P1-2004-37

Х. У. Абраамян, М. А. Кожин, Г. Л. Мелкумов, [М. Н. Хачатурян], А. Г. Худавердян*

ИНКЛЮЗИВНОЕ ОБРАЗОВАНИЕ π^0 -МЕЗОНОВ В *d*С- И *d*Си-ВЗАИМОДЕЙСТВИЯХ ПРИ ИМПУЛЬСЕ 4,5 ГэВ/*c* НА НУКЛОН

Направлено в журнал «Ядерная физика»

^{*}Ереванский государственный университет, Ереван

P1-2004-37

Абраамян Х. У. и др. Инклюзивное образование π^{0} -мезонов в *d*С- и *d*Сu-взаимодействиях при импульсе 4,5 ГэB/*c* на нуклон

Измерены сечения инклюзивного образования π^0 -мезонов в реакциях $d + C \rightarrow \pi^0 + x$ и $d + Cu \rightarrow \pi^0 + x$ при импульсе 4,5 ГэВ/*c* на нуклон для кинематической области $\theta_{\pi} \leq 16^\circ$, $E_{\pi} \geq 2$ ГэВ (л. с.). Из отношения сечений генерации π^0 -мезонов на ядрах углерода и меди получена зависимость показателя *n* в параметризации $Ed^3\sigma/d^3p \sim A^n$ от кумулятивного числа X в интервале $0,6 \leq X \leq 1,8$ и от квадрата поперечного импульса в интервале $0,04 \leq P_t^2 \leq 0,40$ (ГэВ/*c*)². Получены оценки вероятности образования 6-кварковых конфигураций в ядрах 2d , ⁴ Не и 12 С. На статистике более чем 40000 π^0 -мезонов впервые определено дважды дифференциальное сечение реакции $d + C \rightarrow \pi^0 + x$.

Работа выполнена в Лаборатории высоких энергий им. В. И. Векслера и А. М. Балдина ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2004

Перевод авторов

P1-2004-37

Abraamyan Kh. U. et al. Inclusive π^0 Production in *d*C and *d*Cu Interactions at a Momentum of 4.5 GeV/*c* per Nucleon

The cross sections for the inclusive production of π^0 mesons in the reactions $d + C \rightarrow \pi^0 + x$ and $d + Cu \rightarrow \pi^0 + x$ at an incident momentum of 4.5 GeV/*c* per nucleon are measured for the kinematical region specified by the inequalities $\theta_{\pi} \le 16^{\circ}$ and $E_{\pi} \ge 2$ GeV (lab. sys.). The cumulative number and transverse momentum dependences of the exponent *n* in the cross section parametrization $Ed^3\sigma/d^3p \sim A_T^n$ are investigated by comparing the observed cross sections for π^0 production on carbon with copper targets at the intervals $0.6 \le X \le 1.8$ and $0.04 \le P_t^2 \le 0.40$ (GeV/*c*)². The probabilities of the formation of six-quark configurations in 2d , ⁴ He and ${}^{12}C$ nuclei are estimated. The double differential cross section of the reaction $d + C \rightarrow \pi^0 + x$ is first measured using statistics of more than 40000 π^0 mesons.

The investigation has been performed at the Veksler and Baldin Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2004

введение

В настоящей работе представлены результаты измерения инклюзивного сечения образования π^0 -мезонов в реакциях

$$d + A_T \to \pi^0 + x, \ A_T = C, Cu, \tag{1}$$

при импульсе 4,5 ГэВ/с на нуклон. Эксперимент является продолжением цикла исследований [1–3], проводимых на 90-канальном черенковском γ -спектрометре Лаборатории высоких энергий ОИЯИ [4]. Цель этих исследований — выяснение механизма образования пионов вблизи и за кинематической границей для нуклон-нуклонных столкновений [5].

1. ЭКСПЕРИМЕНТ

Эксперимент проводился на пучке ядер дейтерия с импульсом 4,5 ГэВ/с на нуклон ($\Delta p/p = \pm 2\%$) и интенсивностью до 100 тыс. частиц/цикл. Экспериментальная аппаратура позволяла измерять как энергии, так и углы вылета γ -квантов, образующихся в результате распада π^0 -мезонов. Схематический чертеж экспериментальной аппаратуры приведен на рис. 1. Установка включает 90 γ -спектрометров из свинцового стекла, сцинтилляционные счетчики размерами 5×5 см (S_1 , S_2 , S_3) и 15×15 см, пороговый газовый счетчик, сцинтилляционный счетчик, работающий в режиме антисовпадений, годоскопические сцинтилляционные счетчики.

Толщина углеродной мишени по пучку составляла 12,6 г/см² (0,3 рад. ед.), толщина медной мишени — 5,4 г/см² (0,4 рад. ед.). События типа $n\gamma$, где n = 2, 3, ..., генерируемые в мишени, регистрировались черенковским γ -спектрометром. Детекторы γ -спектрометра работают независимо и собраны в матрицу 7×13 размерами 140×215 см. Характеристики спектрометра приведены в [2, 4].

В эксперименте расстояние от центра мишени до γ -спектрометра по пучку составляло 340 см для углеродной мишени и 520 см для мишени из меди. В указанной геометрии диапазоны углов вылета π^0 -мезонов, регистрируемых установкой, в лабораторной системе (л. с.) координат равны соответственно ± 16 и $\pm 10^{\circ}$.

Регистрация заряженных частиц производилась с помощью годоскопа сцинтилляционных счетчиков, состоящего из 40 счетчиков размерами $2 \times 10 \times$

Рис. 1. Схематический чертеж экспериментальной аппаратуры: S_1 , S_2 , S_3 — сцинтилляционные счетчики; C_1 — пороговый газовый счетчик; A — сцинтилляционный счетчик, работающий в режиме антисовпадений; M — мишень; SH — годоскопические сцинтилляционные счетчики; C_2 — γ -спектрометры из свинцового стекла

100 см. Сцинтилляционные счетчики располагались перед γ -спектрометром и позволяли регистрировать заряженные частицы с эффективностью около 99%. Детекторы γ -спектрометра разделены на 14 групп по 6 или 7 модулей в каждой группе. Сигналы в группе линейно суммируются и поступают на входы дискриминаторов. Пороги дискриминаторов в эксперименте были установлены на уровне 1,0 ГэВ. Запуск установки производился при совпадении сигналов пучковых сцинтилляционных счетчиков, гало-счетчиков (в антисовпадении), двух и более групп детекторов γ -спектрометра при условии, что суммарное энерговыделение в этих группах превышает 2 ГэВ. Средняя скорость набора ~ 10 событий в цикле при длине события 132 16-разрядных слова. В течение эксперимента через углеродную и медную мишени было пропущено соответственно 1, $51 \cdot 10^9$ и 2, $48 \cdot 10^9$ ядер дейтерия. На магнитные ленты записано 200 тыс. триггеров для углеродной мишени и 160 тыс. для мишени из меди.

2. ОТБОР СОБЫТИЙ

 π^0 -мезоны регистрировались по распадам на два γ -кванта и отбирались из пика в распределении по инвариантной массе (см. рис. 2). В электромагнитном калориметре фотоны распознавались как кластеры (область смежных модулей в ү-спектрометре с сигналом, превышающим порог регистрации). Энергия фотона вычислялась по энерговыделению в модулях кластера с учетом потерь, зависящих от места попадания у-кванта. В предположении, что фотоны генерируются в мишени, направление вылета у-кванта определялось в зависимости от геометрии кластера с учетом энерговыделения в модулях.

Рис. 2. Распределения по эффективной массе попарно скомбинированных γ -квантов в реакциях $d + C \rightarrow \pi^0 + x$ (a) и $d + Cu \rightarrow \pi^0 + x$ (б) (сплошные гистограммы). Точечные гистограммы — фоновые распределения, полученные путем случайного отбора у-квантов из разных событий. Штриховая гистограмма на а получена моделированием по методу Монте-Карло с учетом реальных условий работы экспериментальной аппаратуры и критериев обработки

Первичная информация обрабатывалась по программе геометрической и энергетической реконструкции событий [6]. На ленту суммарных результатов (DST) было записано 140 тыс. событий, удовлетворяющих следующим критериям:

1) $N_{\gamma} \ge 2$, 2) $E_{\gamma} \ge 500$ M₃B,

3) $k_{\gamma\perp} \ge 120$ МэВ,

где N_{γ} — число γ -квантов в событии, E_{γ} и $k_{\gamma\perp}$ — энергия и поперечный импульс ү-кванта.

3. ИНКЛЮЗИВНЫЕ СПЕКТРЫ π^0 -МЕЗОНОВ

Распределение по эффективной массе $M_{\gamma\gamma}$ попарно скомбинированных γ -квантов с энергией $E_{\gamma1} + E_{\gamma2} \ge 2$ ГэВ представлено на рис. 2. Точечными гистограммами на рис. 2 представлены распределения по эффективной массе комбинаций из двух γ -квантов, отобранных случайно из разных событий.

Моделирование реакций $d+C \rightarrow \pi^0 + x$ и $d+Cu \rightarrow \pi^0 + x$ производилось на основе данных по множественному рождению π^0 -мезонов, полученных в экспериментах на двухметровой пропановой камере ЛВЭ [7]. Для моделированных событий проверялось попадание γ -квантов в установку, разыгрывалось энерговыделение в модулях γ -спектрометра и требовалось выполнение условий триггера. События записывались на DST для последующей обработки с помощью программ геометрической и энергетической реконструкции событий. Величины инклюзивных сечений образования нейтральных пионов вычислялись для углов $\theta_{\pi} \leq 16^{\circ}$ и энергий $E_{\pi} \geq 2$ ГэВ (л. с.).

Рис. 3. Дифференциальные сечения образования π^0 -мезонов в реакциях $d+C \to \pi^0+x$ и $d+Cu \to \pi^0+x$ для области $\theta\pi \leq 16^\circ$, $E_\pi \geq 2$ ГэВ в зависимости от квадрата поперечного импульса (л. с.)

На рис. З представлены экспериментальные распределения π^0 -мезонов в реакциях $d + C \rightarrow \pi^0 + x$ и $d + Cu \rightarrow \pi^0 + x$ в зависимости от P_t^2 , интегрированные в указанной выше области углов и энергий.

На рис. 4 представлены зависимости инвариантных инклюзивных сечений образования π^0 -мезонов в dС- и dСи-взаимодействиях от кумулятивного числа X. Переменная X определяется из законов сохранения энергии-импульса для реакции $XN_i + N_t \rightarrow (X+1)N_f + \pi^0$:

$$X = [M_N E_{\pi^0} - M_{\pi^0}^2/2] / [E_N M_N - E_N E_{\pi^0} - M_N^2 + P_N P_{\pi^0} \cos \theta_{\pi^0}],$$

Рис. 4. Инвариантные инклюзивные сечения образования π^0 -мезонов в реакциях $d + C \to \pi^0 + x$ и $d + Cu \to \pi^0 + x$ в зависимости от кумулятивного числа X

где M_N , M_{π^0} , E_N , E_{π^0} , P_N , P_{π^0} — соответственно массы, энергии и импульсы нуклона и π^0 -мезона; θ_{π^0} — угол вылета π^0 -мезона в л. с.; $P_N = 4,5$ ГэВ/с.

Приведенные на рис. 3 и 4 ошибки являются статистическими.

4. ОЦЕНКА СИСТЕМАТИЧЕСКИХ ОШИБОК

Систематические ошибки могут быть обусловлены неконтролируемым разбросом мониторного счета, приходящегося на одно регистрируемое событие, и ошибками при оценке комбинаторного фона.

Рис. 5. Мониторный счет на одно регистрируемое событие в зависимости от числа событий в цикле ускорения: a — для реакции $d + C \rightarrow \pi^0 + x$ и δ — $d + Cu \rightarrow \pi^0 + x$

Величины мониторного счета, приходящиеся на одно событие, измеренные в разные промежутки времени в течение эксперимента, в зависимости от загрузки установки (от числа регистрируемых событий в одном цикле ускорения) показаны на рис. 5 a, δ (для реакций dC и dCu соответственно). Величины разброса мониторного счета относительно средних значений, полученных в течение каждого эксперимента, показаны на рис. 6.

Рис. 6. Отклонения мониторного счета, приходящегося на одно регистрируемое событие, от среднего значения, полученного в течение каждого эксперимента

Как видно из рис. 5 и 6, максимальное отклонение от среднего значения, так же как и изменение числа мониторного счета с изменением загрузки, не превышает 20 %.

Рис. 7. Отношения сечений, полученных при разных способах оценки фона

На рис. 7 представлено отношение сечений, полученных разными способами: при оценке комбинаторного фона путем случайного отбора γ -квантов из разных событий (так называемым перемешиванием) и с использованием результатов моделирования методом Монте-Карло. Оценка фона путем перемешивания проводилась двумя способами отбора: без каких-либо ограничений (светлые кружочки) и при отборе событий по следующим критериям:

- суммарная энергия в событии $E \leq 5,5$ ГэВ (около 99 % всех событий);
- сумма энергий случайно отобранных γ -квантов $E_1 + E_2 \leq 5,5$ ГэВ;
- расстояние между случайно отобранными γ-квантами на поверхности спектрометра L ≤ 17 см (расстояния, отсутствующие в одном событии).

Как видно из рис. 7, после более адекватного отбора γ -квантов из разных событий расхождение между двумя результатами существенно сокращается и не превышает 20 % в области $0, 6 \leq X \leq 1, 5$.

5. АНАЛИЗ ПОЛУЧЕННЫХ ДАННЫХ

Параметризация экспериментальных данных для инвариантного сечения в зависимости от *X* производилась с помощью экспоненциальной функции

$$(E/A_p)d^3\sigma/d^3p = A_1 \exp(-B_1 X),$$
 (2)

где $A_p = 2$ — относительная атомная масса ядра-снаряда.

Для параметров A_1 (мб · ГэВ $^{-2}$ · c^3) и B_1 найдены следующие значения:

$$A_1 = 604 \pm 32,$$
 $B_1 = 8,34 \pm 0,06$ — для реакции $d + \mathbf{C} \rightarrow \pi^0 + x;$
 $A_1 = 1025 \pm 117,$ $B_1 = 8,21 \pm 0,12$ — для реакции $d + \mathbf{Cu} \rightarrow \pi^0 + x;$

Отношение инвариантных сечений образования π^0 -мезонов на ядрахмишенях С и Си представлено в виде $\sigma_{\rm Cu}/\sigma_{\rm C} = (A_{\rm Cu}/A_{\rm C})^n = (63, 5/12)^n$. Значения параметра n в зависимости от переменных X и P_t^2 приведены на рис. 8. Как видно из рисунка, в области X > 0, 6 инвариантное сечение образования π^0 -мезонов в дейтрон-ядерных взаимодействиях слабо зависит от массы ядра-мишени. Среднее значение n равно $0, 39 \pm 0, 02$. Полученные данные свидетельствуют о том, что в процессах (1) при X > 0, 6 участвует периферическая область ядра-мишени.

Зависимость инвариантного сечения от массы ядра-мишени мало меняется с изменением X (см. рис. 8, a), что согласуется с результатом, полученным в [2].

Такое поведение параметра n, по-видимому, связано с тем, что в рождении мезонов доминирует механизм кварковой рекомбинации [8], обсужденный в [2].

Рис. 8. Зависимость степени *n* в параметризации $Ed^3\sigma/d^3p \sim A_T^n$: *a* — от переменной *X* и *б* — от квадрата поперечного импульса π^0 -мезонов для реакций $d + A_T \to \pi^0 + x$, где $A_T = C$, Cu

Обозначая через p_i , i = 6, 9, ..., вероятности образования в ядре *i*-кварковых конфигураций для области $X \sim 1$, где вклад девяти и более кварковых конфигураций незначителен [9], инвариантное сечение реакций (1) с точностью до постоянного множителя можно представить в виде

$$Ed^{3}\sigma/d^{3}p \sim A\{1 - \sum_{i=6, 9, \dots} p_{i}\}n_{q/3}(X) + p_{6}[(A-2)n_{q/3}(X) + n_{q/6}(X/2)], (3)$$

где

$$Xn_{q/i}(X) = [B(\eta_i^{(2)}, \eta_i^{(1)} + 1)]^{-1}(1 - X)^{\eta_i^{(1)}} X^{\eta_i^{(2)}}$$

— распределения кварков в i-кварковой конфигурации, определенные из правил кваркового счета при $\eta_i^{(1)}=2(i-1)-1,~\eta_6^{(2)}=0,5,~\eta_3^{(2)}\approx 0,65$ [10], B(...,~..)— эйлерова β -функция.

В предположении, что вероятность p_3 отсутствия корреляций нуклонов в ядре равна

$$p_3 = 1 - \sum_{i=6, 9, \dots} p_i \approx 1 - p_6,$$

на основании формулы (3) и данных, полученных в настоящей работе (см. рис. 4) и в [2, 3] для области $0,95 \le X \le 1,1$, для вероятностей образования 6-кварковых конфигураций в ядрах дейтерия, гелия и углерода получены следующие оценки:

$$p_6(^2d) \approx 2\%; \ p_6(^4\text{He}) = 5 \div 10\%; \ p_6(^{12}\text{C}) = 20 \div 40\%.$$
 (4)

Нижние границы p_6 для ядер гелия и углерода в (4) получены без учета эффекта экранирования нуклонов и 6-кварковых конфигураций в ядре: в формуле (3) принято $\sigma \sim A_{\phi}^{\alpha}$, где $\alpha = 1$, A_{ϕ} — число фрагментирующих центровнуклонов и 6-кварковых конфигураций. При минимально возможном $\alpha = 2/3$ указанные значения p_6 увеличиваются примерно в два раза.

6. ДВАЖДЫ ДИФФЕРЕНЦИАЛЬНОЕ СЕЧЕНИЕ

На статистике ~ 45000 π^0 -мезонов определено дважды дифференциальное сечение реакции $d + C \rightarrow \pi^0 + x$ в зависимости от угла вылета и энергии π^0 -мезонов:

$$(E/A) (d^3 \sigma/d^3 p) = (E/2) \Delta \sigma/(p^2 \Delta p \Delta \Omega) \approx \Delta \sigma/(2E \sin \theta \Delta \theta \Delta E 2\pi).$$
(5)

Результаты, выраженные в единицах мб/Гэ B^2 , приведены в таблице и на рис. 9.

Полученные данные позволяют проверить так называемый кластерный механизм образования пионов. Если предположить существование промежуточного объекта (например, кластеров, предложенных в [11,12]), то инвариантное сечение образования π^0 -мезонов

$$Ed^3\sigma/d^3p \sim \exp(-E^*/T_0),\tag{6}$$

где E^* — энергия π^0 -мезона в системе покоя кластера, $T_0 \sim m_{\pi}$ — универсальная адронная температура. В лабораторной системе

$$Ed^{3}\sigma/d^{3}p \sim \exp\left(-E/T\right), \ T = T_{0}(1-\beta^{2})^{1/2}/(1-\beta\cos\theta),$$
 (7)

где β — скорость движения кластера.

Значения β , полученные из (7) при $T_0 = 160$ МэВ (как принято в [11]) для различных углов вылета π^0 -мезонов, представлены на рис. 10. Как

-													
οθ	$14 \div 16$	$1,08\pm0,11$	$0,486 \pm 0,048$	$0,232 \pm 0,025$	$0,103\pm0,015$	$0,040 \pm 0,008$	$0,0144 \pm 0,0035$	$0,0078 \pm 0,0029$	$0,0014 \pm 0,0008$	$0,00073 \pm 0,0005$			
	12÷14	1.57 ± 0.08	$0,876\pm 0,044$	$0,465\pm 0,028$	$0,162 \pm 0,012$	$0,076 \pm 0,007$	$0{,}0414\pm 0{,}0056$	$0{,}0191\pm 0{,}0034$	$0{,}0065\pm 0{,}0014$	$0{,}0033\pm0{,}0010$	$0,0033 \pm 0,0021$	Ι	
	$10 \div 12$	$2,39\pm0,09$	$1,453 \pm 0,055$	0.735 ± 0.032	$0,365\pm 0,019$	$0,186 \pm 0,012$	$0,099 \pm 0,009$	$0,0428\pm 0,0047$	$0{,}0193\pm 0{,}0028$	$0,0110 \pm 0,0022$	$0{,}0056\pm 0{,}0015$	Ι	
	$8 \div 10$	$3,23\pm0,12$	$1,96\pm0.07$	$1,04\pm0,04$	0.525 ± 0.024	$0,278\pm 0,016$	0.147 ± 0.010	$0,075 \pm 0,006$	$0,042 \pm 0,004$	$0,0191 \pm 0,0026$	$0,0124 \pm 0,0021$	$0{,}0064\pm 0{,}0016$	$0{,}0039\pm0{,}0014$
	$6 \div 8$	$3,81\pm0,15$	$2,59\pm0,09$	$1,54\pm0,05$	$0,850\pm 0,034$	$0,457 \pm 0,021$	$0,256 \pm 0,014$	$0,144 \pm 0,010$	$0,079 \pm 0,006$	$0,042 \pm 0,004$	$0,0208 \pm 0,0028$	$0,0135 \pm 0,0024$	$0,0063 \pm 0,0015$
	$4 \div 6$	$4,97\pm0,33$	3.04 ± 0.21	$1,79\pm0,12$	$1,08\pm0,08$	$0,649 \pm 0,052$	$0,325 \pm 0,029$	$0,202 \pm 0,020$	$0,099 \pm 0,012$	$0,052 \pm 0,008$	$0,034 \pm 0,006$	$0,0164 \pm 0,0041$	$0,0094 \pm 0,0029$
	$2 \div 4$	10.4 ± 1.2	$7,0\pm0.9$	$4,2\pm0,6$	$1,68\pm0,27$	$1,10\pm0,24$	0.75 ± 0.21	0.56 ± 0.19	$0,34\pm0,14$	0.29 ± 0.18	$0,082 \pm 0,052$	$0,061 \pm 0,042$	—
$E, \Gamma_{\mathfrak{I}}B$		$2,0 \div 2,2$	$2,2 \div 2,4$	$2,4 \div 2,6$	$2,6 \div 2,8$	$2,8\div3,0$	$3,0 \div 3,2$	$3,2 \div 3,4$	$3,4\div3,6$	$3.6 \div 3.8$	$3,8 \div 4,0$	$4,0 \div 4,2$	$4,2 \div 4,4$

Дважды дифференциальное сечение реакции $d+\mathrm{C} o \pi^0+x$ в зависимости от угла вылета heta и энергии E π^0 -мезонов

Рис. 9. Инвариантное сечение $\sigma_{\rm inv} = (E/2)d^3\sigma/d^3p$ (мб · ГэВ⁻²) реакции $d + C \rightarrow \pi^0 + x$ в зависимости от угла вылета θ и энергии $E \pi^0$ -мезонов (л. с.)

Рис. 10. Зависимость параметра β в (7) при $T_0 = 160$ МэВ от угла вылета π^0 -мезонов. Штриховой линией представлено среднее значение β в области $\theta \leq 8^\circ$ при $T_0 = 140$ МэВ

видно, характер зависимости $\beta(\theta)$ в области углов $\theta < 8^{\circ}$ не противоречит предположению о существовании промежуточного кластера, но возможные

скорости кластера получаются малыми: $\beta < 0,85$ (при $T_0 > 110$ МэВ). Для объяснения таких скоростей необходимо предположить, что в реакции участвует более двух нуклонов ядра-мишени, что не согласуется с наблюдаемой A-зависимостью для мишени (см. рис. 8).

В заключение авторы выражают благодарность В.В. Архипову, С.Г. Резникову, С.Н.Пляшкевичу, В.И.Прохорову и А.И.Широкову за помощь в измерениях, а также Е.Б.Плеханову и С.С.Шиманскому за полезные замечания.

ЛИТЕРАТУРА

- 1. Абраамян Х. У. и др. // ЯФ. 1996. Т. 59. С. 271.
- 2. Abraamyan Kh. U. et al. // Phys. Lett. 1994. V. 23B. P. 1.
- 3. Абраамян Х.У. и др. // ЯФ. 1997. Т. 60. С. 2014.
- 4. Astvatsaturov R. G. et al. // Nucl. Instr. Meth. 1979. V. 163. P. 343.
- 5. Baldin A. M. // Part. and Nucl. 1977. V.8. Р.429; Балдин А. М. Препринт ОИЯИ Р7-5808. Дубна, 1971.
- 6. Говорун Н. Н. и др. // Тр. совещ. по програм. и мат. методам решения физ. задач. Дубна, 1973. С. 453.
- 7. Agakishiev G. N. et al. JINR, E1-84-321. Dubna, 1984; Гулканян Г. Р. и др. // ЯФ. 1987. Т. 46. С. 826.
- 8. Berlad G., Dar A. // Phys. Lett. 1981. V. B102. P. 385.
- 9. Лукьянов В. К., Титов А. И. // ЭЧАЯ. 1979. Т. 10. С. 815.
- 10. Pirner H. J., Vary J. P. // Phys. Rev. Lett. 1981. V. 46. P. 1376.
- 11. Горенштейн М.И., Зиновьев Г.М., Шелест В.П. // ЯФ. 1977. Т. 26. С. 788.
- 12. Розенталь И.Л., Тарасов Ю.А. // УФН. 1993. Т. 163. С. 29.

Получено 29 марта 2004 г.

Редактор О. Г. Андреева Макет Е. В. Сабаевой

Подписано в печать 20.05.2004. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,88. Уч.-изд. л. 1,07. Тираж 365 экз. Заказ № 54438.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@pds.jinr.ru www.jinr.ru/publish/