphs 9 in (4.1) which are of the second order in

both the lepton and quark electroweak interactions (2.13)-(2.16). The matrix element
i(277)46(Pn - Pp — Pe — pu)MZ’Y =
[dtz: [ dtes [ dtas [[atei@l) (Pruop): 6l (pe,o0)

T{ (L7080 £ 0 (20) £V (23) L7 (22) + L7007 ()£ () L7 () +

L4992, ) LA (23) LV (23) £V (1) ~Sszr}lé‘én(l’man),ax(—pm-cn)) =
= APV 4 AV (8.1)

defines this part of the amplitude My, usually referred to as the contribution from the “box-

type” diagrams. It comprises the terms of different nature, the strong quark-quark interactions L%,
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entangled herein through S =8 (00, —00}. The second term, A% in r.hs. of (8.1) involves the
interactions of quarks £4% (2.15) and electrons £4¢ (2.16) with electromagnetic field. Inasmuch
as AW describes the processes in which a photon is exchanged between an electron and a quark,
the expression of A" includes the virtual photon propagator D4* (2.8). Then, by disparting
D into the “massive” D4 and “soft” D4 photon propagators, pursuant to Eq. (5.15), A% is
split into two parts corresponding to large, k2 M2, and comparatively small, k&2SM2, momenta
transferred from leptons to quarks by a virtual photon, much in the same way as in the case of
Eq. (5.14). So, with allowance for Eqs. (3.4}, {3.6), (4.3), the quantity A*" in (8.1) is written in

the form
A = [dtay [die [ dia [ dod@3 (Proy), ¢ (pevc.)]
’r{f«cﬁqmw%wq(m>)sm<x?,z;’)((z'u(rz)r:”mz)T:wuz))x (8.2)
x(zzw-s)r;"‘”mw»u(m))(—c)(zzye(u)vﬁz/vam))}
01(Pus 2 ul s =00 (D = 20)+ Dl = 20| Dl = ) = A 4 AP,

In (8.1}, the term AZ" including the clectroweak intcractions of heavy bosons with quarks
and leptons, £Z99, L9, LZec L2 [Wev s due to the Z—boson exchange between quarks and
leptons. It contains the propagators DW'Z (2.7} of virtual heavy gauge bosons. This case evidently
corresponds to the large momenta, ¢*2 M2 > M? , transferred from leptons to quarks. Recalling

Egs. (3.4), (3.6), (4.3), we find out
AZW = /d“ﬁl/d“.’l?zfdqita/d414<q)qp+(vaUp)»¢:(p6708)1
T{(1/3q(11)I‘fq"(xl)fl’q(wl))sszr(x?» ) (Bul@2) D™ (22)T] Palz2)) % (8.3)

)T (2 B )T ) + (ol il
|94 Py 0n), $u(—Prs —0,)) DZg( a1 — 24) DYz — 23) -
The amplitude M., is written as the sum
Moy = Moy + Moy, (8.4)
where the quantities My, Mag, are defined as follows

{2n)58( Py = Py — pe — pu)Mas = A2V 4 AATS (8.5)
{(27)46( Py — P, — pe — pu) Moy = AV (8.6)
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Quark momenta inside the nucleon are known to be relatively small, k*SM?. Large momenta,
EZME>M?, K22 M3 > M), are transferred by virtual gauge bosons and “massive” photons
to the quark system in the processes described by AZW | A4Ws (8.5). Therefore, quarks have got
the large momenta k%> M in the intermediate states between emission and absorption of gauge
bosons and “massive” photons at the time-points 29 and zJ in such processes. At this point,
we invoke again the Standard Model assumption that the strong quark-quark interactions L3
vanish provided quarks possess the momenta k*>»>M}. Consequently, the operator Sor(29,29)

(3.5) in AZ¥, A#W* turns out to be unit, Syr(a%,23)=1. Then, by straightforward calculating

AZW | AAWs (82), (8.3), we obtain (8.5)
AZW =+ /\Aws = i(‘27r)“‘A/lg.,s (S(P«,. - Pp — Pe — pu) =
/d 2(®1H(Ppoay), oi(ytt,ot)l(d: (@) {z) T py(x) )|<1> (Pay02)y bu(—pus—0u)) s (8.7)

with the operator (1/7',,(.1')9'73,,(2') [revud dvq(r)d»,,(at)) to describe the pure clectroweak transitions of

leptons and quarks presented by the set of diagrams
¢

€ v € € v
Pe> O —Pvs 0
As
Pus Fu Pds Td
u d u d
v

u

(8.8)

e v v e v v
W/
u d d U v g

where, in particular, the wavy line with the tag As depicts the “massive photon” propaga-
tor D4 (2.36), (5.15). Recalling Egs. (4.2}, (4.5), (4.6), (3.14), (3.23), we eventually find the

amplitude

5¢} M,
Maoys = —MO%{(I + —:47“/) In(cw) —6ln WW‘} (8.9)

)

being multiple to the Born amplitude Mo (4.5). 1t is to emphasize once again the relations

myaMy, Ma—My<My, |pP<Mb, f=e,v,u,d, IPNP<My, My<ME<My,

M,—M, M,—-M, Ms ., My
TPt P, —=Iln—~ .10
M,, M, % My Ms 0 (8.10)

were used in obtaining (8.7)-(8.9), as well as far and wide over the work.
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The second term in (8.9) is due to the contributions of the first and second diagrams in (8.8).
In view of the discussion given in the last section, it is to take cognizance that if we had a neutral
initial particle instead of a d—quark and a final particle with the charge +1 instead of an u—quark,
the contribution of the second diagram in (8.8) would apparently vanish and the coefficient in front

of In Mw [ Ms would be equal to 8 instead of 6.

IX. THE IRREDUCIBLE npev—-VERTEX WITH ALLOWANCE FOR NUCLEON
COMPOSITENESS.

Unlike the case of A4%*, in the processes described by AAW! (8.6), (8.2), quarks and leptons
exchange a virtual W—boson and a virtual “soft photon” (5.15). The amplitude May (8.6)
includes the “soft photon” propagator DAl (5.15). This case corresponds to the comparatively
small momenta, k2 M2, transferred from leptons to quarks. Therefore, the intermediate quark
system, between quark interactions with a W—boson and a “soft photon”, possesses the rclatively
small momenta, and we deal with the intermediate baryonic states B, the ground or excited states
of the nucleon. With allowance for (3.4), (4.3), AAW! (8.6) is written as the sum over these

baryonic states
A}Aw = i(?ﬂ)4M2»716(Pn - Pp — Pe — pu) =
dz, [ dieg [ dias [ A2 3 (®LF(Py, 00), &) (Pes0e
[tz [dtes [ate | 24 S0 (P ), 8 s
’r{wiem)rz"wwox—e)(zﬁe(zzh%(zz))(z/h(n)rzuwzm(za))l@%(Ps,os»
x<<1>qB+(PB,an(zzq(x,weeqwq(z,))}|
QZL(PH)UH)VwV(_pV’—UV)>DL‘I4;(x3 - Z4)D2§($1 - 12) . (91)

Recalling Eqgs. (3.11)-(3.18), (6.2), the amplitude Mo, is presented as the sum of the contributions

of two diagrams

€ € v [ € v
Al W + Al w =
e (9.2)
P frB Gs Jgn " P T s 1B "
= dk4 7 B evW o _Mg
=/ i Felpe)(—eh Gelpe = T w P ) T S MR )
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it S| G Ga(R + TS P +
B

+(Up(B)TEPY (k)GB(P, — k)eff"(k)Un(Pn))} ;

where the wavy line tagged by Al stands for the “soft photon” propagator D4 (5.15) and the
triplex line represents generically the propagator of a quark system in the intermediate states.
The forthcoming estimations will prove that omitting all the nucleon excited states and describing
the nucleon formfactors and nucleon transition current by Egs. (3.22)-(3.24), we commit no more
than a few per cent error in evaluating My, in much the same way as in evaluating [7?" (6.8). In
this approacl, liable for providing the dominant part of M., the contribution of the second term
in (9.2) disappears, as f*"=0 is adopted, and the contribution of the first term gets simplified,

utilizing (6.2), (3.22)-(3.24). Then, with allowanece for (§.10), stgaightforward calculation gives

M3, = § Al w =
u P Jmi0) " (9.3)
€ Vil — o8 1 . 6o
= (2\/§sw) o) I { 1(2Mye, NP R ~ 5 1 (2M s, NP G, —

PRl (Iiksk,, N) — Iy (ksk,, MS))} ’
where

L(C,p) = /d“lmp(k, Pp,pe)m ,
oo FF T R TR W
P8 = 0.(p) (PP (1 = 9l pa) (0.5)
P = @pe (1= sl
7 (%H)%l—vg,‘)lf (),

(1

— 947" Wa(Pa), P=pa?”,

(9.4)

@k, Ppype) =

has =
hge = Up(Po)167" Yo
and az\/m, v=[p.|/¢ are the electron energy and velocity.

Now, the point is to acquire what comes out of allowance for the nucleon compositeness:
formfactors and excited states. In what follows, we shall treat concisely these two effects separately,
one after other. We start with retaining only the pure single proton intermediate state, B=p, in the
first term in (9.2) and approximating thereby the nucleon formfactors by Eq. (3.10), (3.18)-(3.21).

Then, with allowance for (8.10}, we obtain the respective contribution to (9.2)
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21 Vgl —
My, = Al = (2\/§5W) é#%ﬁﬁl_x

Fid P Ton n
oy 0 1 Bda 0
11(2M,,e NP, ~ (1(2ks My, N) 50,;11(211:5M,,,m‘,))§1>l hS, —

- ((11(@1@, ) = Ii(ksk,, Ms)) = (Li(ksk,,m,) — Ir(ksk,, Ms))) PRy, + (9.6)
+ i (ksk ko f My, A) — Il(kskukp/Mp,mp)]Pf‘S“MphZf} )

where, in addition to {9.5), we have defined

L .79 1
R = U, (P, )(‘m‘r (gwarol, — grPbau®) + 2M =057 Ya(l — a7 ))U (Pa) ~ w (9.7
b4

n {9.3), (9.6), the terms involving A3, hk, (9.5) are associated with the electric formfactor,
whereas h—g[, (9.7) is due to the magnetic formfactors and electroweak formfactors (3.10)-(3.21}.
Hereafter, the calculation of the a—order decay probability will call for the real part of My,, as
MO isreal, see Eq. (11.1) below. All the integrals I; but I;(2M,¢, X) are real, and their expressions

prove to be rather plain,

es! ’
1(2Myks, A) = Peit +5051107 L= %111(1)»

1-v
g = 72 i - = = .
w="m [an(Mp) - ln(x)J , T (9.8)
Ii{ksky, A) = Li(ksk,, Ms) = —gs.(I — bsol20) ,
3 Ms 2
12—7(§+21nﬁp), 120—-2—.
The careful calculation of Rel;{2M,¢e, A) was expounded in Ref. [21] with the result
Rel1(2Mye, A} = I( Py, pe,€) =
72 1 Mym?  ve
=-——1 -= z -1y -2 .
5 [In(z}1n(A/m) 4(1[1(1)) + F(l/z-1) i tz—tl]’ (9.9)

where

tip=—

m? —M2+2-,/(Pp.)? — M2m?
P z 4A=m? + M2 + 2p.P,,

m? + M2+ 2(Pp.) ’
and F is the Spence-function [32]. This quantity (9.9) determines the first, most important term
in the amplitudes {9.3) and (9.6). Let us behold that the “Coulomb correction” is incorporated

therein in the natural way, via the last term in Z(Pp, pe,€) (9.9).
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The second term in (9.6) comes out of the second term in (9.3) by subtracting I;(2M,ks, m,)

from I;(2Myks, A). For the mass u2m,, the estimation is obtained

L(2M kg, ) —#2600[(r2 1‘2f>3/2 1n(r‘/’;—‘4 + %2 1)+ (1~ fg) Inr + é] , (9.10)
where r=+%. At y=m,, r~1, we have got
L(2Mky,m,) = —7280, . 9.11)
This value is to be compared to
boalio = 721n %ém ~ —157%60, (9.12)

P
in [i(2Mpka. A). As seen, 11(2M,k,,m,) can be omitted in (9.6) with an error smaller than 6%.
Taking into consideration (8.10), the differences which determine the third terms in (9.3) and

in (9.6) are reduced to

3 M
Ii(ksky, A) = Dy(ksk,., Ms) = —ga,a?[(z +1n Mj) 8oc] (9.13)
2
My
i(ksk,ymy) = L (ksk,, Ms) = %55,506 5 L (ln ](mp)) (9.14)
1 1
# 5
I{u) = /0 rdx/() dyInf[z*(y — 1)* + r2(1 - r)] y Ty = -M—p. (9.15)

Next, it is only a matter of straightforward numerical evaluation to become convinced that the
quantity (9.14) makes up no more than ~10% to (9.13). So, with this accuracy, the third term in
ML, (9.6) is seen to coincide with the third term in M3, (9.3).

In the last term in (9.6), the factor PfgaMphf;;p is realized to be of the same order, as the
factors Pf’éo‘hga and meoh}g‘; in (9.3), (9.6). Upon a labor-consuming but rather unsophisticated
evaluation of the corresponding integrals /;(ksk,k,/M,,u), we arrive at the estimation of the

difference

Liksk,ky/ My, ) — I (ksk,k,/ M, m,) ~

o2 1 dzz? 2 m
oot 22/_—z—— =T 9.16
(1 o 22-—2(2—r7)+1) 0 "7, (9.16)

which constitutes 1% to the integrals L(2Mye, ), L(2Myks, M), Ih(ksk,, ) — I1(ksk,, A), de-
termining M3, (9.3). So, the last term in M}, (9.6) is seen to constitute no more than ~1% to
M3, (9.3) and can be abandoned with this accuracy.

Thus, we have realized the difference M}, — M3, caused by allowance for the nucleon formfac-

tors (3.10)-(3.20) amounts to less than ~10% to the dominant quantity M3, (9.3). Consequently,
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with committing an error less than 510%, the formfactors (3.10)-(3.20) can be replaced by (3.22)-
{3.24) so that M}, reduces to M3 ;. All the more so, we can neglect, at least with the same
accuracy, the contribution from the second term in (9.2) which is due to nothing but the neutron
formfactor fF"~(M, — M,)/M, ~ 0 (3.21) exclusively, even in the simplest case corresponding
to the pure neutron intermediate state, B=n.

Now, we are to consider the terms with B#N in the sum in (9.2} which present the processes
involving the virtual excited states of the nucleon, depicted by the triplex lines in the diagrams
(9.2). These intermediate states are naturally to be treated as the well-known nucleon excited
states, such as the Agz—isobar, the Roper-resonance and so on, with the propagators Gg (6.2)
(depending on the masses Mg, My<Mp<&Ms) instead of the nucleon propagator Gy (6.7). For
the current estimation, it is of a drastic value that the quantities m?, (M,—M,)? are actually
negligible as compared to the differences M3—M3 |

M, — M,)? 2
U= M)y, o, (9.17)
ME— ME ME — M}

Indeed, even in the case of the Ajzz—isobar, the lowest nucleon excited state, we have got Ma —

M,=300MeV. All the more so, Eqs. (9.17) hold true for any other nucleon excited state B#As3.

Moreover, the important rclation is obviously valid
ME: — M}~ M. (9.18)

In the processes involving these intermediate states B#£N, the quantities (3.10)-(3.20) describe
the weak and electromagnetic transitions between the excited and ground states of the nucleon.
For purpose of the current estimation, we take up the processes with a Azz—isobar, B=Ag;, the
simplest exited state of the nucleon, the internal structure of which is much the same as that of
the nucleon ground state. In the nucleon as well as in the Agz—isobar, all three quarks occupy the
same state 15)/;. Therefore, it is plausible in the current estimation to presume the amplitudes
fNA(k), T2 (k) do not differ substantially from fY¥(k), J*(k) (3.10)-(3.21). Also along these
lines, as G, gives place to Gpg in the amplitude M (9.3), the very modification which is of vital

importance for the qualitative assessment actually consists in replacing
M, = Ma (9.19)

in the proton propagator. Then the respective contribution into the amplitude (9.2) reduces to
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[ € v

Méyl = % Al \"% =
et p - M; Twp(0)
= / (27r)4i(ae(Pe)(“e)'YﬂGz(Pe - k)I‘“”’W auu(—P./)) X (9.20)

—M2
(k2 = A2 + i0)(k2 — MZ + i0)(k? — M, + i0)

{3 B)enatBy+ 002 (02}
The estimation of M, (9.20) is procured by replacing
I, = L (9.21)

in M3, (9.3), where I, comes out of I; (3.24) with changing the proton mass M, by the
Ass—isobar mass Ma in the function o(k, Py, p.) (9.4). What is of crucial importance for the

current evaluation is that
(Pa+ k) — M2 = M} — M} ~ M} > (M, — M,)? (9.22)

at k=0 in the denominators of the integrands in I, 4, instead of zero in the integrands of I, (8.24),
i.e. with M, in place of Ma. In particular, that is why there occurs no infrared divergence in
the integral 1;a(2M,e, A}, as opposed to I1(2M,e, ). As M3, is expressed in terms of J;a alike
MY, is expressed in terms of Iy, the integrals I;a(C, 1) are to be evaluated with 4 = A, Ms and
confronted to the respective integrals I;(C, ¢) in order to assess the M2, (9.20) value as compared
with the value of M3, (9.3). The most important integrals I;4(2Mye, 1) which determine the

dominant part of M2, (as I1(2M,e, 1) do in the case of M) are given by

1
IMZ + ya(M} — M2) + p?(1 — a) + 22m?

1 1
La(2Mye, ) zZMpew2[dz$[dyy2x (9.23)
0 )

With allowance for Eqgs. (9.17)-(9.22), we acquire the estimation of the integral I)a(2M,e, A) in
M3, (9.20)

Mo, ((MA—Mo)y

La(2Mpe, M) = e M) s

(9.24)

instead of the integral [;(2M,e,\) (9.9), mostly determining the evaluation of M$.; (9.3). Like-

wise, the estimation of (9.23) at u=Ms gives

2 M2 — M2
La(2Mue, Ms) = 4—”—61n((—‘:-nM—”)) ~0.
4

s (9.25)

34



In much the same way, it is straightforward to become convinced that all the remaining integrals
La(C, ) in M5, (9.20) prove also to be negligible as compared to the respective integrals 1,(C, i)
in M5, (9.3), and consequently M2, (9.20) results to be rather negligible as compared with M3
(9.3).

Except for the aforesaid As;—resonance case, the structure of excited states of the nucleon
differs drastically from the structure of the nucleon ground state. Therefore, the values of all the
amplitudes 7%, f?% with B#N and B, are substantially smaller than J&~Tau > fﬁ”r\»fAP.
Given this fact, it stands to reason that the contribution to Moy {9.2) due to these intermediate
states can not exceed anyway the contribution from the intermediate Asz—isobar state considered
above. So. all the corrections to M3, (9.3) caused by the terms involving the intermediate excited
states with B#p in Eq. (9.2) prove to be negligible, as a matter of fact. All the more so, we can
abandon the contributions to Mgy (9.2) which are due to simultaneous allowance for the excited
states, B#p, and the formfactors fB' . JE (3.16), (3.17), respecting the above estimations
associated with Eqs. (9.10)-(9.16) and the relevant discussion thereat.

Thus, summing up, we have ascertained the amplitude Moy (9.2) can be reduced to M3,
{9.3) with the accuracy better than ~10%. On substituting (9.5), (9.9) in (9.3), Moy is finally

put into the explicit form:

) Vel 57 M2 ¥ {(ac(f'e)‘/’(/ﬁe +m)y*(1— v%(—mo—e-jl—v X

M7r vE
t—h

€
Moy = <2\/§S

x{]n(r)ln% - l(ln( W4 F(lje—1) -

—iie(pe )y’ (1 = vs)uu(—pu)mt[ - ’:5 In(z) + 505(— In(z) —2Mn -ATZ—p)]) x  (9.26)
(TP yal Po + Mp)ra(l = 1294 Un(Pa)) = (@e(pe)* 97 (1 = 7" Junl=p2)) X
O P20 — 03 0P (& + i S — i 08 - sug) -

What is the inherent feature of My (9.2), (9.26) to be emphasized is that this amplitude shows
up to be not multiple to the uncorrected Born amplitude M° (4.5), even though My (9.26) has
ensued from the general expression {9.2) on leaving aside the effects of nucleon structure. In this
regard, My, on principle differs from the above considered quantities Mays (8.9), f‘;‘pw (6.15),
[ (2.35), which all have turned out to be proportional to the corresponding uncorrected

quantities M®, T7% % (4.5), (3.23), (3.14).
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X. REAL 7Yy —RADIATION

In the first a—order, the real y—emission accompanying the neutron #—decay is presented
by the diagrams 5 — 8 in the amplitude M (4.1). The triplex lines in the graphs 6,7 represent
the conceivable excited states of the nucleon. As m, M, — M,<< M, < My, the contributions from
the diagrams 6 — 8 are negligible as compared to the one coming out of the diagram 5, which
renders the common bremsstrahlung of a final electron. The corresponding amplitude of the real

y—radiation with the momentum k and the polarization ¢(")

) Nl ) e et 2L = gl (10)

X([]P(PP):Y:\(I - .‘]A'Ys)Un(Pn))a (a,r = 1,2,3),

€

2\/§SW

MUy = (

is seen to be not proportional to the uncorrected quantity M°® (4.5), alike Moy, yet against

Faph sl 1 . i, - euW
Mans, TP 0 D™ which all are multiple to the uncorrected quantities M©, [7PW = e

XI. THE RADIATIVE CORRECTIONS TO THE ELECTRON MOMENTUM
DISTRIBUTION AND THE NEUTRON LIFETIME

With allowance for the radiative corrections of order a, the absolute square of the transition

amplitude M (4.1) proves expedient to be written in the form
|MJ? = [ MP 4+ Mas+ MO & |MEP + | MU 4 2Re( MO Man), (11.1)
where

MF = (ae(pe)fiwuu(‘Pu))'(Up(Pp)fszUn(Pn))Dm(Pu + pe) + Moy =

A9 M, 6 Mz  3+44ck
24l g2 gz 2w 1.2
+ 5 In 2 6ln Ms p: In (cw))} (11.2)

B4 Mo{l - %r-(?lnjj\l/l/l—j +4In
comprises all the terms proportional to the Born amplitude M° (4.5).

As a final state after the neutron S—decay involves a proton, an electron, an antineutrino and
~y—rays, the probability of the polarized neutron 3~—decay, upon summarizing the absolute square

[M]? of the transition amplitude over the polarizations of all the particles in the final state, is

obviously put into the following well-known general form

dW(pe,P,p,, k, &) = (270)4 (M, — Ep — w, — € — w)§(P+pe+p,+k) x

1 2 dPdpedp.dk _
M, Zf M| (27 )122E, 2 2w, 2w
uw(pe, P, pu, k. §) dPdpedp, dk§(My — Ep — w, — & = w)§(P+petp,+k), (11.3)
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where § stands for the polarization vector of a resting neutron, and p.=(¢,pe), P=(Ep,P),
pv=(w,,P»), k=(w,k) are the electron, proton, antineutrino and y—ray four-momenta, respec-
tively. The familiar expression (11.3) renders the momentum distribution of electrons, protons,
antineutrinos and y—rays in the final state.

In the work presented, our purpose is to calculate the B—decay probability integrated over the
final proton, antineutrino and photon momenta and summarized over the polarizations of all the

final particles,
AW(E,pe.§) = AWR(E, e, €) + AW (€, per €) + AWari(e, pert) (11.4)

where dWR| AW, Wy, are due to |JMB?, IM 2, 2Re[M® M.}, (11.1) , respectively.
Although the calculation of the distribution (11.4) turns out to be cumbersome and labour-

cousuming, it runs along a plain and unsophisticated way, as a matter of fact. So, we shall not

expound this calculation at full length, in details, but only set forth the main stages in evaluating

dW(e,p. &) (114).
As being due to |[MP)?, the quantity

R N o/ o My A9 M,
AWH(e, p,, €) ~ dW (e, p,, £){1 —§<21n—m+4lna+§—ln?——
6 Mz 5+2C%,V
—g—(ﬂnm— 7 In(ew)) } (11.5)

is apparently proportional to the uncorrected decay probability

dWO(e, pe, £) = dw(e, pe (1 + 395 + v€2g4(1 — g4)),
G? dn
dw{e, pe) = ms]pe[kfndeél—’r , n=p./|pl, v=pefe, kn=M,-M,—¢. (11.6)

The contribution of the real y-radiation dW,(¢, p, £) [20] stems from | M, |?
km
dW i, (e, pe) = dw(e, pc) / dk((l + 39,21)W07(57k) +vE€2g4(1 - gA)WEW(Evk» =
0

= dw(e, pe){(1 +3¢3)[B(e) + Cole)] + vE294(1 — ga)[Ble) + Cie)]} (11.7)

where
- 2a, 1l pete 2k . Kle)
B=2(EmErt pnEr) - B
=, 20 p.te km 3 kfn pete
Co = ﬂ{[vl m l](§—2)+24v671n m }’ (11.8)
5 _ 201 pote km 3
Ci=—l-im=— 1( <+24€) 5
1 1—v2

K= 5(F(z) — F(1/z) = In(1/z) - In( ) —v+ §1n(x) + F(v) = F(—v).

4
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The contribution from 2ReM°®Ma.,, is

AW ay(, Per €) = dw(e, po){[1 + 394 + v&294(1 — ga)] Bos(e) +
+Coz-(g4,€) + vECe2,(g4,€)} - {11.9)
Here
By(e) = 551(2Ti(e) = 1) — Il
nE) =55 (2Zy{e 1 10
Cornlga:) = o 2 {— Lo?[L 4 3(ga)?] + 20,[5 + 1294 + 15g4] — 2120(2 + 394 + 3941}
Ceas(ga.e) = ;13{ — I,2g4(1 = ga) + 202(3 + 494 — Tg4) = 2Lo[1 + 94 — 2031}, (11.10)
Mw M3 M)

2

™
Iy =32+ 2(In =t - W __1n =W
2 4[3/+< M, Mk - M Ms

2 ol
Il(;‘)=—~[ln ln(/\/m)——(ln(ac) +F(1/$—1)——6—(€—)],
fv(s):%(J( +7;[k5) +‘2v%ﬁ(x/lm_)2+J(v—';&k’;‘)z_‘zu%m(/‘l/]"_y)’ (11.11)

where the quantitics I1. 1o, fo, Iz0 are given in (9.8). It is to recall once more that all the results
are obtained utilizing the relations (8.10). Let us behold the last term in Zy(¢) could naturally be
associated with the contribution of the Coulomb interaction between an clectron and a proton in
the final state.

Eventually, the electron momentum distribution in the f—decay of a polarized neutron results

to be
AW (e, pe, &) = dw(e, pe){Wolga, ) + v€Welga )}, (11.12)
Wolga,€) = (1 +3g%)[1 + Co(e) + B(e)] + Colgare)
Welga,e) = 29a(1 — ga)[l + Cele) + Ble)] + Celgare)
_ e+p .y 33g% 7
Co = 5-[2In(—")v(1 +394) + — 1
Mw M2 My
1 2y Mw o Mw 2
+ In( M, )3+ 1294 +994) ME, — M2 in s {5+ 1294 + 15¢3)],
o 4ga(l—ga), 4P, S 13,
e= g () k2 - s
My M} My
In( M, )3(1—9/‘2)—#1\/[—21 s —=(3+ 494 — 793)],
2a .1 e = X '
= s e i) n (—), Co=Cl+ G Ce=Cit0n,
. 2,0 K 6 M3 Mz 5+2d
="l -5+ (31n( ,,/m)_g/2+sav T M21nM—S+ = In(ew))],
J(e) = ~(In( F(1/ 1)+12—”—
(ef)—4 n(z))? - F(l/z = )
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which can also be rewritten as

dW (e, pe. £) = dAWO(e, pe, &) - [1 + Ble) + Ci(e)] + dw(e, pe) x (11.13)

x (1 + 363)Ch(<) + 20€4(1 — ga)Ci(e) + Colga, ) + vECe(9as€))-

We purposely retain the factors M, 5 /(M ; — M3) in front of In Mw,z/Ms in order to clarify
that nothing out-of-the-way will occur even in the case Ms—Mw, 7z and the dependence on Ms is
very smooth.

The total decay probability W, reverse of the lifetime 7, and the asymmetry factor of electron

momentum distribution A(z) are acquired from (11.12) in the familiar way:

1 G2 Mn-M,
We=-=_— dee|pelkZ Wo(gase) s (11.14)
Welga,e)
Alga,e) = 240 11.15
(94,¢) Wolgar€) ( )

The radiative corrections cause the relative modification of the total decay probability W

M,-M,
S deelpctkl Wolga,e)

Moy —1=60W. (11.16)
(1+3¢%) [ deelpefk?
The uncorrected asymmetry factor of the electron angular distribution A is replaced by the

quantity A(e) accounting for the radiative corrections,

2g4(1 — ga) We(g4.¢)
Ay = = = Ale, ga). 11.17
0 1+34% Wo(ga,€) (6194) ( )

So, the quantities W (11.16) and

A(eng) - AO

i = 6A(¢) (11.18)

render the effect of radiative corrections on the total decay probability W (11.14) and asymmetry
coefficient A (11.15).

The results of numerical evaluation of W, §A are discussed in the next section.

XII. DISCUSSION OF THE RESULTS.

Before setting forth the numerical evaluation, several valuable features of the ultimate result

(11.12) deserve to be spotlighted.

39



Surely, upon adding the contributions from the processes involving virtual and real infrared
photons, the fictitious infinitesimal photon mass X has disappeared from the final expression
(11.12), amenably to the received removal of the infrared divergency [26,7-9].

Let us behold that if we got a neutral initial particle in place of a d—quark and a final particle
with the charge +1 in place of an u—quark in the expression (8.8), the coefficient 6 in front of
In Mz/Ms in ¢, would be replaced by 8, following what was observed at the end of Sec. 8.
Subsequently, if g4 were therewith equal to 1, the subsidiary parameter Mg would be cancelled in
the final result (11.12). Being generically represented by the first diagram in (8.8), this conceivable
case might be associated with the neutron—proton transition involving exchange of a W—boson
and a “massive photon” between leptons and quarks, with the weak nucleon transition current
being pure left. As one can see, the description of the neutron f—decay would not involve the
parameter Al in this case.

The form of dependence of (11.12) on the UV cut-off , i.e. on In Mw/M,, asks for a special
attention. First, it is readily seen straight away that the portion of (11.12) multiple to In Mw /M,
would strictly vanish, if there were ga==—gv=—1, that is if the nucleon weak transition current
were pure right, (V -+ A), instead of the actual current (3.10), (3.22). This fact is associated with
the general theorem ascertained in Refs. [33].

As one might infer from Refs. [34,35,28], the amplitude M and the probability dW of any

semileptonic decay ought generically to be of the form

MM+ 22 ’ZW )1 + Os(a)], (12.1)
dW~dW°[1+z—2 In (A1\4/1 ML + Oa(e)], (12.2)

P

up to the terms of order a. Here, M?® and dW? render the uncorrected (Born) values of M, dW,

and

(} = 2Q2+ ! = _(QlinQ2in + Qloth2out) 5 (123)

where @ is the average charge of the isodoublet involved in the decay (34,35], and

QlinQ?in ) Qloth2out

are the products of charges of incoming and outgoing particles, respectively [28]. In the case of

the neutron S—decay, i. e. for the (n,p) doublet, Q =1/2, and

QlinQZin =0, QlouiQZaut =-1,
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so that g=1. So, the distribution (11.12) ought to have taken the form

AW (ga, &, 0)~dW(gae) {1 + 3— 21+ 0], (12.4)

M,
with the quantity Op(a) independent of gv, ga, InMw/M, Apparently, it is not the case:
the expression (11.12) can never be reduced to the form (12.4). Yet though one might think we
encounter some puzzling mismatch, there is no real contradiction between the assertions of Refs.
[34,35.28] and our straightforward consistent calculation based on the electroweak Lagrangian
{2.10)-(2.16) and the parameterization (3.10), (3.22), (3.23) of the nucleon weak transition current.
To perceive the matter, we rewrite the actually used current J2, (3.22) and the distributions dW?

(11.6), dW (11.12) in terms of the amplitudes

, + —_
g =TT = I (12.5)
2 2
introduced instead of the original ones gv=1, ga#gv :
Ta(0) = 2"[(1 = %)g + (1 +7°)gnl, (12.6)
dW® = dw - [4(g] + gk — gLgr) + v€4gr(9L — gr)], (12.7)
M 4
dW = dW{‘*Qi( + 3—01 —M) (1+0.la))+
Mp
2 Mw
+4g5(1 4+ Or(a)) — 4gr9r|1 + —1n A (1 + Opr(a) (12.8)
P

)+
2
)5

+v5(_4g§(1 +O%(@)) + 4919r (1 +=mn Aflp )(1 + O (a )))

Op(a) = Ogla) + £(4 +2In A;I—VSV) , Ogrla) = Ogla) + %(1 +8ln 11‘\44_:
Orila) = Oole) + %(1} ~5In ﬁ%) , O%(a) = Ola) + %(1 ~2In AAIJ—V: ,
0% () = Ola) + %(g —51n]}‘f4—vsv) , Oola)=Co+B+ —vln jn”e .

O¢la) = C¢+B+—-1 .

It stands to reason that the values gz3£1, gr#0 reflect the mixture of the left and right hadronic
currents on account of the effect of nucleon structure. In confronting (12.7) and (12.8), one
grasps that the amplitude g, gets the renormalization factor which corresponds to that in (12.1)
accordingly to Refs. [8,34,35,28], whereas the modification of gr does not depend on the cut-off
In My /M, at all, in accordance with Ref. [33] as was discussed above. If there were the pure

left hadronic current, i.e. gr=1, gr=0, the relation (12.4) between the uncorrected (12.7) and
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corrected (12.8) distributions would apparently hold true as prescribed by Refs. {8,34,35,28]. In
the case of the pure right hadronic current, i.e. gr=0, gr=1, the final result (12.8) would not
depend on In Mw /M, at all.

Inquiring carefully into the calculations carried out in Refs. [34,35,28], we realize that the
semileptonic decays considered therein are actually described by the interactions which corre-
spond to the case gr=1, gr=0, i.e. a pure left hadronic current. It is to emphasize that
the assertions {12.1), (12.2) of Refs. [34,35,28] hold true for any decays induced by a pure left
(gr=1, gr=0, gv=ga=1) hadronic current, in particular for the semileptonic decays which can be
reduced to the pure d—u transitions of free quarks . Thus, Eqs. (12.1), (12.2) are valid to describe
the manifold semileptonic decays such as m—=pv,y, T—ely, Kopvyy, Tomvy, 7oRury
and so on (see, for instance, (29,36] in addition to [34,35,28]). The Eqs. (12.1), (12.2) might
although be pertinent to treat the transitions caused by the pure axial (gr=gr=—ga=—1, gv=0)
hadronic current, such as SE—A%e*y(D)y, or by the pure vector current (gr=gr=gv=1,94=0),
such as the super-allowed 0t =0 nuclear transitions. But all the aforesaid is not our case, it is
not relevant to describe the neutron S—decay.

Evidently, as the total amplitude M (3.8) is not multiple to MO (4.5), the distribution (11.12)
can never be transformed to an expression multiple to (11.6), unlike the results asserted in several
calculations [13-19,37] which were entailed by the original work [38] where the decay probability
was reduced, to all intents and purposes, to the “model independent” part merely proportional to
dW?O (11.6), that is explicitly not our case.

The original investigation [38] had been undertaken before the Standard Model of elementary
particle physics was brought to completion in the nowaday form [8,22-25]. Then, for the lack of the
renormalizable Electroweak Weinberg-Salam Theory, there was seen no way to treat the neutron
B—decay with self-contained allowance for the radiative corrections. The purpose of the ingenious
work [38] was to circumvent the problem of UV divergence and sidestep the consideration of the
electromagnetic corrections in the UV region, by appropriate separating the whole electromagnetic
corrections of order « into two conceivable parts, a “model independent” (MI) and a “model
dependent” (MD), of different purports. The first one, MI, was chosen and sorted out so that it
should evidently be UV-finite and could merely be obtained by multiplying the uncorrected (Born)
decay probability dW? (11.6) by a single universal function g(e, M, — My, m), see Eqs. (20) in Ref.
[38], which was calculated within the effective 4-fermion-interaction approach (1.1)-(1.5), without

taking into consideration the electroweak and strong interactions as prescribed by the Standard
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Model. In Ref. [38], this MI part was presumed to describe the electromagnetic effects on the
nentron B—decay. All the left-over radiative corrections were conceived to be incorporated into
the second, MD part, assuming the electroweak and strong interactions conspire somehow to give
the finite corrections to the quantities gv, ga, Vud which reside in the uncorrected, Born decay
probability {11.6), see Eqgs. (19), (20) in Ref. [38]. Thus, in all the calculations, such as [13-19,37],
presuming the approach launched by the work [38], the corrected decay probability merely shows
up to be reduced to the uncorrected one multiplied by the function g(&, Mn — Mp,m), with the
whole effect of the remained MD part absorbed into the quantities gv, 94, V.4 which thereby
would get the new values g|,, ¢, V.4 instead of the original ones : the C K M matrix element Vyq
in (2.13) and the amplitudes gy , g specifying the nucleon weak transition current (3.10), (3.22).
Thus, the experimental data would be described in terms of these “new” quantities g, ¢4, Vig-
However, any explicit and definite, quantitative one-to-one correspondence between these two sets
of parameters, gy . ga, Vaua and gy, g4, Vii would never be asserted in Refs. [38,13-19,37].
Yet the guide tenet is to ascertain, as precise as possible, the very genuine values of gv, ga, Vud
from experimental data processing. In particular, we are in need of the stringent |V,q4| value in
order to verify strictly the validity of the CA'M identity (1.2) [10]. So, the aforesaid calculations
[38,13-19,37] making use of the very handy, but rather untenable simplifications cannot be said
to be eligible for now, in so far as an accuracy ~1% or even better goes.

In our treatment, the amplitude M (3.8), (4.1) and, subsequently, the distribution dW (11.12)
comprise all the a—order radiative corrections, without disparting the Coulomb term and sepa-
rating the MI and the MD parts. Adopting Ms=10GeV, (M2 MZLM},) and taking all the
input parameters in {11.12) from Ref. [39], we obtain the corrections (11.16) and (11.18)

W =8.7%, 6A =—2% (12.9)

to the uncorrected W° and Ag values. As a matter of fact, the correction §4 (11.18), (12.9)
is independent of . Practically, the same values of §W and 6A were acquired in the previous
calculation [20] based immediately on the effective Lagrangian of the local 4-fermion theory of weak
interactions, with the UV-cut-off A=My assumed. Apparently, our results (12.9) pronouncedly

differ from the respective MI-values
(SWMI ~ 54% 5 (SAM] =0 (1210)

asserted in Refs. [38,13-19,37]. Consequently, the values of IVianer| and gany ascertained from

experimental data processing with utilizing §Wasr, 6Apr; (12.10) will alter, when they are ob-
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tained with W, 64 (12.9). The modifications are of the noticeable magnitude: §ga=0.47%,
§|V.a|=—1.7%. For instance, the values g4=1.2739, |V,4|=0.9713 given in [1,2,39] will be modified
to ga=1.28, |V,4]|~0.96, provided the same value of the quantity G is used.

Now we are to discuss what is the precision attainable in the actual calculations nowadays, a
pivotal question that matters a lot.

As from the first we have been calculating the radiative corrections in the one-loop order,
Ofa), the relative uncertainty ~a~107 resides in the evaluated radiative corrections (12.9), from
the very beginning.

We further recall that the terms of relative order

My — My M= M, | M= M,
3 -In k)
M, M, M,

and smaller have been neglected far and wide, with a relative error 1072 entrained thereby.

Yet a far more substantial task than the aforesaid ones is to inquire into the ambiguities caused
by entanglement of the strong quark-quark interactions in the neutron S-decay.

The final result (11.12) involves the matching parameter Mg , (MZ<MEI<ME,) posited to
treat separately quark systems with large, 5?2 M2, and comparatively small, k2S M2, momenta.
The dependence of the results W, §4 (12.9) on the Mg value shows up to be very faint : we have
got 6W=8.6% at Ms=5GeV and §W=8.8% at Ms=30GeV, and §A is practically independent of
M at all. So, the uncertainties because of the Mg involvement in (11.12) are about 0.1% in §W
and practically zero in §4 (12.9).

Further, Ms is chosen so that M?<« M3, and we took for granted the generally accepted
standpoint of the Standard Model that the strong quark-quark interactions die out when a quark
system possesses momenta k*2MZ>>M,. At relatively small momenta k*SM2, a quark system
was considered to form various baryonic states, including the nucleon. Let us recall all the actual
calculations have been carried out assuming Eqs.(3.22)-(3.23) and retaining only the single nucleon
intermediate state (6.7) in the expressions (6.3}, (6.4), (6.6), (9.2), what counts is the final result
(11.12), (12.9). In calculating the radiative corrections, we did not intend to allow for nucleon
compositeness rigorously, but (in sections VI and IX) we only tried and estimated how those
basic calculations alter when including the nucleon excited states (6.2) and the formfactors (3.10),
(3.17)-(3.21) into the expressions (6.3), (6.6}, (9.2). As was found out in sections VI and IX, the
different terms in the amplitude M (3.8), (4.1) (and subsequently in the distribution dW (11.12)

) are affected by allowance for compositeness of the nucleon to a different extent. As a matter
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of fact, there is no modification in the first, prevailing term in (9.3) which is determined by the
integral I{2M,e, A) (9.9). 1t includes, in particular, the Coulomb correction. The direct evaluation
shows that this major term causes the share of about §W;a5% in the whole correction §W=8.7%
(12.9). All the other left-over terms in the decay amplitude M provide the remnant portion
SW —W;=4% of 6W and the whole value §A=—2% (12.9). The effect of nucleon compositeness
on these terms was estimated {in sections IV, IX) to constitute no more than ~10% to their whole
value. For now, there sees no real reliable way to calculate precisely these corrections-to-corrections
in treating the neutron f—decay. With the ascertained estimations, they are abandoned in the
actual calculation which has provided (11.12), (12.9). Consequently, in respect of all the aforesaid,

the uncertainties in the result (12.9) prove to make up no more than
A(SW) = 0.4%, A(BA) = 0.2% . (12.11)

Thus, our inferences are realized to hold true up to the accuracy about a few tenth of per
cents, never worse.

If anything, let us behold the energy released in the f—decay of free neutrons is rather negli-
gible as compared to the nucleon mass, M, — M, < M,, whereas the cnergy relcased in manifold
semileptonic decays is comparable to the masses of the hadrons involved in the process, or even
greater than they. That is why accounting for compositeness of the hadron proves to play no
decisive role in the neutron f—decay, but can be of significant value in other semileptonic decays
(see, for example, [29,36]).

In the current treatment of the radiative corrections to the neutron S—decay, we have actually
allowed for the effects of nucleon structure by introducing only one fit-parameter g4 to be specified,
simultaneously with the fundamental quantity |V,q|, by processing the experimental data on the
lifetime [1] and electron momentum distribution [2]. Evidently, the ambiguities {(12.11) put bounds
on the accuracy which can be attained in obtaining the |V,4], ga values thereby.

Thus, introducing only the usual parameters gy, ga, gwar, gip to describe the weak nucleon
transition current does not suffice to parameterize the whole effect of strong interactions in treat-
ing the neutron B—decay with allowance for the radiative corrections, in so far as the accuracy one
per cent or better goes. Nowadays, no way is thought to get rid of the errors (12.11), but to param-
eterize ingeniously the effects of nucleon compositeness by expedient introducing some additional
fit-parameters (besides g4) to describe the radiative corrections to various characteristics of the

neutron $~decay. These additional parameters are to be fixed by processing, simultaneously with

45



the results of measurements of 7 [1] and A4 [2}, the experimental data obtained in the additional
experiments such as [3,4,6] and other in this line. For instance, these extra parameters might
be conceived to render generically the “effective” mass in the intermediate state in (6.3), (6.4),
(6.6), (9.2), (9.20) and the “effective” vertices (3.14), (3.10), (3.16)-(3.18). They are to be fixed,
together with g4. |Vii|, Ms, from the simultaneous analysis of all the available experimental
data, the kinematic corrections [11] respected as well.

So we are in need of the manifold tenable experiments to measure various characteristics of
the neutron S—decay, besides 7 and A, with an accuracy about 0.1%, and even better. Obtained
such high-precision experimental data, the high accuracy, better than ~0.1%, is believed to be
attained within the unified self-contained analysis of the different experimental data amenably to

the Standard Model.
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Bynatan I'. T. E4-2003-206
PanualMOHHBIE [IONPABKH K B-pacnafly HEHTpPOHA
B_CTaHOApTHON MOIEH

CornacHo narpaHXuaHy CTaHAapTHOH MOIE/M BHIYHCIICHB palHallHOHHBIE MTONPABKU
K B-pacralny HeHTpOHa C MOC/EIOBATEbHBIM Y4ETOM 3NEKTPOCAA0LIX B3AHMOLCHCTBUMH B TEO-
puu Baitn6epra—Canama. DdeKT CHIIbHBIX B3aMMOACHCTBHI MapaMeTPU3YETCs BBEACHHEM
3eKTPOMarHUTHbIX HopM(PaKTOpoB H cAaboro HYKJIOHHOTO TOKA [IEPEXola, KOTOPbIH onpe-
nensietcsi caabbiMu opMbaKTOPamMH gy, 4 » .. PallaLMOHHbIE TIONPABKH K [10JIHOH BEPOAT-
HOCTH B-pacniaza W u K k03(DHLKEHTY aCHMMETPHH KMITYJIBCHOTO PaclpesieseHus 3/IEKTPO-
HOB A cocTaBnsiioT 8W = 8,7 %, 8A = —2 %. BKiian B paidaluMOHHBIC [TOTIPAaBKY OT y4eTa GopM-
¢akTopoB M BO3OYXIEHHBIX COCTOSHMI HYKIOHA NOCTHIaeT HECKONBKMX MPOLEHTOB
OT TIOJIHO# BEJHYHHBI 3THX MONPaBoK. HeonpeaeneHHOCTH B OMMCAHHH BO30YXIEHHBIX CO-
cTosHHI ¥ GopMpaKTOpPOB HYKJTIOHA ABNFIOTCS TOH NMPUYMHOM, YTO [IPUBOIMT K MOTPEUTHOCTH
~0,1 % B BLIYMCIIEHNM XaPAaKTEPUCTHK B-pacnana HeWTpoHa. B HacTosiluee Bpems 3TO OIpe-
fensieT npenes TOYHOCTH, JOCTHXHMBIA TIPY TTOTydeHHH aneMenta Vg matpuusl CKM u 3Ha-
YeHU BEJIMYMH gy, L4, - M3 00pabOTKH 3KCIEPUMEHTANBHBIX HAaHHBIX.

PaGota BbinosHeHa B JlaGopaTopuy HeWTpoHHOM Gu3nKu uM. K. M. ®panka OUSH.

IpenpuaT O6beAMHEHHOTO MHCTHTYTA SIEPHBIX Hecnenoanui. [ly6Ha, 2003

Bunatian G. G. E4-2003-206
Standard Model Treatment of the Radiative Corrections
to the Neutron B-Decay

Starting with the basic Lagrangian of the Standard Model, the radiative corrections
to the neutron B-decay are acquired. The electroweak interactions are consistently taken
into consideration amenably to the Weinberg—Salam theory. The effect of the strong
quark—quark interactions on the neutron B-decay is parametrized by introducing the nucleon
electromagnetic form factors and the weak nucleon transition current specified by the form
factors gy, g4, ... The radiative corrections to the total decay probability W and to the asym-
metry coefficient of the electron momentum distribution A are obtained o constitute
§W=8.7 %, 8A=-2 %. The contribution to the radiative corrections due to allowance
for the nucleon form factors and the nucleon excited states amounts up to a few per cent
of the whole value of the radiative corrections. The ambiguity in description of the nucleon
compositeness is surely what causes the uncertainties ~ 0.1 % in evaluation of the neutron
B-decay characteristics. For now, this puts bounds to the precision attainable in obtaining
the element V4 of the CKM matrix and the gy, g4, ... values from experimental data
processing.

The investigation has been performed at the Frank Laboratory of Neutron Physics,
JINR.
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