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A Catastrophe in Quantum Mechanics

The standard scattering theory (SST) in nonrelativistic quantum mechanics (QM)

is analyzed. Self-contradictions of SST are deconstructed. A direct way to calculate

scattering probability without introduction of a finite volume is discussed. Substantia-

tion of SST in textbooks with the help of wave packets is shown to be incomplete.

A complete theory of wave packet scattering on a fixed center is presented, and its

similarity to the plane wave scattering is demonstrated. The neutron scattering

on a monatomic gas is investigated, and several problems are pointed out.

A catastrophic ambiguity of the cross section is revealed, and a way to resolve this am-

biguity is discussed.

The investigation has been performed at the Frank Laboratory of Neutron Physics,

JINR.
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Êàòàñòðîôà â êâàíòîâîé ìåõàíèêå

Àíàëèçèðóåòñÿ ñòàíäàðòíàÿ òåîðèÿ ðàññåÿíèÿ (ÑÒÐ) â íåðåëÿòèâèñòñêîé

êâàíòîâîé ìåõàíèêå (ÊÌ). Âñêðûâàþòñÿ ïðîòèâîðå÷èÿ ÑÒÐ. Îáñóæäàåòñÿ ïðÿ-

ìîé ñïîñîá âû÷èñëåíèÿ âåðîÿòíîñòè ðàññåÿíèÿ áåç ïðèâëå÷åíèÿ êîíå÷íîãî îáú-

åìà. Ïîêàçàíî, ÷òî îáîñíîâàíèå ÑÒÐ â íàó÷íîé ëèòåðàòóðå íåóáåäèòåëüíî. Èçëà-

ãàåòñÿ ïîëíàÿ òåîðèÿ ðàññåÿíèÿ âîëíîâûõ ïàêåòîâ íà ôèêñèðîâàííîì öåíòðå

è äåìîíñòðèðóåòñÿ åå ñõîäñòâî ñ òåîðèåé ðàññåÿíèÿ ïëîñêèõ âîëí. Èññëåäóåòñÿ

ðàññåÿíèå íåéòðîíîâ íà îäíîàòîìíîì ãàçå è óêàçûâàþòñÿ âîçíèêàþùèå ïðè ýòîì

ïðîáëåìû. Îáíàðóæåíà êàòàñòðîôè÷åñêàÿ íåîäíîçíà÷íîñòü â îïðåäåëåíèè ñå÷å-

íèÿ ðàññåÿíèÿ. Îáñóæäàåòñÿ ñïîñîá ïðåîäîëåíèÿ ýòîé íåîäíîçíà÷íîñòè.

Ðàáîòà âûïîëíåíà â Ëàáîðàòîðèè íåéòðîííîé ôèçèêè èì. È. Ì. Ôðàíêà

ÎÈßÈ.

Ñîîáùåíèå Îáúåäèíåííîãî èíñòèòóòà ÿäåðíûõ èññëåäîâàíèé. Äóáíà, 2004



1. INTRODUCTION

Here we deal with nonrelativistic scattering theory. To be more precise
we shall speak about neutron elastic and inelastic scattering, which is met in
condensed matter research. We limit ourselves to this case for the sake of sim-
plicity only. Everything we discuss here can be generalized to more complicated
processes.

The simplest process is elastic s-wave scattering from a ˇxed center, which
is usually described by the wave function

Ψ = exp (ikr) − b

r
exp (ikr), (1)

containing an incident plane wave and a scattered spherical wave with a factor b
called the scattering amplitude. This amplitude has dimension of length, and it
gives cross section 4π|b|2 with dimension of area.

Such wave function is not appropriate for description of scattering, because it
does not satisfy the free Schréodinger equation. According to quantum mechanics
we need an asymptotic wave function after scattering, which is a superposition of
free states satisfying the free Schréodinger equation. In the next section we show
how to do that by nonstationary and stationary methods.

The nonstationary method is well known, and in the 3rd section we brie�y
discuss how this method is used in some textbooks [1, 2]. These books are
considered as providing the proof of validity of the SST. However, their proof
is not correct, and we show where. The main point is: the proof starts with
an initial wave-packet state, and scattering probability is deˇned as a transition
from the wave packet state to the state of a plane wave. We claim that such
transition is impossible, because unitarity is violated. In the mentioned textbooks
unitarity is considered as equality of the number of plane wave components
before and after scattering. However, this equality means conservation of wave
packet normalization. So, to be consistent, we need to ˇnd the transition from
an initial wave packet state into a ˇnal also wave packet state, and in the section
4 we show how to do at least for elastic scattering of a wave packet on a ˇxed
center.

It is of a surprise to ˇnd out that the scattering probability of the wave packets
does not depend on impact parameter, though this fact can be well explained in
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wave mechanics. However, to get cross section from the scattering probability
we need to add to the wave mechanics an additional hypothesis that scattering is
absent, when the target is outside of the wave packet.

In section 5 we consider scattering of neutrons from an arbitrary system,
taking into account that wave packets scatter like plane waves. The standard
approach starting with Fermi golden rule is criticized, and the direct way of
calculation of the scattering probability is described. In section 6, this approach
is applied to the neutron scattering on a monatomic gas. First we show how to get
standard formulas for total and differential cross section. After that we show that
the value of the cross section is uncertain, because calculation of it in different
ways gives different and even diverging expressions. We conclude that analysis
of scattering reveals catastrophic discrepancy inherent in quantum mechanics, and
we can only suggest some way to resolve this difˇculty.

In the ˇnal section we give a summary of the paper, and sum up all our
reasonings and contradictions, which were met and resolved here.

2. ASYMPTOTIC WAVE FUNCTION

According to the standard quantum mechanics (SQM), if a system has eigen
states ψn, its initial state is ψi, and the wave function after scattering is Ψ, then to
ˇnd a result of scattering we need to expand Ψ over eigen states, i.e. to represent
it in the form

Ψ = ψi +
∑

f

aifψf , (2)

where aif are expansion coefˇcients, and index i in them points to the initial state
before scattering. It immediately follows from (2) that scattering is a transition
from the state ψi to states ψf , and probability of transition from the initial i-
state to a deˇnite ˇnal f �= i-state is described by dimensionless magnitudes
wif = |aif |2. The unitarity condition is

|1 + aii|2 +
∑
f �=i

|aif |2 = 1. (3)

Summation in expression (2) means discrete spectrum, used here for the sake
of simplicity, however, it is not essential, and we can (and shall) deal also with
continuous spectra of quantum numbers i.

Now we can show that (1) does not correspond to the above principles of
calculation of transition probabilities in quantum mechanics.
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2.1. What is Wrong in SST . What do we do in SST? Eigen states of a
particle are described by plane waves ψi = exp (ikr), but the scattered wave
function after, say, elastic s-wave scattering, is described by the spherical wave,
Ψ = ψi ∝ exp (ikr)/r, which is not an eigen state, and even is not a solution of
the free Schréodinger equation, because

[∆ + k2]
exp (ikr)

r
= −4πδ(r), (4)

where the right-hand side contains the Dirac δ-function, which is not identical
zero in all the space.

2.2. What Should We Expect According to SQM According to principles of
SQM we must represent the scattered wave function as a superposition of plane
waves

Ψ = exp (ikr) −
∫

f(Ω)dΩ exp (ikΩr), (5)

where Ω is a solid angle of the scattered particle, and f(Ω) is dimensionless prob-
ability amplitude. Then the intensity of scattering into the angle Ω is described
by dimensionless probability

dw(Ω) = |f(Ω)|2dΩ, (6)

and the total probability w of scattering is dimensionless integral

w =
∫

dw(Ω) =
∫

|f(Ω)|2dΩ. (7)

To satisfy unitarity we must write the incident wave with some amplitude
1 − f(0), then the unitarity condition will lead to

2Ref(0) = |f(0)|2 + w. (8)

2.3. How to Meet Our Expectation. To be consistent we need to ˇnd
asymptotic limit of the wave function (1). It is possible to do that in two ways:
to ˇnd stationary function after scattering at long distances from the scatterer, or
to ˇnd nonstationary wave function at long times t → +∞.

2.3.1. Asymptotic of Stationary Function at Long Distances. The formula (1)
can be improved immediately, if we use Fourier expansion for the spherical wave:

exp (ikr)
r

=
i

2π

∫
exp (ip‖r + ipz|z|)

d2p‖
pz

, (9)
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where we ˇx the direction from the scatterer to the observation point as z-axis,
and integrate over all components p‖ parallel to x, y plane with z-component of

the momentum being equal to pz =
√

k2 − p2
‖.

The range of integration over p‖ (9) is inˇnite, and, in particular, it includes

those p‖, for which p2
‖ > k2. At these p‖ the component pz is imaginary,

and exp(ipz|z|) is an exponentially decaying function. If the distance to the
observation point is large enough (later we discuss what does it mean ®enough¯),
we can neglect exponentially decaying terms, and restrict integration to p2

‖ � k2:

exp (ikr)
r

≈ i

2π

∫
p2
‖<k2

exp (ip‖r + ipz|z|)
d2p‖
pz

. (10)

In this integral we can substitute

d2p‖
pz

= d3pδ(p2/2 − k2/2)Θ(pzz > 0), (11)

where p2 = p2
‖ + p2

z, pz is a variable, and we introduced the step function

Θ(x), which is unity or zero, when inequality in its argument is satisˇed or not,
respectively. Substitution of (11) into (10) gives

exp (ikr)
r

=
i

2π

∫
exp (ipr)Θ(pzz > 0) d3pδ(p2/2 − k2/2) =

=
ik

2π

∫
4π

exp (ikΩr)dΩ, (12)

where kΩ is the wave vector of the length k pointing into the direction Ω in the
element dΩ of the solid angle Ω.

Let us now ˇnd what values do we neglect excluding exponentially decaying
terms from the integrand. For that we calculate the integral

1
2π

∣∣∣∣∣∣∣∣
∫

p2
‖>k2

exp(−p′zz + ip‖r‖)
d2p‖
p′z

∣∣∣∣∣∣∣∣ <
1
2π

∫
p2
‖>k2

exp(−p′zr)
d2p‖
p′z

=
1
r
, (13)

where p′z =
√

p2
‖ − k2, and we replaced z by the distance r between scatterer

and observation point.
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Thus we have found the asymptotical form of the wave function after scat-
tering

Ψ(k, r) = exp (ikr) − b

r
exp (ikr) = exp (ikr) − ibk

2π

∫
4π

exp (ikΩr)dΩ, (14)

which is equivalent to (5), with scattering probability amplitude

f(Ω) =
ibk

2π
= i

b

λ
, (15)

and scattering probability

dw(Ω) = |f(Ω)|2dΩ =
∣∣∣∣ b

λ

∣∣∣∣2 dΩ, w =
∫
4π

dw(Ω) = 4π

∣∣∣∣ b

λ

∣∣∣∣2 , (16)

where λ = 2π/k is the neutron wave length. We see that (1) is reduced to (14),
when we neglect the terms of the order b/r. Since the decision to neglect or not
to neglect this term is at will of the physicist, then the distance r from the center
is not asymptotical one, being even of light years size, if he does not neglect it.
On the other side, the distances of the order 1 �A are asymptotical ones, if b/r is
neglected.

2.3.2. The Nonstationary Derivation of Asymptotic Wave Function at Large
Times t → ∞. To ˇnd nonstationary asymptotic of the wave function (1) it is
sufˇcient to include in it the time-dependent factor exp (−iωkt), where ωk =
k2/2, and to use Fourier representation

δψ(r, t) =
b

r
exp (ikr − iωkt) =

=
b

(2π)2

∫
d3p

ωp − ωk − iε
exp (ipr − iωkt), ωp = p2/2, (17)

for the spherical wave.
We can add and subtract iωpt in the exponent, and represent the ˇeld (17)

as a superposition of plane waves

δψ =
∫

f̃(p, t) exp (ipr − iωpt)d3p, (18)

with amplitudes

f̃(p, t) =
b

(2π)2
exp (i[ωp − ωk]t)

ωp − ωk − iε
, (19)

which depend on time t.
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Now we use the evident relation

exp (i[ωp − ωk]t)
ωp − ωk − iε

= i

t∫
−∞

exp (i[ωp − ωk]t′)dt′, (20)

which in the limit t → ∞ gives the law of energy conservation

i lim
t→∞

t∫
−∞

exp (i[ωp − ωk]t′)dt′ = 2πiδ(ωp − ωk) = 4πiδ(p2 − k2). (21)

In this limit (18) is

δψ =
∫

ib

π
exp (ipr−iωpt)d3pδ(p2−k2) =

ibk

2π

∫
4π

dΩ exp (ikΩr−iωkt), (22)

and we get dimensionless scattering probability amplitude (15) and the total
scattering probability w = 4π|b/λ|2, which coincides with (16).

2.4. Scattering Cross Section. We found dimensionless scattering probabil-
ity, but almost all the experiments are interpreted in terms of scattering cross
sections. To get a cross section we are to introduce a front area A of the inci-
dent particle wave function, and suppose that scattering takes place only, if the
scattering center crosses this area.

Let us compare experimental and theoretical deˇnitions of the cross section
in an experiment schematically shown in Fig. 1. If the detector registers Ns

S

D

A

d

NS

Ni

Fig. 1. Deˇnition of cross section for a single atom
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neutrons per unit time, then the total probability W for a single neutron to be
scattered in the sample into the given direction is

W =
Ns

Ni
=

Ns

JS
, (23)

where J is the neutron �ux density, S is the area of the sample immersed into
the neutron �ux, and Ni = JS is the total number of neutrons incident on the
sample per unit time.

The scattering probability w1 per unit atom is deˇned as

w1 =
W

Na
, (24)

where Na is the number of atoms on the way of a single neutron. If the neutron
wave function has area A, then the number of atoms Na is equal to N0Ad, where
N0 is atomic density and d is the sample thickness. From (24) we immediately
ˇnd the scattering cross section of a single neutron per single atom

σ = Aw1 =
W

N0d
=

Ns

NiN0d
=

Ns

JSN0d
=

Ns

JN0V
, (25)

where V is the sample volume V = Sd. The second equality in (25) deˇnes
experimentally measured quantity for a thin sample with area S wider than the
beam area, and the last equality deˇnes the experimentally measured quantity
for a small sample with area S smaller than the beam width. To interpret the
measured quantity as a cross section we must compare it to Aw1. Of course,
this A includes also dimension of the single nucleus, so for a point neutron the
cross section can be interpreted as cross area of the nucleus. However, in this
case we have a paradox: sometimes the cross section σ is several orders of
magnitude larger than the nucleus area. We avoid the paradox, if accept that A
is considerably larger than nucleus.

It is important to note that the neutron-nucleus scattering process is a conse-
quence of a short range interaction. However, this short range interaction becomes
a long range one because of properties of the neutron wave function. This long
range property is demonstrated in such effects as total re�ection and diffraction
in crystals. To calculate probability of these effects it is sufˇcient to suppose that
the wave function is a plane wave. Introduction of the ˇnite front area means
that the particle wave function is not a plane wave, but a wave packet.

This wave packet cannot be spreading, because, if it were, the transmission
of the sample would decrease, when sample is shifted from source to detector,
and no one, in our knowledge, had ever observed such a phenomenon.
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One of the possible candidates for the nonspreading wave packet is the
singular de Broglie wave packet (dBWP) [3Ä5]

ψdB(r, t) =
√

s

2π
exp (ikr − iωt)

exp (−s|r − vt|
|r − vt| , (26)

where ω = [k2 − s2]/2, s determines the packet width, and v is wave packet
velocity, which in our units m = � = 1 coincides with the wave vector k. The
front area of (26) can be estimated as AdB = π/s2. This area is considerably
larger than interatomic distance, because of long range interaction with many
atoms, so the dimensions of nuclei can be neglected.

3. THE PROOF OF SST IN TEXTBOOKS AND ITS FLAW

The reader may doubt our deˇnition of the cross section having in mind
that in such well-known books as those by Goldberger & Watson [1], and by J.
Taylor [2] wave packets are used to proof correctness of SST. We brie�y outline
here their proof and show its �aw. The main point is the following: the incident
wave packet |φ〉 is represented as the Fourier expansion

∫
d3pa(p)|p〉, where |p〉

is a plane wave with wave number p, and a(p) are Fourier coefˇcients. After
scattering this wave packet is transformed into∫

d3pa(p)|p′〉d3p′〈p′|Ŝ|p〉 =
∫

d3p′b(p′)|p′〉, (27)

where Ŝ is S-matrix, and

b(p′) =
∫ ′

〈p′|Ŝ|p〉a(p)d3p. (28)

The scattering probability is deˇned as

dw(p′) = |b(p′)|2d3p′, (29)

i.e. the scattering probability is deˇned by Fourier coefˇcients of the expansion. It
is the same as for free wave packet to deˇne scattering probability by |a(p)|2d3p.
Below we present more details of this proof and arguments against its validity.

3.1. Steps to the Proof
1. In this proof a wave packet |φ〉 for initial state of incoming particle long

before scattering is introduced. In this state the particle is far from scatterer
(target) and therefore its dynamics is described by free Hamiltonian H0:

|φ(t)〉 = exp (−iH0t)|φ〉. (30)
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The wave packet is represented by Fourier expansion over plane waves

|φ〉 ≡ |φ(k)〉 =
∫

d3pa(k − p)|p〉, (31)

where k is momentum of the packet, |p〉 is eigen function of the momentum
operator: 〈r|p〉 = exp (ipr), and a(p) are numerical coefˇcients.

2. A wave function |Ψ〉 of the particle at the interaction moment t = 0
is introduced. At that time dynamics of the particle is described by the full
Hamiltonian H containing interaction potential V . The time dependence of this
function is determined by expression |Ψ(t)〉 = exp (−iHt)|Ψ〉.

3. Two above functions |Ψ〉 and |φ〉 are related to each other by requirement
that at t → −∞ the wave function exp (−iHt)|Ψ〉 asymptotically transforms into
exp (−iH0t)|φ〉, i. e. at t → −∞ we have

exp (−iHt)|Ψ〉 → exp (−iH0t)|φ〉, (32)

or
|Ψ〉 = Ω+|φ〉, Ω+ = lim

t→−∞
U(0, t), U(0, t) = eiHte−iH0t. (33)

The limiting operator Ω+ is called Méoller operator [2].
4. According to (33) the operator U(0, t) satisˇes the differential equation

i
∂

∂t
U(0, t) = −eiHtV e−iH0t, (34)

because H − H0 = V . It follows from this equation that

Ω+ = 1 − i

0∫
−∞

eiHt′V e−iH0t′dt′, (35)

and

|Ψ〉 =

1 − i

0∫
−∞

dt′ eiHt′V e−iH0t′

 |φ〉 =

=
∫

d3pa(k − p)

1 − i

0∫
−∞

dt′ ei(H−Ep)t′V

 |p〉, (36)

where we used the relation exp (−iH0t)|p〉 = exp (−iEpt)|p〉.
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Integration of (36) over t′ leads to∫
d3pa(k − p)

[
1 − 1

H − Ep − iε
V

]
|p〉 =

∫
d3pa(k − p)|ψp〉, (37)

where the function |ψp〉, which replaces plane waves at the time, when interaction
is acting, is introduced.

5. This function is

|ψp〉 =
[
1 − 1

H − Ep − iε
V

]
|p〉. (38)

It satisˇes the full Schréodinger equation with interaction

(H − Ep)|ψp〉 = 0 (39)

and in agreement with standard representation contains the incident plane and
outgoing spherical waves.

6. Using the following identity

1
A

− 1
B

=
1
A

(B − A)
1
B

, (40)

we ˇnd that

1
H − Ep − iε

=
1

H0 − Ep − iε

(
1 − V

1
H − Ep − iε

)
. (41)

Therefore |ψp〉 is transformed to

|ψp〉 =
[
1 − 1

H0 − Ep − iε
T

]
|p〉, (42)

where

T = V − V
1

H − Ep − iε
V. (43)

7. An asymptotical state |χ〉 of the particle after scattering is deˇned. Its dy-
namics is again determined by the free Hamiltonian H0: |χ(t)〉 = exp (−iH0t)|χ〉.
This state is also a wave packet |χ〉 =

∫
d3p|p〉as(k, p).

8. A correspondence between |ψ〉 and |χ〉 is established by the requirement
that at t → +∞ the wave function exp (−iHt)|Ψ〉 transforms into exp (−iH0t)|χ〉:

exp(−iHt)|Ψ〉 → exp(−iH0t)|χ〉, (44)
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or

|χ〉 = lim
t→∞

eiH0t e−iHt

∫
d3pa(k − p)|ψp〉 =

= lim
t→∞

eiH0t

∫
d3pa(k − p) e−iEpt|ψp〉, (45)

where in the last equality equation (39) is taken into account.
9. The function |ψp〉 is expanded over plane waves. Then (45) becomes

|χ〉 = lim
t→∞

∫
d3pa(k − p)

∫
d3p′ eiEp′ t|p′〉〈p′||ψp〉 e−iEpt, (46)

with account of exp (iH0t)|p′〉 = exp (iEp′t)|p′〉. Substitution of (42) brings

|χ〉 = lim
t→∞

∫
d3p′|p′〉

∫
d3pa(k − p)×

×
[
δ(p − p′) − ei(Ep′−Ep)t

Ep′ − Ep − iε
〈p′|T |p〉

]
. (47)

10. It follows from (20) that

|χ〉 =
∫

d3p′|p′〉
∫

d3pa(k − p)[δ(p − p′) − 2πiδ(Ep′ − Ep)T (p′, p)] =

=
∫

d3p′|p′〉
∫

d3p〈p′|Ŝ|p〉a(k − p), (48)

where T (p′, p) = 〈p′|T |p〉, and scattering matrix Ŝ with matrix elements

〈p′|Ŝ|p〉 = δ(p − p′) − 2πiδ(Ep′ − Ep)T (p′, p) (49)

is introduced.
3.2. The �aw of the Proof. Above we presented main steps to the proof, but

not the proof itself. The steps are correct and they demonstrate that our approach
to get asymptotical state after scattering (compare (20), (21) with (47), (48)) is
well justiˇed.

Now we show the next step to the proof, which is not correct. This step
introduces probability of scattering. It is suggested that after scattering detectors

11



register not a wave packet but a plane wave, so the probability of scattering from
the state of the wave packet

|φ〉 ≡ |φ(k)〉 =
∫

d3pa(k − p)|p〉

with momentum k into the plane wave |p′〉 with momentum p′ is

dw = d3p′|〈p′||χ〉|2 = d3p′

∣∣∣∣∣∣
∫

d3p〈p′|Ŝ|p〉a(k − p)

∣∣∣∣∣∣
2

. (50)

Since the state |p〉 is nonnormalizable, such a deˇnition violates unitarity: the
normalized state transforms into nonnormalizable, so the norm is not conserved.

In all the textbooks pointed above the unitarity is considered as equality of
number plane wave components in the initial and ˇnal wave packets, but not as
equality of norms of the initial and ˇnal states. We think it is not correct.

From unitarity of the S-matrix it follows that norm of the wave function is
conserved, so if |φ〉 is a wave packet normalized to unity, then the ˇnal wave
function |χ〉 after scattering must be also normalized to unity. It would be more
consistent, if the ˇnal state is represented as a superposition of wave packets

|χ〉 =
∫

d3k′b(k → k′)|φ(k′)〉, (51)

and b(k → k′) = 〈φ(k′)|Ŝ|φ(k)〉 deˇnes the amplitude of transition probability
from the wave packet state |φ(k)〉 with momentum k into wave packet state
|φ(k′)〉 with momentum k′.

In fact, in the books [1, 2] and others only scattering of plane waves is
considered, and the initial wave packet deˇnes only spectrum of plane waves in
the incident beam. However, in this case it is more accurate to ˇnd probability
amplitude of the plane wave scattering

df = −2πiT (p′, p)δ(p2/2 − p′2/2)d3p′ = 2πipT (p′, p)dΩ′ (52)

into solid angle element dΩ′, to make with it the probability of scattering

dw = |2πpT (p′, p)|2dΩ′,

and to average this probability over the spectrum of initial states

< dw >=

∫
|a(k − p)|2d3p|2πpT (p′, p)|2

 dΩ′. (53)
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However, in this case we obtain only dimensionless probability, and it is im-
possible to ˇnd a cross section because plane waves do not have ˇnite dimension
of the wave front.

With deˇnition (50) of scattering probability it is possibly to deˇne the
scattering cross section but even in this case, to get a cross section from probability
you need an additional hypothesis, which was never clearly formulated because
it looks evident from the common sense.

3.3. Transformation of Probability into Cross Section. This transformation
is slightly different in different books, and it is useful to look at this difference.
We present here only two ways presented in books [1,2].

3.3.1. Transition to Cross Section According to Goldberger & Watson. Ac-
cording to (50) the scattering probability is deˇned by the Fourier coefˇcient in
expansion (48) over plane waves |p′〉:

dw = d3p′(2π)2T (p′, p1)T
∗(p′, p2)a(k − p1)a

∗(k − p2)×
× d3p1d

3p2δ(p2
1/2 − p2

2/2)δ(p′2/2 − p2
1/2), (54)

it means that the incident wave packet is considered as a coherent unity, and not
as incoherent superposition of plane waves in the incident beam.

The momenta p1 and p2 in matrix elements T (p′, p1,2) are replaced by
the average momentum k of the initial wave packet. As a result we obtain:
T (p′, p1)T

∗(p′, p2) ≈ |T (p′, k)|2. The momentum p1 in δ(p′2/2− p2
1/2) is also

replaced by k, and in result the product d3p′δ(p′2/2 − p2
1/2) is transformed to

kdΩ′, where Ω′ is the solid angle in the space of vectors p′. The δ-function
δ(p2

1/2 − p2
2/2) is represented as

δ(p2
1/2 − p2

2/2) =
1
2π

∞∫
−∞

dt exp (it(p2
1 − p2

2)/2). (55)

The difference p2
1 − p2

2 in the exponent is replaced by

p2
1 − p2

2 = (p1 + p2)(p1 − p2) ≈ 2k(p1 − p2). (56)

After that expression (54) becomes

dw = dΩ′k2π|T (p′, k)|2
∞∫

−∞

dt|φ(tk)|2, (57)

where the representation

φ(r) = 〈r|φ〉 =
∫

d3pa(k − p)〈r|p〉 =
∫

d3pa(k − p) exp (ipr) (58)

of the wave packet |φ〉 is used.
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If we choose the coordinate system with z-axis along k, then (57) becomes
identical to

dw = dΩ′2π|T (p′, k)|2
∞∫

−∞

dz|φ(0, 0, z)|2. (59)

Since the wave packet φ is normalized to unity∫
d3r|φ(r)|2 = 1, (60)

the integral
∫
|φ(0, 0, z)|2dz has dimensionality 1/cm2, therefore it can be con-

sidered as density of the incident particles J . It follows immediately that

dσ =
dw

J
= dΩ′2π|T (p′, k)|2, (61)

and the obtained cross section does not depend on the form of the wave packet.
However it is important to note, that the target scatterer is supposed to cross
through the wave packet |φ〉.

3.3.2. Transition to Cross Section According to J. Taylor. According to (57)
the scattering center crosses the wave packet of the scattered particle, and at the
moment t = 0 it coincides with the packet center [1], as is shown in Fig. 2. Just
because of that the expression contains φ(kt):

φ(kt) = 〈r|φ〉|r=kt =
∫

d3pa(k − p) exp (ipkt) (62)

instead of φ(r) (58).

z = kt
�

Fig. 2. Position of scatterer at t = 0 with respect to wave packet of scattered particle. On
the left-hand side the packet center coincides with scatterer. Such a position is used in [1].
On the right-hand side the position of the packet center is characterized by the impact
parameter ρ. Such a parameter is used for derivation of cross section in [2]
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J. Taylor in his book [2] introduces an impact parameter ρ⊥k of the wave
packet center with respect to scatterer. With the impact parameter expression (62)
changes to

φ(kt + ρ) =
∫

d3pa(k − p) exp (ipkt + ipρ), (63)

and Eq. (57) and (59), respectively, take the form

dw(ρ) = dΩ′k2π|T (p′, k)|2
∞∫

−∞

dt|φ(tk + ρ)|2, (64)

dw(ρ) = dΩ′2π|T (p′, k)|2
∞∫

−∞

dz|φ(ρx, ρy, z)|2. (65)

We see that the scattering probability into element dΩ′ depends on ρ. The
cross section is deˇned as an integral over impact parameters

dσ =
∫

d2ρdw(ρ) = dΩ′2π|T (p′, k)|2
∞∫

−∞

d3r|φ(r)|2 =

= dΩ′2π|T (p′, k)|2, (66)

where normalization condition (60) is used. The result completely coincides with
(61) in agreement with SST. However, we want to note again, that it is implicitly
assumed that there are no scattering, if the impact parameter is larger than the
wave packet radius, though the ˇnal result does not depend on wave packet
dimensions.

4. SCATTERING OF WAVE PACKETS

We see that the proof of validity of SST is not perfect because of unacceptable
deˇnition of probability of scattering, according to which a wave packet after
scattering transforms to plane waves, though according to unitarity it should
remain a wave packet. Now we want to show how to calculate scattering of wave
packets at least in the simplest case of elastic scattering from a ˇxed center. We
consider a wave packet not as a preparation of a particle in some state, but as
an intimate property of the particle, which means that the particle after scattering
is the same packet as before scattering. In general all the wave packets can be
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represented as Fourier expansion

ψ(k, r, s, t) = G(s|r − kt|) exp (ikr − iω(k)t) =

=
∫

d3p a(k, p) exp [ipr − iω(p, k)t], (67)

where parameter s determines width of the packet, a(k, p) and ω(p, k) are func-
tions of invariant variables k2, p2 and kp.

4.0.1. Elastic Scattering of Wave Packets on a Center. The primary wave
packet describes a free incident particle. Its Fourier expansion contains plane
waves exp (ipr), which satisfy the free equation

[∆ + p2] exp (ipr) = 0. (68)

In the presence of a potential u(r)/2 the plane wave should be replaced by the
wave function ψp(r), which is a solution of the equation

[∆ + p2 − u(r)]ψp(r) = 0 (69)

containing exp (ipr) as the incident wave. Substitution into (67) transforms it to

ψ(k, r, t) =
∫

d3p a(k, p)ψp(r) exp [−iω(p, k)t]. (70)

After scattering on a ˇxed center with impact parameter ρ the incident plane
wave transforms to a superposition of plane waves

ψp(r) = exp (ipρ)
∫

dΩf(Ω) exp (ipΩ[r − ρ]), (71)

where f(Ω) is the probability amplitude of a plane wave with wave vector p to
be transformed to the plane wave with wave vector pΩ pointing into direction
Ω in the element of solid angle dΩ. This amplitude for isotropic scattering is
f(Ω) = bp/2π. Dependence on p is an irritating moment, however, since the
spectrum of wave packets has a sharp peak at p = k, we can approximate f(Ω)
by bk/2π.

The vector pΩ in (71) is of length p, but it is turned by angle Ω from p.
Substitution of (71) into (67) for exp (ipr) transforms (67) to the form

ψ(k, r, t) =
∫

d3p a(k, p) exp (ipρ)dΩf(Ω) exp [ipΩ[r−ρ]− iω(p, k)t]. (72)
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Since a(k, p), pρ and ω(k, p) are invariant with respect to rotation, we can
replace them with a(kΩ, pΩ), pΩρΩ and ω(kΩ, pΩ). After that we can transform
integration variable p → pΩ, and drop index Ω of p. As a result we transform
(72) to the form

ψ(k, r, t) =
∫

d3p a(kΩ, p) exp (ipρΩ)dΩf(Ω)×

× exp[ip[r − ρ] − iω(p, kΩ)t], (73)

which can be represented as

ψ(k, r, t) =
∫

dΩf(Ω)ψ0(kΩ, r − ρ + ρΩ, t), (74)

where ψ0 denotes the wave packet of the the same form as that of the incident
particle. Now we see that the packet as a whole is scattered with probability
dw = |f(Ω)|2dΩ = |bk/2π|dΩ, which, surprisingly, has no dependence on impact
parameter ρ as in the case of plane waves. It shows that scattering of wave packets
almost the same as that for plane waves. The difference between them is of the
order s/k, where s is the wave packet width in the momentum space, as in the
case of the de Broglie wave packet (26).

To get cross section from probability we need an additional hypothesis that
the scattering takes place only when the particle wave packet overlaps the target
position. This hypothesis is outside of the wave mechanics, so we can say
that without this hypothesis the wave mechanics is incomplete theory, i.e. it is
insufˇcient to describe scattering of particles.

With the additional hypothesis we can write cross section as σ = Aw, where
A is the cross area of the particle wave packet. In the case of the de Broglie
wave packet (26) this area is π/s2. To show that the de Broglie singular wave
packet (26) is the most appropriate one, we consider below three types of wave
packets.

4.1. Three Types of the Wave Packets. All the packets are representable in
the form (67), and they differ by the Fourier coefˇcients a(p, k) and dispersion
ω(p, k). We consider three types of the wave packets and discuss which one is
the most appropriate for description of particles.

4.1.1. The Gaussian Wave Packet. The most popular in the literature is the
Gaussian wave packet

ψG(r, k, t, s) =
(

s√
π(1 + its2)

)3/2

eikr−ik2t/2 exp
(
−s2[r − kt]2

2[1 + its2]

)
. (75)
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This packet is normalized to unity, satisˇes the free Schréodinger equation, but
spreads in time. Because of this spreading its form in space does not coincide
with that shown in (67).

Its Fourier components are

Fg(p, k, s) =
(

1
2πs

√
π

)3/2

exp (−(k − p)2/2s2), ω(p, k) = p2/2, (76)

where s is the width in momentum space. The spectrum of wave vectors p is
spherically symmetrical with respect to the central point p = k and decays away
from it according to Gaussian law.

The cross area of this packet can be deˇned as

AG =
∫

πρ2d3r|G(r, k, t, s)|2 =

=
∫

ρ2d2ρ
s2

1 + t2s4
exp

(
− s2ρ2

1 + t2s4

)
= π

1 + t2s4

s2
. (77)

4.1.2. Nonsingular de Broglie Wave Packet. It is known that there are no
nonspreading normalizable wave packets, which satisfy the free Schréodinger equa-
tion. However, nonnormalizable wave packets do exist. As an example we can
demonstrate nonsingular de Broglie wave packet [3]

ψns(r, k, t, s) = exp (ikr − iωt) j0(s|r − vt|), (78)

in which ωk = k2/2 + s2/2 and v = k in units �
2/m = 1. The packet (78) is

a spherical Bessel function j0(sr) exp (−is2t/2), which center is moving with
the speed v. This packet satisfy the free Schréodinger equation. Its Fourier
components are

F (p, k, s) = Fns(p, k, s) ∝ δ((k − p)2 − s2), ω(p, k) = p2/2, (79)

and spectrum of p is a sphere of radius s in momentum space with centrum at
the point p = k. Since it is not normalizable, its front area is inˇnite like in the
plane wave case.

4.1.3. The singular de Broglie Wave Packet The singular de Broglie wave
packet [3]

ψdB(r, k, t, s) = C exp (ikr − iωt)
exp (−s|r − vt|)

|r − vt| (80)
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is normalizable one with normalization constant C =
√

s/2π deˇned by the
relation ∫

d3r|ψ(s, v, r, t)|2 = 1. (81)

The parameter s is the width of the packet in momentum space and reciprocal
width in coordinate space, v is the packet speed, and ω = (v2 − s2)/2. We see
that ω is less than kinetic energy by the term s2/2, which can be considered as
the bound energy of the packet.

The singular de Broglie wave packet satisˇes inhomogeneous Schréodinger
equation [

i
∂

∂t
+

∆
2

]
ψdB(r, v, t, s) = −2πCei(v2+s2)t/2δ(r − vt), (82)

which right-hand side is zero everywhere except one point along trajectory in free
space.

The Fourier coefˇcients of the singular de Broglie wave packet are

F (p, k, s) = FdB(p, k) =
√

s

2π

4π

(2π)3
1

(p − k)2 + s2
(83)

and
ω(p, k) = [2kp − k2 + s2]/2 = [p2 − (k − p)2 − s2]/2. (84)

The spectrum of wave vectors p is spherically symmetrical with respect to the
central point p = k and decays away from it according to Lorenzian law with
width s.

The Fourier coefˇcients (83) and frequency (84) become the same as for
spherical wave

exp (−ik2t/2)
exp (ikr)

r
=

4π

(2π)3

∫
exp (ipr)

exp (−ik2t/2) d3p

p2 − k2 − iε
, (85)

after substitution k → 0 and s → ik.
The front area of the singular de Broglie wave packet can be deˇned as

AdB =
s

2π

∞∫
0

2dxπdρ2πρ2 exp (−2s
√

ρ2 + x2)
ρ2 + x2

. (86)

After change of variables y = x/ρ we get

AdB = 2πs

∞∫
0

dydρρ2 exp (−2sρ
√

1 + y2)
1 + y2

=
π

2s2

∞∫
0

dy

(1 + y2)5/2
=

π

3s2
. (87)
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4.1.4. Genesis of the singular de Broglie Wave Packet. The singular de
Broglie wave packet descends from the spherical wave. Indeed, let us consider
the spherical wave with energy q2/2

ψ(r, t, q) = exp (−iq2t/2)
exp (iqr)

r
. (88)

This wave satisˇes inhomogeneous Schréodinger equation[
i
∂

∂t
+

∆
2

]
ψ(r, t, q) = −2π exp (−iq2t/2)δ(r). (89)

The right-hand side describes the center radiating the spherical wave. If we
change to the reference system moving with the speed v = k then we must
transform the function ψ

ψ(r, t, q) → Ψ(r, k, t, q) = exp (ikr − ik2t/2 − iq2t/2)
exp (iq|r − kt|)

|r − kt| . (90)

The transformed function is the spherical wave around moving center. It satisˇes
the equation [

i
∂

∂t
+

∆
2

]
Ψ = −2π exp (i[k2 − q2]t/2)δ(r − kt). (91)

If the energy of the wave (88) is negative: q2 = −s2, i.e. the wave (88) describes
a bound state around the center, then (90) becomes

Ψ(r, k, t, is) = exp (ikr − ik2t/2 + is2t/2)
exp (−s|r − kt|)

|r − kt| . (92)

With normalization constant C expression (92) becomes identical to (80). Thus
the singular de Broglie wave packet is the spherical Hankel function of imaginary
argument moving with the speed v.

4.1.5. Genesis of the Nonsingular de Broglie Wave Packet. The nonsingular
de Broglie wave packet is obtained by transformation to the moving reference
frame of the nonsingular spherical wave

j0(qr) exp (−iq2t/2),

which satisˇes the homogeneous Schréodinger equation. This way we can construct
a lot of nonsingular wave packets corresponding to different angular momenta l.
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4.1.6. Resume. We considered three types of spherically symmetrical wave
packets. However, only one of them is normalizable, and is not spreading. This
is the singular de Broglie wave packet, so it looks as the most appropriate one
for description of elementary particles. The scattering cross section, σ = Aw,
obtained with it coincides with generally accepted one σ = 4π|b|2, if the cross
area of the packet AdB is proportional to λ2. It is equivalent to s ∝ k. In
that case the packet width in coordinate space decreases with energy. Such a
behavior is in accord with the intuitive expectations that the slow particles have
wave properties, whereas the more fast ones are better described by corpuscular
mechanics.

5. SCATTERING FROM AN ARBITRARY SYSTEM

Since probability of scattering can be calculated in the same way as for plane
waves we want to address the following question: is it possible to calculate this
probability in a direct way, without introduction of some ˇnite volume L3, which
plays an auxiliary role, and is excluded at ˇnal stage? We shall show that the
direct method exists, and in general it gives a result different from that of SST.
We apply the direct method to neutron scattering by monatomic gas and ˇnd,
when our result can be identical to that of SST. At the same time we ˇnd that the
result is ambiguous, which proves once again that the wave mechanics and with
it quantum mechanics are incomplete theories.

5.1. Scattering According to SST. Here we remind to the reader, following
the textbooks [6,7], how cross sections are calculated in SST. We ˇnd there a list
of rules one must to follow to get an expression for the cross section.

5.1.1. Rules for Calculation of Scattering from an Arbitrary System in SST.
First we consider general rules for an arbitrary scattering system.

1. The starting point is the ®Fermi Golden Rule¯, according to which one
deˇnes probability of scattering per unit time (though it does not depend on
time)

dw(ki → kf , t) =
2π

�
|〈λf , kf |V |λi, ki〉|2 ρ(Efk) (93)

of the neutron in an initial state |ki > from the system in a state |λi > to ˇnal
neutron and system states |kf >, |λf > respectively. Here V is interaction
potential, which we can represent in the form

V =
�

2

2m
4πbδ(r1 − r2), (94)
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where r1, r2 are neutron and atom coordinates, respectively, ρ(Efk) is the density
of ˇnal states of the neutron per unit energy Efk:

ρ(Ek) =
(

L

2π

)3
d3k

dEk
=

(
L

2π

)3
mkdΩk

�2
,

d3k = k2dkdΩk, dEk =
�

2

m
kdk,

(95)

dΩk is an element of the solid angle in k-space, L is some (arbitrary large) size
of a space cell, and the law of energy conservation is assumed.

Note that here we use normal units without m = � = 1.
2. The neutron states are represented as

|ki,f >=
1

L3/2
exp (iki,fr). (96)

3. The expression (93) is multiplied by

1 ≡ dEfkδ(Efk + Efλ − Eik − Eiλ),

where Ei,fk are initial and ˇnal neutron energies �
2k2

i,f/2m, and Ei,fλ are initial
and ˇnal energies of the scattering system. After multiplication one obtains the
double differential probability of scattering per unit time

d2

dΩfdEfk
w(ki → kf , t) =

=
2π

�
|〈λf , kf |V |λi, ki〉|2

(
L

2π

)3
mk

�2
δ(Efk + Efλ − Eik − Eiλ), (97)

which after substitution of (94) becomes

d2

dΩfdEfk
w(ki → kf , t) =

=
�kf

mL3
|b|2 |〈λ2| exp (iκr)|λ1〉|2 δ(Efk + Efλ − Eik − Eiλ), (98)

where κ = k1 − k2 is momentum transferred to the scatterer.
4. This double differential probability is divided by the incident �ux

�ki

mL3
,

and as a result one obtains the double differential scattering cross section

d2

dΩfdEfk
σ(ki → kf , λi → λf ) =

=
kf

ki
|b|2 |〈λf | exp (iκr)|λi〉|2 δ(Efk + Efλ − Eik − Eiλ), (99)
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or a triple differential neutron cross section

d3

dk3
f

σ(ki, λi → kf , λf ) =

=
�

2

m

1
ki
|b|2 |〈λf | exp (iκr)|λi〉|2 δ(Efk + Eλf

− Eik − Eλi) (100)

for given initial and ˇnal states |λi,f > of the scatterer.
5. After that we sum (99) over ˇnal states of the scatterer, average over its

initial states and ˇnd

d3

dk3
f

σ(k1 → k2,P) =
m

�2ki
|b|2

∑
λi,λf

P(λi) |〈λf | exp (iκr)|λi〉|2 ×

× δ(Efk + Eλf
− Eik − Eλi), (101)

where P(λi) is probability for the scatterer to have initial state |λi〉.
If P(λi) is the Maxwellian distribution M(Eλ/kBT ), where T is tempera-

ture, and kB is the Boltzmann constant, then

d3

dk3
f

σ(k1 → k2, T ) =
m

�2ki
|b|2

∑
λi,λf

M
(

Eλi

kBT

)
|〈λf | exp(iκr)|λi〉|2 ×

× δ(Efk + Eλf
− Eik − Eλi). (102)

5.1.2. Scattering from a Monatomic Gas. Now we look how these general
rules are applied to such a simple system like a monatomic gas. In this case the
states of the scatterer, |λ〉, are similar to those of neutrons, i.e. they are plane
waves |λ〉 ≡ |p〉 = L−3/2 exp (ipr).

1. The matrix elements are

〈λf , kf |V |λi, ki〉 = 4πb
�

2

2m

∫
d3r

L6
exp (i[ki + pi − kf − pf ]r) =

=
2πb�2

mL6
(2π)3δ(ki + pi − kf − pf ).

The square of this matrix element, according to step 1, is equal to square of the
δ-function, and it is represented as δ2 = [L3/(2π)3]δ(ki + pi − kf − pf ). With
this representation one obtains (93) in the form

dw(i → f) =
(2π)3�kf

m

|b|2
L6

δ(ki + pi − kf − pf )dΩf . (103)
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2. After steps 3 one obtains

d2

dΩfdEfk
w(ki → kf , t) =

=
�kf (2π)3

mL6
|b|2δ(ki + pi − kf − pf )δ(Efk + Efp − Eik − Eip), (104)

where Ek = �
2k2/2m, Ep = �

2p2/2M , and M is the atomic mass.
3. After the step 4 one obtains

d2

dΩfdEfk
σ(ki, pf → kf , pi) =

=
kf

ki

(2π)3

L3
|b|2δ(ki + pi − kf − pf )δ(Efk + Efp − Eik − Eip), (105)

or the triple differential neutron cross section

d3

dk3
f

σ(ki, pi → kf , pf ) =

=
(2π)3

L3ki
|b|2δ(ki + pi − kf − pf )δ(k2

f/2 + µp2
f/2 − k2

i /2 − µp2
i /2), (106)

where µ = m/M .
4. Summation over ˇnal states in the step 5 is integration over d3pf with

weight L3d3pf/(2π)3, which deˇnes number of ˇnal states in the volume L3.
Averaging over the same Maxwellian distribution as above gives

d2σ(k1 → k2, T )
dEfkΩfk

= |b|2 kf

ki

∫
d3pfδ(ki + pi − kf − pf )×

× δ(Eik + Eip − Efk − Efp)M
(

�
2p2

i

2MkBT

)
d3pi

or

d3

dk3
f

σ(ki → kf , T ) =
2
ki
|b|2

∫
δ(ki + pi − kf − pf )d3pf×

× δ(k2
f + µp2

f − k2
i − µp2

i )M
(

�
2p2

i

2MkBT

)
d3pi. (107)
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5. Now it is convenient to redeˇne temperature T → m�
2kBT , or to choose

unities � = m = kB = 1, then the Maxwellian distribution is

M
(

µp2

2T

)
=

( µ

2πT

)3/2

exp
(
−µ

p2

2T

)
. (108)

Substitution of it into (107) and integration over d3pf gives

d3

dk3
f

σ(ki → kf , T ) =

=
1
ki
|b|2

∫
δ(ER − ω + µκpi)

( µ

2πT

)3/2

exp
(
−µ

p2
i

2T

)
d3pi, (109)

where ER = µκ2/2 is recoil energy, and ω = (k2
i − k2

f )/2 is energy transferred

to the gas. After integration over d3pi we get the triple differential cross section

d3

dk3
f

σ(ki → kf , T ) =
1

κki
|b|2 1√

2πµT
exp

(
− (ω − ER)2

4ERT

)
. (110)

6. Integration over d3kf gives total cross section

σ(ki, T ) =
4π√
πEr

|b|2
(1 + µ)2

(
exp (−Er) +

√
π

2
√

Er

(2Er + 1)Φ
(√

Er

))
,

(111)
where Er = k2

i /2µT is reduced energy of the incident neutron, and Φ(x) is the
error function

Φ(x) =
2√
π

x∫
0

dz exp (−z2).

5.2. Direct Calculation of Scattering. After repeating all the steps of SST
calculations, which involve an artiˇcial introduction of a ˇnite volume L3, one
wonders, whether it is impossible to derive the scattering cross section without
that? Now we want to show how to make direct calculations without L.

5.2.1. The Direct Calculation of Scattering from an Arbitrary System. Let the
scatterer to be described by the Hamiltonian H ′, which for the sake of simplicity
is supposed to have a discrete spectrum Eλ. The neutron scattering is determined
from solution of the Schréodinger equation[

i�
∂

∂t
+

�
2

2m
∆1 − H ′ + V (r1, r2)

]
ψ(r1, r2, t) = 0, (112)
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where interaction potential V is shown in (94). Solution of Eq. (112) in pertur-
bation theory is represented in the form

ψ(r1, r2, t) = ψ0(r1, r2, t) − δψ(r1, r2, t),

where ψ0(r1, r2, t) is initial wave function before scattering,

δψ(r1, r2, t) =

=
∫

G(r1, r2, t; r′
1, r

′
2, t

′)V (r′
1, r

′
2)ψ0(r′

1, r
′
2, t

′)d3r′1d
3r′2dt′, (113)

and G is the Green function of Eq. (112) without interaction[
i�

∂

∂t
+

�
2

2m
∆1 − H ′

]
G(r1, r2, t; r′

1, r
′
2, t

′) =

= −δ(r1 − r′
1)δ(r2 − r′

2)δ(t − t′). (114)

For the function before scattering we take

ψ0(r1, r2, t) = Φλi(r2) e−iEλi
t eikir1−iEikt, (115)

where Φλi(r) and Eλi are eigen function and eigen value of the Hamiltonian H ′,
and ki, Eik = �

2k2
i /2m are wave vector and energy of the incident neutron.

The Green function of the Eq. (112) without interaction is

G(r1 − r′
1, r2 − r′

2, t − t′) =
1

(2π)4
∑
λf

∫
eikfr1−iωtΦλf

(r2)×

× d3kfdω

Efk + Eλf
− ω − iε

e−ikfr′
1+iωt′Φ∗

λf
(r′

2), (116)

which is easily checked by substitution of (116) into Eq. (114).
Substitution of (94), (116) and (115) into (113) gives

δψ =
1

(2π)4
∑
λf

∫
eikfr1−iωtΦλf

(r2)
d3kfdω

Efk + Eλf
− ω − iε

e−ikfr′
1+iωt′×

× Φ∗
λf

(r′
2)

�
2

2m
4πbδ(r′

1 − r′
2)Φλi (r

′
2) exp (−iEλit

′) exp (ikir
′
1 − iEikt′) =

=
1

(2π)3
∑
λf

∫
d3kfΦλf

(r2)〈λf , kf |V |λi, ki〉
Efk + Eλf

− Eik − Eλi − iε
eikfr1−i(Eik+Eλi

)t, (117)
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where

〈λf , kf |V |λi, ki〉 =
�

2

2m
4πb

∫
d3rΦ∗

λf
(r) exp(iκr)Φλi(r) (118)

is a matrix element of the interaction potential, and κ = ki−kf is the momentum
transferred.

At t → ∞ one can use the limit

lim
t→∞

exp (i(Efk + Eλf
− Eik − Eλi)t)

Efk + Eλf
− Eik − Eλi − iε

= 2πiδ(Efk +Eλf
−Eik−Eλi), (119)

which upon substitution into (117) gives the asymptotical wave function

δψ =
i

(2π)2
∑
λf

∫
d3kf 〈λf , kf |V |λi, ki〉×

× δ(Efk + Eλf
− Eik − Eλi)Φλf

(r2) e−iEλf
t eikfr1−iEfkt. (120)

The probability amplitude of transition from the initial state |λi, ki〉 to ˇnal state
|λf , kf 〉 is

df(ki, λi → kf , λf ) =
id3kf

(2π)2
〈λf , kf |V |λi, ki〉δ(Efk + Eλf

− Eik − Eλi) =

= i
m

�2

kfdΩf

(2π)2
〈λf , kf |V |λi, ki〉, (121)

where

kf =

√
k2

i +
2m

�2
(Eλi − Eλf

),

and Ωf characterizes direction of the scattered neutron.
It follows from (121) that the probability of neutron scattering into element

of solid angle dΩf and of transition of the system from the state |λi〉 into state
|λf 〉 is

dw(ki, Ωf , λi → λf ) =
1

(2π)4

∣∣∣ m

�2

∣∣∣2 k2
fdΩf |〈λf , kf |V |λi, ki〉|2 . (122)

If we replace

m

�2
kfdΩf = d3kfδ(Eik + Eλi − Efk − Eλf

),
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i.e. make transition reciprocal to (121), we obtain

dw(ki, Ωf , λi → λf ) =

mkf

�2

d3kf

(2π)4
|〈λf , kf |V |λi, ki〉|2 δ(Efk + Eλf

− Eik − Eλi). (123)

Substitution of the potential (94) gives

dw(ki, Ωf , λi → λf ) =

= |b|2 �
2

m
kf

d3kf

(2π)2
|〈λf | exp (iκr)|λi〉|2 δ(Efk + Eλf

− Eik − Eλf
). (124)

To get the cross section we must multiply the probability by the wave front area
A. We obtain an agreement with standard formula (106), if we suppose that
A = (2π)2/kikf .

5.2.2. Some Remarks. The above considerations for neutron scattering by an
arbitrary system are valid only, if both the neutron and the systems are described
by the same Schréodinger equation, which has a single derivative on time. If the
system obeys a different equation with double derivative on time (this is the case,
when we consider scattering on oscillators), we need to use not the Schréodinger
but different equation. What to do in this case needs separate considerations.

5.2.3. Direct Calculation of Scattering from a Monatomic Gas. When we
consider neutron scattering from monatomic gas, we must treat the neutron and
atom of the gas in the same way. Collision of two particles changes the state of
both, thus we need to solve the Schréodinger equation for both particles:[

i
∂

∂t
+

∆1

2
+

µ∆2

2
− u(r1 − r2, t)

2

]
ψ(r1, r2, t) = 0, (125)

where potential u is given in (94), r1, r2, m, M are coordinates and masses
of the neutron and atom, respectively, µ = m/M , and we use unities in which
m = � = 1.

The Green function of the equation (125) without interaction is

G(r1 − r′
1, r2 − r′

2, t − t′) =

=
∫ exp (ikf (r1 − r′

1) + pf (r2 − r′
2) − iω(t − t′))

Efk + Efp − ω − iε

d3kfd3pfdω

(2π)7
, (126)

where Efk = k2
f/2, Efp = µp2

f/2.
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The scattered part of the wave function is

δψ =
2πb

(2π)7

∫
d3kfd3pfdωd3r′1d

3r′2dt′

Efk + Efp − ω − iε
×

× exp (ikf (r1 − r′
1) + ipf (r2 − r′

2) − iω(t − t′))×

δ(r′
1 − r′

2) exp (ikir
′
1 + ipir

′
2 − i(Eik + Eip)t′) =

=
b

(2π)2

∫
d3kfd3pfδ(kf + pf − ki − pi)
Efk + Efp − Eik − Eip − iε

×

× exp (ikfr1 + ipfr2 − i(Eik + Eip)t), (127)

where exp (ikir1 − iEikt), exp (ipir2 − iEipt) describe incident plane waves
of the neutron and atom, respectively, with their energies Eik = k2

i /2, and
Eip = µp2

i /2.
The wave function (127) can be represented as a superposition of plane

waves describing ˇnal states of the neutron, exp (ikfr1 − iEfkt), and the atom,
exp (ipfr2 − iEfpt):

δψ =
∫

f̃(ki, pi → kf , pf , t)d3kfd3pf×

× exp(ikfr1 + ipfr2 − iEfkt − iEfpt),

where

f̃(ki, pi → kf , pf , t) =
b

(2π)2
δ(ki + pf − ki − pi)

Efk + Efp − Eik − Eip − iε
×

× exp (i(Efk + Efp − Eik − Eip)t).

With the relation (20) we ˇnd in the limit t → ∞ that the probability amplitude
for the particle to leave in the state kf , and for the atom to leave in the state pf

is:

lim
t→∞

f̃(ki, pi → kf , pf , t)d3kfd3pf =

= d3kfd3pf
ib

2π
δ(kf + pf − ki − pi)δ(Efk + Efp − Eik − Eip),

and after integration over ˇnal momenta d3pf of the atom we obtain probability
amplitude of scattering from an atom with momentum pi

f(ki → kf , pi) = d3kf
ib

π
δ(k2

f + µ(ki + pi − kf )2 − k2
i − µp2

i ). (128)
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Some remarks. Let's note that we sum the amplitude over ˇnal states, not
the probability, and it is more correct, because, if we are not interested what is the
ˇnal state of the atom, we must sum over them, since amplitudes with different
atomic states can interfere with each other.

More over, usually cross sections are averaged over initial states, however
the amplitude should also be averaged over initial states. The amplitude averaged
in this way is the coherent amplitude, and its square gives coherent contribution
to coherent probabilities and coherent cross sections.

Averaging the squared amplitude over initial states gives total probability and
cross section, which consists of coherent and incoherent parts, and there is an
interesting problem how to separate them experimentally.

5.2.4. Scattering in the Center- of Mass-System. Let us represent the argument
of the δ-function in the form

k2
f + µ(ki + pi − kf )2 − k2

i − µp2
i =

(1 + µ)
(

kf − µ

1 + µ
P

)2

− q2

1 + µ
, (129)

where P = ki+pi is the total momentum of the center of mass, and q = ki−µpi

is the relative speed of the neutron and atom.
The change of variables

kcm = kf − µP /(1 + µ), (130)

and integration over dkcm reduces (128) to

df(ki, Ωcm, pi) =
ibq

2π(1 + µ)2
dΩcm. (131)

The scattering cross section from an atom with momentum pi is

dσ(ki, Ωcm, pi) = A

∣∣∣∣ ibq

2π(1 + µ)2

∣∣∣∣2 dΩcm, (132)

and the total scattering cross section from an atom with momentum pi is

σ(ki, pi) = 4πA

∣∣∣∣ ibq

2π(1 + µ)2

∣∣∣∣2 , (133)

where A is the neutron wave front area.
Total cross section for atom at rest. In the case pi = 0, the cross section

(132) becomes

dσ(ki, Ωcm, pi = 0) = A

∣∣∣∣ bki

2π(1 + µ)2

∣∣∣∣2 dΩcm, (134)
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because in that case q = ki. Integration over dΩcm gives total cross section of
scattering from atom at rest

σ(ki, pi = 0) = 4πA

∣∣∣∣ bki

2π(1 + µ)2

∣∣∣∣2 . (135)

Total cross section for scattering from monatomic gas. To get cross section for
scattering from monatomic gas at temperature T we must average (132) over pi

with Maxwellian distribution (108)

dσ(ki, Ωcm, T ) =
∫

d3piM
(

µp2
i

2T

)
A

∣∣∣∣ bq

2π(1 + µ)2

∣∣∣∣2 dΩcm. (136)

If area A does not depend on neutron energy, then the total cross section is

σ(ki, T ) = 4πA

∣∣∣∣ ib

2π(1 + µ)2

∣∣∣∣2 ∫
d3pi

( µ

2πT

)3/2

exp
(
−µ

p2
i

2T

)
×

× (k2
i + µ2p2

i ) = 4πA

∣∣∣∣ b

2π(1 + µ)2

∣∣∣∣2 (2µT )
(

3
2

+
k2

i

2µT

)
. (137)

It is seen that the cross section grows linearly with increase of the temperature.
However, it is not this cross section which is measured in an experiment. In

the experiment the probability of neutron scattering from a gas sample of width
d and density N0 is measured. This probability is proportional to the �ight time
tf = d/ki of the neutron through the sample, and to the number ν(ki, pi) of
collisions per unit time, which in its turn is proportional to N0, σ and to relative
velocity q = |ki − µpi|. So, the full probability of a single neutron scattering in
the sample is

W = N0
d

ki

∫
d3piqσ(ki, pi)M

(
µ

p2
i

2T

)
.

After substitution of (133) in the case of constant A we obtain an expression,
which grows at high temperatures ∝ T 3/2. Experiment shows that the grows
is only ∝ T 1/2. It means that A = α/q2 with constant α. With such A
the total scattering probability after change of variables p = pi/

√
2T/µ and

kr = ki/
√

2µT becomes

W = N0d
4πα

π3/2kr

∣∣∣∣ b

2π(1 + µ)2

∣∣∣∣2 ∫
p2dpdΩ exp (−p2)

√
(kr − p)2.
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Thus, the experimentally measured cross section σexp = W?N0d should be com-
pared with theoretical one

σeff =
4πα

π3/2kr

∣∣∣∣ b

2π(1 + µ)2

∣∣∣∣2 ∫
p2dpdΩ exp (−p2)

√
(kr − p)2. (138)

The integral at the right-hand side is

I =
4π

3kr

∞∫
0

pdp{[p(3k2
r + p2)Θ(p < kr)+

+ kr[3p2 + k2
r ]θ(p > kr)} exp(−p2) =

=
2π

3kr

 Er∫
0

dp2[p(3k2
r + p2) − kr(3p2 + k2

r)]e−p2
+

+

∞∫
0

dp2kr[3p2 + k2
r ]e−p2

 =
π

kr

(
kre

−k2
r +

√
π

2
[1 + 2k2

r ]Φ(kr)
)

.

So cross section (138) is

σeff = 4π
α√
πkr

∣∣∣∣ b

2π(1 + µ)2

∣∣∣∣2 (
e−k2

r +
√

π

2kr
[1 + 2k2

r ]Φ(kr)
)

,

which coincides with the standard expression (111), if α = [2π(1+ µ)]2, because
kr =

√
Er.

We can also show that the differential cross section in this case does also
coincide with the standard one (110). For that we replace

dΩq → (1 + µ)2

q
d3k2δ(k2

f/2 + µ(ki + pi − kf )2/2 − k2
i /2 − µp2

i /2), (139)

which means transition reciprocal to the one from (128) to (131). After this
replacement we represent (134) in the form

dσ(ki → kf , pi) = Ad3kf

∣∣∣∣ b

2π(1 + µ)

∣∣∣∣2 δ(ER − ω + µpiκ)√
(ki − µpi)2

, (140)

where ER = µκ2/2, κ = ki − kf , and ω = k2
i /2 − k2

f/2.
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In (140) we can integrate over dkf , then we obtain differential scattering
cross section

dσ(ki, Ωf , pi) = Ad3kf

∣∣∣∣ b

2π(1 + µ)

∣∣∣∣2 ×
× (µPn ±

√
µ2(P n)2 − µ2P 2 + (ki − µpi)2)2

(1 + µ)
√

(ki − µpi)2
√

µ2(P n)2 − µ2P 2 + (ki − µpi)2
, (141)

where n is a unit vector, pointing into direction of kf scattered neutron.
In the case of A = α/q2 the probability of neutron scattering in the sample

to the state kf , averaged over Maxwellian distribution is equal to

dWs(ki → kf , T ) = Na
d

ki
αd3kf

∣∣∣∣ b

2π(1 + µ)

∣∣∣∣2 ×
×

∫
d3p

(
1

2πµT

)3/2

e−p2/2µT δ(ER − ω + pκ), (142)

where p = µpi, and we used (140). After integration over d3p we obtain the
cross section

dσeff (ki → kf , T ) =
αd3kf

kiκ
√

2πµT

∣∣∣∣ b

2π(1 + µ)

∣∣∣∣2 exp
(
− (ER − ω)2

4ERT

)
, (143)

identical to (110), if α = [2π(1 + µ)]2.
5.3. An Alternative Calculation. Catastrophe in Quantum Mechanics

Above we considered probability amplitude (131) calculated in the center-of-
mass coordinate system. It means that the argument of δ-function in (128) was
represented in the form (129), and after change of variables (130) and integration
over dkcm we obtained (131), and the cross section (132). Transition from the
cm system to laboratory one was performed with reciprocal transformation (139),
which led to (140) and after integration over dkf Å to (141).

Now we proceed differently. We integrate (128) directly over dkf . Then we
obtain probability amplitude of scattering into direction Ωf of the wave vector
kf in laboratory coordinate system

f(ki → kf , pi) = d3kf
ib

π
δ(k2

f + µ(ki + pi − kf )2 − k2
i − µp2

i ) =

df(ki,Ωf , pi) =
ibdΩf

2π

k2
f

|kf (1 + µ) − µnP | , (144)
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where

kf =
µPn ±

√
µ2(P n)2 − µ2P 2 + (ki − µpi)2

1 + µ
> 0, (145)

P = ki + pi, and n is the unit vector pointing into direction Ωf . With the help
of amplitude (144) we obtain the scattering cross section

dσ(ki,Ωf , pi) = dΩfA

∣∣∣∣ b

2π(1 + µ)2

∣∣∣∣2 ×
×

(
µP n ±

√
µ2(P n)2 − µ2P 2 + (ki − µpi)2

)4

|µ2(Pn)2 − µ2P 2 + (ki − µpi)2|
. (146)

Now we can make transformation

dΩ

∣∣∣µPn ±
√

µ2(P n)2 − µ2P 2 + (ki − µpi)2
∣∣∣2

2(1 + µ)2
√

µ2(P n)2 − µ2P 2 + (ki − µpi)2
=

= d3kfδ(k2
f + µ(ki + pi − kf )2 − k2

i − µp2
i ), (147)

which is reciprocal to the one, used in (144), then we obtain

dσ(ki → kf , pi) = Ad3kfk2
f

∣∣∣∣ b

2π

∣∣∣∣2 δ(ER − ω + µκpi)√
µ2(Pn)2 − µ2P 2 + (ki − µpi)2

. (148)

We can replace
√

µ2(P n)2 − µ2P 2 + (ki − µpi)2 in denominator by |(1 +
µ)kf − µP n|, multiply it by kf , replace pikf by µpiki − µpiκ, and substi-
tute according to the argument of the δ-function µpiki = ω − ER. After some
rearrangement the Eq. (148) becomes

dσ(ki → kf , pi) = Ad3kfk3
f

∣∣∣∣ b

2π

∣∣∣∣2 δ(ER − ω + µκpi)
|s − µω − µkipi|

, (149)

where s = k2
i /2 + k2

f/2. We see that this expression strongly differs from (140).
If we substitute A = α/q2, introduce number ν(ki → kf ) of collisions per unit
time, which give scattering from ki to kf , and �ight time tf = d/ki through the
sample, and average over distribution of pi, then we obtain the effective cross
section

dσeff(ki,→ kf , T ) =

=
α

ki
d3kfk3

f

∣∣∣∣ b

2π

∣∣∣∣2 ∫
P(pi)d

3pi
δ(ER − ω + µκpi)

|ki − µpi||s − µω − µkipi|
. (150)
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5.3.1. Scattering from the Atom at Rest. As an exercise let us consider the
case P(pi) = δ(pi). In this case expression (150) becomes

dσeff (ki,→ kf , pi = 0) =
α

k2
i

d3kfk3
f

∣∣∣∣ b

2π

∣∣∣∣2 δ(ER − ω)
s − µω

. (151)

To ˇnd the total cross section we ˇrst integrate over angles and obtain

dσeff(ki,→ kf , pi = 0) =
2πα

µk3
i

k4
fdkf

∣∣∣∣ b

2π

∣∣∣∣2 Θ(|µs − ω| < µkikf )
s − µω

. (152)

After change of variables kf = kix we obtain the integral

σeff(ki, pi = 0) =
4πα

µ(1 + µ)

∣∣∣∣ b

2π

∣∣∣∣2
1∫

γ

x4dx

x2 + γ
=

= 4πα

∣∣∣∣ b

2π(1 + µ)2

∣∣∣∣2
(

8
3
µ2 +

(1 − µ2)3/2

µ
arctan

(
µ√

1 − µ2

))
, (153)

where γ = (1 − µ)/(1 + µ). This expression differs from (135), where for
comparison A = α/k2

i should be substituted. The difference can be described by
the factor

C(µ) =
1

(1 + µ)2

(
8
3
µ2 +

(1 − µ2)3/2

µ
arctan

(
µ√

1 − µ2

))
.

This difference is the ˇrst evidence of the catastrophe, because it shows that there
is an ambiguity in deˇnition of the cross section. This ambiguity is the result of
deˇnition of probability as a square of probability amplitude.

5.3.2. Scattering from the Maxwellian Gas. Now we take P(pi) to be
Maxwellian. Substitution of (108) into (150) gives

dσeff(ki,→ kf , T ) =
α

ki
d3kfk3

f

∣∣∣∣ b

2π

∣∣∣∣2 ∫ ( µ

2πT

)3/2

×

× exp
(
−µ

p2
i

2T

)
d3pi

δ(ER − ω + µκpi)
|ki − µpi||s − µω − µkipi|

. (154)

In the integral we can change variables p = µpi and integrate over one component
of pκ along κ. Then we obtain the result

dσeff(ki,→ kf , T ) =

=
αd3kf

κki

√
2πµT

∣∣∣∣ b

2π

∣∣∣∣2 exp
(
− (ω − ER)2

4ERT

)
F (κ2, ω, s), (155)
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which has an additional factor F (κ2, ω, s) comparing to (110)

F (κ2, ω, s) = k3
f

∫
d2p⊥
2πµT

exp
(
− p2

⊥
2µT

)
1

|ki − p||s − µω − kip|
. (156)

To calculate this factor we represent ki as kκ + k⊥, where

kκ =
(kiκ)κ

κ2
=

ω + κ2/2
κ2

κ,

and k⊥kκ = 0. Then

(ki − p)2 =
(ω + κ2/2 − ω + ER)2

κ2
+ (k⊥ − p⊥)2 =

=
1
4
κ2(1 + µ)2 + (k⊥ − p⊥)2

and

s − µω − kip = s − µω − (ω + κ2/2)(ω − ER)
κ2

− k⊥p⊥.

Substitution into (156) and change of variables q = p⊥ − k⊥ gives

F (κ2, ω, s) =
∫

d2q

2πµT
exp

(
− (q + k⊥)2

2µT

)
×

×
4k3

f√
κ2(1 + µ)2 + 4q2|(ω + κ2/2)(1 + µ) + 2k⊥q|

. (157)

It is easy to see that this integral diverges at the point 2k⊥q = −(ω +
κ2/2)(1 + µ). This divergence, in principle, can be eliminated with the help
of imaginary part, which will be needed to satisfy unitarity condition, however
this imaginary part does not solve the main problem Å the difference of two
probabilities, which is seen in the case of scattering on a free atom at rest, where
divergence is absent.

P
cos

�

P
q/�

P
cos

�

Fig. 3. Geometry of the experiment with
scattering of the neutron beam on an
atomic beam. P = |ki + pi| is the
total momentum of neutrons and atoms,
q = |ki − µpi| is relative velocity of neu-
trons and atoms, θ is direction of the scat-
tered neutrons with respect to total mo-
mentum. In this direction scattering cross
section has a maximum
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We see the only way to resolve the paradox, is to quantize angular distribu-
tion, i.e. to make the particle scattering only at discrete angles. In that case the
number of scattering angles will be the same in center-of-mass system and in the
laboratory reference frame. Therefore both way of probability calculations will
give the same result. We do not know now how to deˇne the quantum of angle,
however, it seems that any size can be of use for resolution of this paradox. The
quantum ∆Ω must be deˇned in a reference system, where angular distribution is
uniform. Transition to other reference systems changes this quantum and makes
it dependent on angle ∆Ω(Ω). It seems that introduction of a ˇnite space sell
L serves like this angular quantization, however, we cannot ˇnd direct relation
between them.

6. CONCLUSION

Simple consideration of scattering processes shows a contradiction hidden
in the standard approach. On one side, we use plane waves as eigenstates of a
particle, and on the other side describe scattered particles with spherical waves,
which are not even solutions of the free Schréodinger equation. Rigorous approach
permits to calculate only dimensionless probabilities of scattering. To get cross
section we are to introduce some front area of the wave function for the incident
particle, and a hypothesis that scattering takes place only when the scatterer is
inside this front area. Without this hypothesis the quantum or wave mechanics
is incomplete theory. However, even with this hypothesis QM is not a complete
theory, because it does not permit to ˇnd a unique scattering cross section.

In to-day science all the measured cross sections are compared to theoretical
ones calculated with the help of a set of rules, which do not represent a self-
consistent theory. In this paper we could only demonstrate this fact with the help
of a single example. We cannot now propose an alternative theory, but think that
our research will liberate the physical community from the prejudice that QM is
a perfect and complete theory, and stimulate the search for more adequate and
self-consistent theory of microworld.

It is possible to test experimentally the scattering cross section (146) and (141)
by scattering a collimated neutron beam on an atomic beam. According to both
formulas the probability of scattering has maximum at some direction with respect
to total momentum P = ki + pi. Vector diagram of the experiment is presented
in Fig. 5.3.2. The momentum kf after scattering is equal to µP cos θ/(1 + µ).
Measurement at two different P can discriminate between two expressions.
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