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The Nuclear Scissors Mode by Two Approaches

(Wigner Function Moments Versus RPA)

Two complementary methods to describe the collective motion, RPA and Wigner

Function Moments (WFM) method, are compared on an example of a simple model —

harmonic oscillator with quadrupole-quadrupole residual interaction. It is shown that

they give identical formulae for eigenfrequencies and transition probabilities of all col-

lective excitations of the model including the scissors mode, which is a subject of our

especial attention. The normalization factor of the «synthetic» scissors state and its

overlap with physical states are calculated analytically. The orthogonality of the spuri-

ous state to all physical states is proved rigorously.

The investigation has been performed at the Bogoliubov Laboratory of Theoreti-

cal Physics, JINR.
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ßäåðíàÿ íîæíè÷íàÿ ìîäà â äâóõ ïîäõîäàõ

(ìåòîä ìîìåíòîâ ôóíêöèè Âèãíåðà è ïðèáëèæåíèå ñëó÷àéíûõ ôàç)

Íà ïðèìåðå ïðîñòîé ìîäåëè — ãàðìîíè÷åñêîãî îñöèëëÿòîðà ñ êâàäðó-

ïîëü-êâàäðóïîëüíûì îñòàòî÷íûì âçàèìîäåéñòâèåì — ñðàâíèâàþòñÿ äâà âçàè-

ìîäîïîëíÿþùèõ ìåòîäà îïèñàíèÿ êîëëåêòèâíîãî äâèæåíèÿ, ïðèáëèæåíèå ñëó-

÷àéíûõ ôàç è ìåòîä ìîìåíòîâ ôóíêöèè Âèãíåðà. Ïîêàçàíî, ÷òî îíè äàþò îäèíà-

êîâûå ôîðìóëû äëÿ ñîáñòâåííûõ ÷àñòîò è âåðîÿòíîñòåé ïåðåõîäîâ âñåõ

êîëëåêòèâíûõ âîçáóæäåíèé, âêëþ÷àÿ íîæíè÷íóþ ìîäó, êîòîðîé óäåëÿåòñÿ îñî-

áîå âíèìàíèå. Ïîëó÷åíû àíàëèòè÷åñêèå âûðàæåíèÿ äëÿ íîðìèðîâî÷íîãî ôàêòî-

ðà «ñèíòåòè÷åñêîé» íîæíè÷íîé ìîäû è åå ïåðåêðûòèÿ ñ ôèçè÷åñêèìè ñîñòîÿíè-

ÿìè. Äàíî ñòðîãîå äîêàçàòåëüñòâî îðòîãîíàëüíîñòè äóõîâîãî ñîñòîÿíèÿ âñåì ôè-

çè÷åñêèì ñîñòîÿíèÿì ìîäåëè.

Ðàáîòà âûïîëíåíà â Ëàáîðàòîðèè òåîðåòè÷åñêîé ôèçèêè èì. Í. Í. Áîãîëþ-

áîâà ÎÈßÈ.

Ïðåïðèíò Îáúåäèíåííîãî èíñòèòóòà ÿäåðíûõ èññëåäîâàíèé. Äóáíà, 2004



INTRODUCTION

The full analysis of the scissors mode in the framework of a solvable model
(harmonic oscillator with quadrupole-quadrupole residual interaction (HO+QQ))
was given in [1]. Many obscure points in the understanding of this mode nature
were clariˇed: for example, its coexistence with the isovector giant quadrupole
resonance (IVGQR), the decisive role of the Fermi surface deformation in its
creation, and so on.

The Wigner Function Moments (WFM) method was applied to derive an-
alytical expressions for currents of both coexisting modes (it was done for the
ˇrst time), their excitation energies, magnetic and electric transition probabilities.
Unexpectedly, our formulae for energies turned out to be identical with those
derived by Hamamoto and Nazarewicz [2] in the framework of the RPA. This
fact generated the natural motivation for this work: to check the relation between
formulas for transition probabilities derived by two methods. The obvious devel-
opment of this investigation is the systematic comparison of two approaches with
the aim to establish the connection between them. The HO+QQ model is a very
convenient proving ground for this kind of researches, because all results can be
obtained analytically. There is no need to describe the merits and demerits of the
RPA Å they are known very well [3]. It is necessary, however, to say a few
words about the WFM. Its idea is based on the virial theorems of Chandrasekhar
and Lebovitz [4]. Instead of writing the equations of motion for microscopic am-
plitudes of particle-hole excitations (RPA), one writes the dynamical equations for
various multipole phase space moments of a nucleus. This allows one to achieve
better physical interpretation of the studied phenomenon without going into its
detailed microscopic structure. The WFM method was successfully applied to
study isoscalar and isovector giant multipole resonances and low-lying collective
modes of rotating and nonrotating nuclei with various realistic forces [5]. The
results of calculations were always very close to similar results obtained with
the help of RPA. In principle, it should be expected, because the basis of the
both methods is the same: Time Dependent HartreeÄFock (TDHF) theory and
a small amplitude approximation. On the other hand, it is evident that they are
not equivalent, because one deals with equations of motion for different objects.
The detailed analysis of the interplay of two methods turns out useful also from
a ®practical¯ point of view: ˇrstly, it allows one to obtain additional insight into
the nature of the scissors mode; secondly, we ˇnd new exact mathematical results
for the considered model.

1. THE WFM METHOD

The detailed description of the method of Wigner function moments can
be found in [1, 5, 6]. Here we remind brie�y only its main points. The
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basis of the method is the TDHF equation for the one-body density matrix:

i�
∂ρ̂τ

∂t
=

[
Ĥτ , ρ̂τ

]
, where Ĥτ is the one-body self-consistent Hamiltonian de-

pending implicitly on the density matrix ρτ (r1, r2, t) = 〈r1|ρ̂τ (t)|r2〉 and τ is an
isotopic index. It is convenient to modify this equation introducing the Wigner
transform of the density matrix [3] known as the Wigner function f τ (r,p, t):

∂f τ

∂t
=

2
�

sin
(

�

2
(∇H

r · ∇f
p −∇H

p · ∇f
r )

)
Hτ

Wf τ , (1)

where the upper index on the nabla operator stands for the function on which this
operator acts and HW is the Wigner transform of the Hamiltonian H .

It is shown in [5, 6] that by integrating Eq. (1) over the phase space {p, r}
with the weights xi1xi2 . . . xik

pik+1 . . . pin−1pin , where k runs from 0 to n, one
can obtain a closed ˇnite set of dynamical equations for Cartesian tensors of the
rank n. Taking linear combinations of these equations one is able to represent
them through various multipole moments which play roles of collective variables
of the problem. Here we consider the case n = 2.

1.1. Model Hamiltonian, Equations of Motion. The microscopic Hamil-
tonian of the model is

H =
A∑

i=1

(
p2

i

2m
+

1
2
mω2r2

i ) + κ̄
2∑

µ=−2

(−1)µ
Z∑
i

N∑
j

q2µ(ri)q2−µ(rj)

+
1
2
κ

2∑
µ=−2

(−1)µ{
Z∑

i�=j

q2µ(ri)q2−µ(rj) +
N∑

i�=j

q2µ(ri)q2−µ(rj)}, (2)

where the quadrupole operator q2µ =
√

16π/5 r2Y2µ and N, Z are the numbers
of neutrons and protons, respectively. The mean ˇeld potential for protons (or
neutrons) is

V τ (r, t) =
1
2
m ω2r2 +

2∑
µ=−2

(−1)µZτ
2µ(t)q2−µ(r), (3)

where Zn
2µ = κQn

2µ+κ̄Qp
2µ , Zp

2µ = κQp
2µ+κ̄Qn

2µ and the quadrupole moments
Qτ

2µ(t) are deˇned as

Qτ
2µ(t) =

∫
d{p, r}q2µ(r)f τ (r,p, t)

with
∫

d{p, r} ≡ 2(2π�)−3
∫
d3p

∫
d3r.
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Integration of Eq. (1) with the weights r2
λµ, (rp)λµ ≡ {r ⊗ p}λµ and p2

λµ

yields the following set of equations [1]:

d

dt
Rτ

λµ − 2
m

Lτ
λµ = 0, λ = 0, 2,

d

dt
Lτ

λµ − 1
m

P τ
λµ + m ω2Rτ

λµ − 2
√

30
2∑

j=0

√
2j + 1{11j

2λ1}(Zτ
2 Rτ

j )λµ = 0,

λ = 0, 1, 2,

d

dt
P τ

λµ + 2m ω2Lτ
λµ − 4

√
30

2∑
j=0

√
2j + 1{11j

2λ1}(Z
τ
2 Lτ

j )λµ = 0,

λ = 0, 2, (4)

where {11j
2λ1} is the Wigner 6j-symbol,

r2
λµ ≡ {r ⊗ r}λµ =

∑
σ,ν

Cλµ
1σ,1νrσrν

is a tensor product [7], and rν are cyclic variables

r+1 = −(x1 + ix2)/
√

2, r0 = x3 , r−1 = (x1 − ix2)/
√

2.

In terms of these variables q2µ =
√

6r2
2µ, Qτ

2µ =
√

6Rτ
2µ. Further the following

notation is introduced:

P τ
λµ(t) =

∫
d{p, r}p2

λµf τ (r,p, t), Lτ
λµ(t) =

∫
d{p, r}(rp)λµf τ (r,p, t). (5)

By deˇnition Rτ
00 = −Qτ

00/
√

3 with Qτ
00 = N τ < r2 > being the mean square

radius. The tensor Lτ
1ν is connected with the angular momentum by the following

relations: Lτ
10 = i√

2
Iτ
3 , Lτ

1±1 = 1
2 (Iτ

2 ∓ iIτ
1 ).

We rewrite Eqs. (4) in terms of the isoscalar and isovector variables Rλµ =
Rn

λµ +Rp
λµ, R̄λµ = Rn

λµ−Rp
λµ (and so on) with the isoscalar κ0 = (κ+ κ̄)/2 and

isovector κ1 = (κ − κ̄)/2 strength constants. There is no problem to solve these
equations numerically. However, we want to simplify the situation as much as
possible to get the results in analytical form that gives us a maximum of insight
into the nature of the modes.

1. The problem is considered in a small amplitude approximation. Writing
all variables as a sum of their equilibrium value plus a small deviation

Rλµ(t) = Req
λµ + Rλµ(t), Pλµ(t) = P eq

λµ + Pλµ(t), Lλµ(t) = Leq
λµ + Lλµ(t),

R̄λµ(t) = R̄eq
λµ + R̄λµ(t), P̄λµ(t) = P̄ eq

λµ + P̄λµ(t), L̄λµ(t) = L̄eq
λµ + L̄λµ(t),
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we linearize the equations of motion in Rλµ, Pλµ, Lλµ and R̄λµ, P̄λµ, L̄λµ.
2. We study nonrotating nuclei, i.e. nuclei with Leq

1ν = L̄eq
1ν = 0.

3. Only axially symmetric nuclei with Req
2±2 = Req

2±1 = R̄eq
2±2 = R̄eq

2±1 = 0
are considered.

4. Finally, we take R̄eq
20 = R̄eq

00 = 0. This means that equilibrium deformation
and mean square radius of neutrons are supposed to be equal to that of protons.

Due to approximation No. 4. the equations for isoscalar and isovector sys-
tems are decoupled. Further, due to the axial symmetry the angular momentum
projection is a good quantum number. As a result, every set of equations splits
into ˇve independent subsets with µ = 0,±1,±2. The detailed derivation of for-
mulae for eigenfrequencies and transition probabilities together with all necessary
explanations are given in [1]. Here we write out only ˇnal results required for
the comparison with respective results obtained in the framework of the RPA.

1.2. Isoscalar Eigenfrequencies. Let us analyze the isoscalar set of equations
with µ = 1

Ṙ21 − 2L21/m = 0,

L̇21 − P21/m +
[
m ω2 + 2κ0(Q

eq
20 + Qeq

00)
]
R21 = 0,

Ṗ21 + 2[mω2 + κ0Q
eq
20]L21 = 0,

L̇11 = 0. (6)

Imposing the time evolution via e−iΩt for all variables one transforms (6) into
a set of algebraic equations. The eigenfrequencies are found from its characteristic
equation which reads

Ω2[Ω2 − 4ω2 − 6κ0

m
(Qeq

20 +
4
3
Qeq

00)] = 0. (7)

For κ0 we take the self-consistent value κ0 = −mω̄2

4Q00
, where ω̄2 =

ω2

1 + 2
3δ

(see

Appendix A) with the standard deˇnition of the deformation parameter Q20 =

Q00
4
3

δ. Then

Ω2[Ω2 − 2ω̄2(1 + δ/3)] = 0. (8)

The nontrivial solution of this equation gives the frequency of the µ = 1 branch
of the isoscalar GQR

Ω2 = Ω2
is = 2ω̄2(1 + δ/3). (9)

Taking into account the relation (63) we ˇnd that this result coincides with that
of [8]. The trivial solution Ω = Ω0 = 0 is characteristic of nonvibrational mode
corresponding to the obvious integral of motion L11 = const responsible for the
rotational degree of freedom. This is usually called the ®spurious¯ mode.
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1.3. Isovector Eigenfrequencies. The information about the scissors mode is
contained in the set of isovector equations with µ = 1

˙̄R21 − 2L̄21/m = 0,

˙̄L21 − P̄21/m +
[
m ω2 + κQeq

20 + 4κ1Q
eq
00

]
R̄21 = 0,

˙̄P21 + 2[mω2 + κ0Q
eq
20]L̄21 − 6κ0Q

eq
20 L̄11 = 0,

˙̄L11 + 3κ̄Qeq
20R̄21 = 0. (10)

Imposing the time evolution via e−iΩt one transforms (10) into a set of algebraic
equations. Again the eigenfrequencies are found from the characteristic equation
which reads

Ω4−Ω2[4ω2 +
8
m

κ1Q
eq
00 +

2
m

(κ1 +2κ0)Q
eq
20]+

36
m2

(κ0−κ1)κ0(Q
eq
20)

2 = 0. (11)

Supposing, as usual, the isovector constant κ1 to be proportional to the isoscalar
one, κ1 = ακ0, and taking the self-consistent value for κ0, we ˇnally obtain

Ω4 − 2Ω2ω̄2(2 − α)(1 + δ/3) + 4ω̄4(1 − α)δ2 = 0. (12)

The solutions of this equation are

Ω2
± = ω̄2(2 − α)(1 + δ/3) ±

√
ω̄4(2 − α)2(1 + δ/3)2 − 4ω̄4(1 − α)δ2. (13)

The solution Ω+ gives the frequency Ωiv of the µ = 1 branch of the isovector
GQR. The solution Ω− gives the frequency Ωsc of the scissors mode.

We adjust α from the fact that the IVGQR is experimentally known to lie
practically at twice the energy of the isoscalar GQR. In our model the experimental
situation is satisˇed by α = −2. Then

Ω2
iv = 4ω̄2(1 +

δ

3
+

√
(1 +

δ

3
)2 − 3

4
δ2 ),

Ω2
sc = 4ω̄2(1 +

δ

3
−

√
(1 +

δ

3
)2 − 3

4
δ2 ). (14)

1.4. Linear Response and Transition Probabilities. A direct way of cal-
culating the reduced transition probabilities is provided by the theory of linear
response of a system to a weak external ˇeld

Ô(t) = Ô exp (−iΩt) + Ô† exp (iΩt).

For magnetic excitations

Ô = Ô1µ = −i
z∑

s=1

∇s(rsY1µ) · [rs ×∇s]µN , µN =
e�

2mc
, (15)
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B(M1)sc = 2| < sc|Ô11|0 > |2 =
1 − α

4π

mω̄2

�
Q00δ

2 Ω2
sc − 2(1 + δ/3)ω̄2

Ωsc(Ω2
sc − Ω2

iv)
µ2

N ,

(16)

B(M1)iv = 2| < iv|Ô11|0 > |2 =
1 − α

4π

mω̄2

�
Q00δ

2 Ω2
iv − 2(1 + δ/3)ω̄2

Ωiv(Ω2
iv − Ω2

sc)
µ2

N .

(17)
These two formulae can be joined into one expression by the simple transforma-
tion of the denominators. Really, we have from (13)

±(Ω2
iv − Ω2

sc) = ±(Ω2
+ − Ω2

−) = ±2
√

ω̄4(2 − α)2(1 + δ/3)2 − 4ω̄4(1 − α)δ2

= 2Ω2
± − 2ω̄2(2 − α)(1 + δ/3) = 2Ω2

± − (2 − α)(ω2
x + ω2

z).
(18)

Using these relations in formulae (16) and (17), we obtain the expression for
B(M1) value valid for both excitations

B(M1)ν =
1 − α

8π

mω̄2

�
Q00δ

2 Ω2
ν − 2(1 + δ/3)ω̄2

Ων [Ω2
ν − ω̄2(2 − α)(1 + δ/3)]

µ2
N . (19)

For electric excitations Ô = Ô2µ =
z∑

s=1
er2

sY2µ.

B(E2)sc = 2| < sc|Ô21|0 > |2 =
e2

�

m
5
8π

Q00
(1 + δ/3)Ω2

sc − 2(ω̄δ)2

Ωsc(Ω2
sc − Ω2

iv)
. (20)

B(E2)iv = 2| < iv|Ô21|0 > |2 =
e2

�

m
5
8π

Q00
(1 + δ/3)Ω2

iv − 2(ω̄δ)2

Ωiv(Ω2
iv − Ω2

sc)
. (21)

B(E2)is = 2| < is|Ô21|0 > |2 =
e2

�

m
5
8π

Q00[(1 + δ/3)Ω2
is − 2(ω̄δ)2]/[Ωis]3. (22)

Using relations (18) in formulae (20) and (21) we obtain the expression for B(E2)
value valid for all three excitations

B(E2)ν = 2|< ν|Ô21|0 > |2 =
e2

�

m

5
16π

Q00
(1 + δ/3)Ω2

ν − 2(ω̄δ)2

Ων [Ω2
ν − ω̄2(2 − α)(1 + δ/3)]

. (23)

The isoscalar value (22) is obtained by assuming α = 1.
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2. RPA

Standard RPA equations in the notation of [3] are∑
n,j

{[δijδmn(εm − εi) + v̄mjin] Xnj + v̄mnijYnj} = �ΩXmi,

∑
n,j

{v̄ijmnXnj + [δijδmn(εm − εi) + v̄inmj ] Ynj} = −�ΩYmi. (24)

According to the schematic model (2), the matrix element of the residual interac-
tion is

v̄mjin = κττ ′Dτ∗
imDτ ′

jn

with D = q21 =
√

16π/5 r2Y21 and κnn = κpp = κ, κnp = κ̄. This interaction
distinguishes between protons and neutrons, so we have to introduce the isospin
projection indices τ, τ ′ into the set of RPA equations (24):

(ετ
m − ετ

i )Xτ
mi +

∑
n,j,τ ′

κττ ′Dτ∗
imDτ ′

jnXτ ′

nj +
∑

n,j,τ ′

κττ ′Dτ∗
imDτ ′

njY
τ ′

nj = �ΩXτ
mi,

∑
n,j,τ ′

κττ ′Dτ∗
miD

τ ′

jnXτ ′

nj + (ετ
m − ετ

i )Y τ
mi +

∑
n,j,τ ′

κττ ′Dτ∗
miD

τ ′

njY
τ ′

nj = −�ΩY τ
mi.

(25)

Its solution is

Xτ
mi =

Dτ∗
im

�Ω − ετ
mi

Kτ , Y τ
mi = − Dτ∗

mi

�Ω + ετ
mi

Kτ (26)

with ετ
mi = ετ

m − ετ
i and Kτ =

∑
τ ′ κττ ′Cτ ′

.
The constant Cτ is deˇned as Cτ =

∑
n,j(D

τ
jnXτ

nj + Dτ
njY

τ
nj). Using here

the above written expressions for Xτ
nj and Y τ

nj , one derives the useful relation

Cτ = 2SτKτ = 2Sτ
∑
τ ′

κττ ′Cτ ′
, (27)

where the following notation is introduced:

Sτ =
∑
mi

|Dτ
mi|2

ετ
mi

E2 − (ετ
mi)2

(28)

with E = �Ω. Let us write this relation in detail

Cn − 2Sn(κCn + κ̄Cp) = 0,

Cp − 2Sp(κ̄Cn + κCp) = 0. (29)

7



The condition for existence of a nontrivial solution of this set of equations gives
the secular equation

(1 − 2Snκ)(1 − 2Spκ) − 4SnSpκ̄2 = 0. (30)

Making obvious linear combinations of two equations in (29), we write them in
terms of isoscalar and isovector variables C = Cn + Cp, C̄ = Cn − Cp

C − 2(Sn + Sp)κ0C − 2(Sn − Sp)κ1C̄ = 0,

C̄ − 2(Sn − Sp)κ0C − 2(Sn + Sp)κ1C̄ = 0. (31)

Approximation No. 4 allows us to decouple equations for isoscalar and isovector
variables. Really, in this case Sn = Sp ≡ S/2; hence, we obtain two secular
equations

1 − 2Sκ0 = 0, or 1 − Sκ = Sκ̄ (32)

in the isoscalar case and

1 − 2Sκ1 = 0, or 1 − Sκ = −Sκ̄ (33)

in the isovector one, the difference between them being in the strength constants
only. Having in mind the relation κ1 = ακ0, we come to the conclusion that it
is sufˇcient to analyze the isovector case only Å the results for isoscalar one are
obtained by assuming α = 1.

2.1. Eigenfrequencies. The detailed expression for the isovector secular
equation is

1
2κ1

=
∑
mi

|Dmi|2
εmi

E2 − ε2mi

. (34)

The operator D has only two types of nonzero matrix elements Dmi in the
deformed oscillator basis. Matrix elements of the ˇrst type couple the states
of the same major shell. All corresponding transition energies are degenerate:
εm − εi = �(ωx −ωz) ≡ ε0. Matrix elements of the second type couple the states
of the different major shells with ∆N = 2. All corresponding transition energies
are degenerate too: εm − εi = �(ωx + ωz) ≡ ε2. Therefore, the secular equation
can be rewritten as

1
2κ1

=
ε0D0

E2 − ε20
+

ε2D2

E2 − ε22
. (35)

The sums D0 =
∑

mi(∆N=0)

|Dmi|2 and D2 =
∑

mi(∆N=2)

|Dmi|2 can be calculated

analytically (see Appendix B):

D0 =
Q00

mω̄2
ε0, D2 =

Q00

mω̄2
ε2. (36)

8



Let us transform the secular Eq. (35) in the polynomial

E4 − E2[(ε20 + ε22) + 2κ1(ε0D0 + ε2D2)] + [ε20ε
2
2 + 2κ1ε0ε2(ε0D2 + ε2D0)] = 0.

Using here the expressions (36) for D0, D2 and the self-consistent value of the
strength constant (62), we ˇnd

E4 − E2(1 − α/2)(ε20 + ε22) + (1 − α)ε20ε
2
2 = 0,

or
Ω4 − Ω2(2 − α)ω2

+ + (1 − α)ω4
− = 0, (37)

where the notation ω2
+ = ω2

x + ω2
z and ω4

− = (ω2
x − ω2

z)2 is introduced. This
result coincides with that of [2]. By a trivial rearrangement of the terms in (37)
one obtains the useful relation

Ω2(Ω2 − ω2
+) = (1 − α)(Ω2ω2

+ − ω4
−). (38)

Substituting expressions (62) for ω2
x, ω2

z into (38), we reproduce formula (12) for
the isovector case

Ω4 − 2Ω2ω̄2(2 − α)(1 + δ/3) + 4ω̄4(1 − α)δ2 = 0.

Taking here α = 1 we reproduce formula (8) for the isoscalar case

Ω4 − 2Ω2ω̄2(1 + δ/3) = 0.

2.2. B(E2)-Factors. According to [3], the transition probability for a one-body
operator F̂ =

∑A
i=1 f̂i is calculated with the help of the formula

< 0|F̂ τ |ν >=
∑
mi

(f̂ τ
imXτ,ν

mi + f̂ τ
miY

τ,ν
mi ). (39)

To calculate quadrupole excitations, one has to take f̂p = er2Y2µ = ẽDp with ẽ =

e
√

5
16π . The expressions for Xτ

mi, Y τ
mi are given by formulae (26). Combining

these results we have

< 0|Ôp
21p|ν >= 2ẽKp

ν

∑
mi

|Dp
mi|2

εpmi

E2
ν − (εpmi)2

= 2ẽKp
ν Sp

ν = ẽCp
ν . (40)

The constant Cp
ν is determined by the normalization condition

δν,ν′ =
∑
mi,τ

(Xτ,ν∗
mi Xτ,ν′

mi − Y τ,ν∗
mi Y τ,ν′

mi ),

9



that gives

1
(Cp

ν )2
= Eν

∑
mi

[
|Dp

mi|2
(Sp

ν )2
εpmi

[E2
ν − (εpmi)2]2

+
(Cn

ν )2

(Cp
ν )2

|Dn
mi|2

(Sn
ν )2

εnmi

[E2
ν − (εnmi)2]2

]
.

(41)
The ratio Cn/Cp is determined by any of equations (29):

Cn

Cp
=

1 − 2Spκ

2Spκ̄
=

2Snκ̄

1 − 2Snκ
. (42)

Formula (41) is simpliˇed by approximation No. 4, when Sp = Sn, εpmi = εnmi,
Dp

mi = Dn
mi. Applying the second parts of formulae (32), (33) it is easy to ˇnd

that in this case Cn/Cp = ±1. As a result, the ˇnal expression for B(E2) value
is

B(E2)ν = 2| < 0|Ôp
21|ν > |2 = 2ẽ2

(
16Eνκ2

1

∑
mi

|Dmi|2
εmi

(E2
ν − ε2mi)2

)−1

.

(43)
With the help of formulae (36) this expression can be transformed into

B(E2)ν =
5
8π

e2Q00

mω̄2α2Eν

[
ε20

(E2
ν − ε20)2

+
ε22

(E2
ν − ε22)2

]−1

=
5
8π

e2Q00

mω̄2α2Eν

(E2
ν − ε20)

2(E2
ν − ε22)

2

(E2
ν − ε22)2ε20 + (E2 − ε20)2ε22

=
5

16π

e2
�Q00

mω̄2Ων

(Ω2
νω2

+ − ω4
−)2

Ω4
νω2

+ − 2Ω2
νω4

− + ω2
+ω4

−
. (44)

At a glance, this expression has nothing common with (23). Nevertheless, it
can be shown that they are identical. To this end, we analyze carefully the
denominator of the last expression in (44). Summing it with the secular equation
(37) (multiplied by ω2

+), which obviously does not change its value, we ˇnd after
elementary combinations

Denom = Ω4
νω2

+ − 2Ω2
νω4

− + ω2
+ω4

− + ω2
+[Ω4

ν − Ω2
ν(2 − α)ω2

+ + (1 − α)ω4
−]

= ω2
+Ω2

ν [2Ω2
ν − (2 − α)ω2

+] − ω4
−[2Ω2

ν − (2 − α)ω2
+]

= (Ω2
νω2

+ − ω4
−)[2Ω2

ν − (2 − α)ω2
+]. (45)

This result allows us to write the ˇnal expression

B(E2)ν =
5

16π

e2
�

mω̄2
Q00

Ω2
νω2

+ − ω4
−

Ων [2Ω2
ν − (2 − α)ω2

+]
, (46)

10



which coincides with (23) (we remind that ω2
+ = 2ω̄2(1 + δ/3), ω4

− = 4δ2ω̄4).
By the simple transformations this formula is reduced to the result of Hamamoto

and Nazarewicz published in [2] without the constant factor
5

32π

e2
�

mω0
Q0

00.

2.3. B(M1)-Factors. In accordance with formulae (15), (39) and (26), the
magnetic transition matrix element is

< 0|Ôp
11|ν >= Kp

ν

∑
mi

[
(Ôp

11)imDp∗
im

Eν − εpmi

− (Ôp
11)miD

p∗
mi

Eν + εpmi

]
. (47)

As is shown in Appendix B, the matrix element (Op
11)im is proportional to Dp

im

(formula (74)). So, expression (47) is reduced to

< 0|Ôp
11|ν > = −Kp

ν

ẽ�

2c
√

5
(ω2

x − ω2
z)p

∑
mi

[
Dp

imDp∗
im

εpim(Eν − εpmi)
− Dp

miD
p∗
mi

εpmi(Eν + εpmi)

]

= Kp
ν

ẽ�

c
√

5
(ω2

x − ω2
z)pEν

∑
mi

|Dp
mi|2

εpmi[E2
ν − (εpmi)2]

. (48)

With the help of approximation No. 4 and expressions (36) for D0, D2 we
ˇnd

< 0|Ôp
11|ν > =

Cp
ν

2Sp
ν

ẽ�

c
√

5
(ω2

x − ω2
z)

Q00

2mω̄2
(

Eν

E2
ν − ε20

+
Eν

E2
ν − ε22

)

= −2κ1C
p
ν

ẽ

c
√

5
(ω2

x − ω2
z)

Q00

mω̄2

Ων(Ω2
ν − ω2

+)
α(Ω2

νω2
+ − ω4

−)

=
Cp

ν

2
ẽ

c
√

5
(ω2

x − ω2
z)

1 − α

Ων
. (49)

Relation (38) and the self-consistent value of the strength constant κ1 = ακ0

were used at the last step. For the magnetic transition probability we have

B(M1)ν = 2| < 0|Ôp
11|ν > |2 =

= 2
(Cp

ν )2

4
ẽ2

5c2
ω4
−

(1 − α)2

Ω2
ν

=
ω4
−

20c2

(1 − α)2

Ω2
ν

B(E2). (50)

This relation between B(M1) and B(E2) was also found (to the factor 1/(20c2))
by Hamamoto and Nazarewicz [2]. Substituting expression (46) for B(E2) into
(50) we reproduce (with the help of relation (38)) formula (19).

2.4. ®Synthetic¯ Scissors and Spurious State. The nature of collective exci-
tations calculated by the method of Wigner function moments is ascertained quite
easily by analyzing the roles of collective variables describing the phenomenon.

11



The solution of this problem in the RPA approach is not so obvious. That is why
the nature of the low-lying states has often been established by considering over-
laps of these states with the ®pure scissors state¯ [10,11] or ®synthetic state¯ [2]
produced by the action of the scissors operator

Sx = N−1(< In
x

2 > Ip
x− < Ip

x
2 > In

x )

on the ground state
|Syn >= Sx |0 > .

Due to axial symmetry one can use the Iτ
y component instead of Iτ

x , or any
their linear combination, for example, the variable Lτ

11, which is much more
convenient for us. The terms < Iτ

x
2 > are introduced to ensure the orthogonality

of the synthetic scissors to the spurious state |Sp >= (I n + I p)|0 >. However,
we do not need these terms because the collective states |ν > of our model are
already orthogonal to |Sp > (see below); hence, the overlaps < Syn|ν > will be
free from any admixtures of |Sp >. So, we use the following deˇnitions of the
synthetic and spurious states:

|Syn >= γN−1(Lp
11 − Ln

11)|0 >= N−1(Ôp
11 − Ôn

11)|0 >,

|Sp >= (Ôp
11 + Ôn

11)|0 >,

where γ = −i
e

2mc

√
3
2π

.

Let us demonstrate the orthogonality of the spurious state to all the rest states
|ν >. As the ˇrst step it is necessary to show that the secular Eq. (30) has the
solution E = 0. We need the expression for Sτ (E = 0) ≡ Sτ (0). In accordance
with (28), we have

Sτ (E) =
[

ε0D0

E2 − ε20
+

ε2D2

E2 − ε22

]τ

, Sτ (0) = −
[
D0

ε0
+

D2

ε2

]τ

.

The expressions for Dτ
0 , Dτ

2 are easily extracted from formulae (71), (72):

Dτ
0 =

�

m
Qτ

00

[
1 + 4

3δ

ωx
−

1 − 2
3δ

ωz

]τ

, Dτ
2 =

�

m
Qτ

00

[
1 + 4

3δ

ωx
+

1 − 2
3δ

ωz

]τ

.

(51)
So we ˇnd

Sτ (0) = − �

m
Qτ

00

[
1 + 4

3δ

ωx
(

1
ε2

+
1
ε0

) +
1 − 2

3δ

ωz
(

1
ε2

− 1
ε0

)
]τ

= −�
2

m

4δτQτ
00

ετ
2ετ

0

= − 1
m

3Qτ
20

(ω2
x − ω2

z)τ
, (52)

12



where, in accordance with (73),

(ω2
x − ω2

z)p = − 6
m

(κQp
20 + κ̄Qn

20), (ω2
x − ω2

z)n = − 6
m

(κQn
20 + κ̄Qp

20). (53)

Finally, we get

2Sp(0) =
Qp

20

κQp
20 + κ̄Qn

20

, 1 − 2Sp(0)κ =
κ̄Qn

20

κQp
20 + κ̄Qn

20

,

2Sn(0) =
Qn

20

κQn
20 + κ̄Qp

20

, 1 − 2Sn(0)κ =
κ̄Qp

20

κQn
20 + κ̄Qp

20

.

It is easy to see that substituting these expressions into (30) we obtain the identity;
therefore, the secular equation has the zero solution.

At the second step it is necessary to calculate the overlap < Sp|ν >. Sum-
ming (47) with an analogous expression for neutrons, we get

< Sp|ν > =
ẽ�

c
√

5
Eν

∑
τ

Kτ
ν (ω2

x − ω2
z)τ

∑
mi

|Dτ
mi|2

ετ
mi(E2

ν − ε2mi)τ

=
ẽ�

c
√

5
Eν

∑
τ

Kτ
ν (ω2

x − ω2
z)τ

∑
mi

|Dτ
mi|2ετ

mi

(ε2mi)τ (E2
ν − ε2mi)τ

. (54)

Applying the algebraical identity

1
ε2(E2 − ε2)

=
1

E2
(

1
ε2

+
1

E2 − ε2
)

and remembering the deˇnition (28) of Sτ , we can rewrite (54) as

< Sp|ν >=
ẽ�

c
√

5Eν

∑
τ

K τ
ν (ω2

x − ω2
z )

τ (S τ − S τ (0))

=
ẽ�

c
√

5
Kp

ν

Eν

[
(ω2

x − ω2
z)p(Sp − Sp(0)) + (ω2

x − ω2
z)n(Sn − Sn(0))

Kn
ν

Kp
ν

]
.

In accordance with (27) and (42),

Kn
ν

Kp
ν

=
1 − 2Spκ

2Snκ̄
. (55)

Noting now (see formula (52)) that (ω2
x − ω2

z)τSτ (0) = − 3
mQτ

20 and taking into

13



account relations (53), we ˇnd

< Sp|ν > = β {[(κQp
2 + κ̄Qn

2)2Sp − Qp
2 ]

+[(κQn
2 + κ̄Qp

2)2Sn − Qn
2 ]

1 − 2Spκ

2Snκ̄

}
= β {[(2Spκ − 1)Qp

2 + 2Spκ̄Qn
2 ]

+[(2Snκ − 1)Qn
2 + 2Snκ̄Qp

2)]
1 − 2Spκ

2Snκ̄

}

= β

{
2Spκ̄Qn

2 + (2Snκ − 1)Qn
2

1 − 2Spκ

2Snκ̄

}

= β
Qn

2

2Snκ̄
{2Snκ̄2Spκ̄ − (1 − 2Snκ)(1 − 2Spκ)} = 0, (56)

where β = − 3
m

ẽ�

c
√

5
Kp

ν

Eν
and Q2 ≡ Q20. The expression in the last curly brackets

coincides obviously with the secular Eq. (30) that proves the orthogonality of the
spurious state to all physical states of the considered model. So we can conclude
that strictly speaking this is not a spurious state, but one of the exact eigenstates
of the model corresponding to the integral of motion In + Ip. In other words [3]:
®In fact these excitations are not really spurious, but they represent a different
type of motion which has to be treated separately¯. The same conclusion was
made by N. Lo Iudice [12] who solved this problem approximately with the help
of several assumptions (a small deformation limit, for example).

The problem of the ®spurious¯ state being solved, the calculation of the over-
laps < Syn|ν > becomes trivial. Really, we have shown that < 0|Ôn

11+Ôp
11|ν >=

0. That means that < 0|Ôn
11|ν >= − < 0|Ôp

11|ν >; hence, < Syn|ν >= N−1

< 0|Ôp
11 − Ôn

11|ν >= 2N−1 < 0|Ôp
11|ν > and

U2 ≡ | < Syn|ν > |2 = 2N−2B(M 1)ν .

The nontrivial part of the problem is the calculation of the normalization factor
N . It is important not to forget about the time dependence of the synthetic state
which should be determined by the external ˇeld

|Syn(t) >= N−1[(Ôp
11 − Ôn

11) exp−iΩt + (Ôp
11 − Ôn

11)
†expiΩt ]|0 > .

14



Then we have

N 2 = < Syn(t)|Syn(t) >

= 2 < 0|(Ôp
11 − Ôn

11)
†(Ôp

11 − Ôn
11)|0 >

= 2
∑
ph

< 0|(Ôp
11 − Ôn

11)
†|ph >< ph|(Ôp

11 − Ôn
11)|0 >

= 2
∑
ph

| < ph|(Ôp
11 − Ôn

11)|0 > |2 = 2
∑
τ,ph

| < ph|Ôτ
11|0 > |2. (57)

With the help of relation (74) we ˇnd

N 2 =
2
5
(
e�

2c
)2

∑
τ,ph

(
ω4
−
| < ph|r2Y21|0 > |2

ε2ph

)τ

=
1
8π

(
e�

2c
)2

∑
τ

(ω4
−)τ

(
D0

ε20
+

D2

ε22

)τ

. (58)

Expressions for Dτ
0 , Dτ

2 , ωτ
x, ωτ

z are given by formulae (51), (73). To get a
deˇnite number, it is necessary to make some assumption concerning the relation
between neutron and proton equilibrium characteristics. As usual, we apply
approximation No. 4, i.e., suppose Qn

00 = Qp
00, Qn

20 = Qp
20. It is easy to check

that in this case formulae for ωτ
x,z are reduced to the ones for the isoscalar case,

namely (62), and Dτ
0 = D0/2, Dτ

2 = D2/2, where D0 and D2 are given by (36).
So we get

N 2 =
ω4
−

8π
(
e�

2c
)2

Q00

mω̄2

(
1
ε0

+
1
ε2

)
= µ2

N

δ

2π

mωx

�
Q00. (59)

The estimation of the overlap for 156Gd with δ = 0.27 gives N 2 = 34.72µ2
N

and U2 = 0.53, that is two times larger than the result of [10] obtained in
QRPA calculations with the Skyrme forces. The disagreement can naturally be
attributed to the difference in forces and especially to the lack of pair correlations
in our approach (see the next section, nevertheless). In a small deformation limit

U2 = 1
2

√
3
2 ≈ 0.6.

3. SUPERDEFORMATION

A certain drawback of our approach is that, so far, we have not included the
super�uidity into our description. Nevertheless, our formulae (14), (19) can be
successfully used for the description of superdeformed nuclei where the pairing
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is very weak [2, 9]. For example, applying them to the superdeformed nucleus
152Dy (δ 	 0.6, �ω0 = 41/A1/3MeV), we get

Eiv = 20.8 MeV, B(M1)iv = 15.9 µ2
N

for the isovector GQR and

Esc = 4.7 MeV, B(M1)sc = 20.0 µ2
N

for the scissors mode. There are not so many results of other calculations to
compare with. As a matter of fact, there are only two papers considering this
problem.

The phenomenological TRM model [9] predicts

Eiv 	 26 MeV, B(M1)iv 	 26 µ2
N , Esc 	 6.1 MeV, B(M1)sc 	 22 µ2

N .

The only existing microscopic calculation [2] in the framework of QRPA with
separable forces gives

Eiv 	 28 MeV, B(M1)iv 	 37 µ2
N , Esc 	 5−6 MeV, B(M1)1+ 	 23 µ2

N .

Here B(M1)1+ denotes the total M1 orbital strength carried by the calculated
Kπ = 1+ QRPA excitations modes in the energy region below 20 MeV.

It is easy to see that in the case of IVGQR one can speak, at least, about
qualitative agreement. Our results for Esc and B(M1)sc are in good agreement
with that of phenomenological model and with Esc and B(M1)1+ of Hamamoto
and Nazarewicz.

It is possible to extract from the histogram of [2] the value of the overlap of
calculated low-lying 1+ excitations with the synthetic scissors state:
| < Syn|1+ > |2 ≈ 0.4. The result of our calculation U2 = 0.43 agrees with
it very well. So the natural conclusion of this section is that the correct treatment
of pair correlations is more important for a reasonable description of the scissors
mode than the thorough choice of an interaction.

CONCLUSION

The properties of collective excitations (the scissors mode, isovector and
isoscalar giant quadrupole resonances) of the harmonic oscillator Hamiltonian
with the quadrupole-quadrupole residual interaction (HO+QQ) were studied by
two methods: WFM and RPA. We have found that both methods give the same
analytical expressions for energies and transition probabilities of all considered
excitations. Does it mean that WFM and RPA are identical approaches? Certainly,
not. First of all, we have the experience of previous WFM calculations [5] with
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realistic forces which show that, for example, we reproduce only centroids of giant
resonances whereas RPA describes their ˇne structure. Secondly, we suppose that
one can ˇnd such nuclear characteristics that will be described differently by two
approaches even in this simple model. Thirdly, to establish completely (and
ˇnally) the relation between the two approaches, it is necessary to analyze the
equations of motion for multipole moments from the point of view of RPA. It
will be done in the subsequent publication.

There is no sense to speak about advantages or disadvantages of one of the
two discussed methods Å they are complementary. Of course, RPA gives com-
plete, exhaustive information concerning the microscopic (particle-hole) structure
of collective excitations. However, sometimes considerable additional efforts are
required to understand their physical nature. On the contrary, WFM method
gives information only on the physical nature of excitations and does not touch
their microscopic structure. Our results serve as a very good illustration of this
situation. Really, what do we know about the scissors mode and IVGQR from
each method? RPA says that the scissors mode is mostly created by ∆N = 0
particle-hole excitations with a small admixture of ∆N = 2 ph excitations and
vice versa for IVGQR. And that is all! One can even not suspect about the
key role of the relative angular momentum in the creation of the scissors mode.
On the other hand, the WFM method says that the scissors mode appears due
to oscillations of the relative angular momentum with a small admixture of the
quadrupole moment oscillations and vice versa for IVGQR. Further, it informs
us about the extremely important role of the Fermi surface deformation in the
formation of the scissors mode.

Two new mathematical results are obtained for the HO+QQ model. We have
proved exactly, without any approximations, the orthogonality of the ®spurious¯
state to all physical states. In this sense, we have generalized the result of
Lo Iudice [12] derived in a small deformation approximation. The analytical
expressions are derived for the normalization factor of the synthetic scissors state
and overlaps of this state with eigenstates of the model.

APPENDIX A

It is known that the deformed harmonic oscillator Hamiltonian can be ob-
tained in a Hartree approximation ®by making the assumption that the isoscalar
part of the Q-Q force builds the one-body container well¯ [13]. In our case it is
obtained quite easily by summing the expressions for V p and V n (formula (3)):

V (r, t) =
1
2
(V p(r, t) + V n(r, t)) =

1
2
m ω2r2 + κ0

2∑
µ=−2

(−1)µQ2µ(t)q2−µ(r).

(60)
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In the state of equilibrium (i.e., in the absence of an external ˇeld) Q2±1 =
Q2±2 = 0. Using the deˇnition [14] Q20 = Q00

4
3δ and the formula q20 =

2z2 − x2 − y2, we obtain the potential of the anisotropic harmonic oscillator

V (r) =
m

2
[ω2

x(x2 + y2) + ω2
zz2]

with oscillator frequencies

ω2
x = ω2

y = ω2(1 + σδ), ω2
z = ω2(1 − 2σδ),

where σ = −κ0
8Q00

3mω2
. The deˇnition of the deformation parameter δ must be

reproduced by the harmonic oscillator wave functions, which allows one to ˇx
the value of σ. We have

Q00 =
�

m
(
Σx

ωx
+

Σy

ωy
+

Σz

ωz
), Q20 = 2

�

m
(
Σz

ωz
− Σx

ωx
),

where Σx = ΣA
i=1(nx +

1
2
)i, and nx is the oscillator quantum number. Using the

self-consistency condition [14]

Σxωx = Σyωy = Σzωz = Σ0ω0,

where Σ0 and ω0 are deˇned in the spherical case, we get

Q20

Q00
= 2

ω2
x − ω2

z

ω2
x + 2ω2

z

=
2σδ

1 − σδ
=

4
3
δ.

Solving the last equation with respect to σ, we ˇnd

σ =
2

3 + 2δ
. (61)

Therefore, the oscillator frequences and the strength constant can be written as

ω2
x = ω2

y = ω̄2(1 +
4
3
δ), ω2

z = ω̄2(1 − 2
3
δ), κ0 = −mω̄2

4Q00
(62)

with ω̄2 = ω2/(1 + 2
3δ). The condition for volume conservation ωxωyωz =

const = ω3
0 makes ω δ-dependent

ω2 = ω2
0

1 + 2
3δ

(1 + 4
3δ)2/3(1 − 2

3δ)1/3
.
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So the ˇnal expressions for oscillator frequences are

ω2
x = ω2

y = ω2
0

(
1 + 4

3δ

1 − 2
3δ

)1/3

, ω2
z = ω2

0

(
1 − 2

3δ

1 + 4
3δ

)2/3

.

It is easy to see that they correspond to the case when the deformed density ρ(r)
is obtained from the spherical density ρ0(r) by the scale transformation [8]

(x, y, z) → (xeα/2, yeα/2, ze−α)

with

eα =
(

1 + 4
3δ

1 − 2
3δ

)1/3

, δ =
3
2

e3α − 1
e3α + 2

, (63)

which conserves the volume and does not destroy the self-consistency, because
the density and potential are transformed in the same way.

It is necessary to note that Q00 also depends on δ

Q00 =
�

m
(
Σx

ωx
+

Σy

ωy
+

Σz

ωz
) =

�

m
Σ0ω0(

2
ω2

x

+
1
ω2

z

) = Q0
00

1
(1 + 4

3δ)1/3(1 − 2
3δ)2/3

,

where Q0
00 = A3

5R2, R = r0A
1/3. As a result, the ˇnal expression for the

strength constant becomes

κ0 = −mω2
0

4Q0
00

(
1 − 2

3δ

1 + 4
3δ

)1/3

= −mω2
0

4Q0
00

e−α,

that coincides with the respective result of [8].

APPENDIX B

To calculate the sums D0 =
∑

mi(∆N=0)

|Dmi|2 and D2 =
∑

mi(∆N=2)

|Dmi|2

we employ the sum-rule techniques of Suzuki and Rowe [8]. The well-known
harmonic oscillator relations

xψnx =
√

�

2mωx
(
√

nxψnx−1 +
√

nx + 1ψnx+1),

p̂xψnx = −i

√
m�ωx

2
(
√

nxψnx−1 −
√

nx + 1ψnx+1) (64)

19



allow us to write

xzψnxψnz =

=
�

2m
√

ωxωz
(
√

nxnzψnx−1ψnz−1 +
√

(nx + 1)(nz + 1)ψnx+1ψnz+1

+
√

(nx + 1)nzψnx+1ψnz−1 +
√

nx(nz + 1)ψnx−1ψnz+1),

p̂xp̂z

m2ωxωz
ψnxψnz =

= − �

2m
√

ωxωz
(
√

nxnzψnx−1ψnz−1 +
√

(nx + 1)(nz + 1)ψnx+1ψnz+1

−
√

(nx + 1)nzψnx+1ψnz−1 −
√

nx(nz + 1)ψnx−1ψnz+1).

These formulae demonstrate in an obvious way that the operators

P0 =
1
2
(zx +

1
m2ωxωz

p̂xp̂z) and P2 =
1
2
(zx − 1

m2ωxωz
p̂xp̂z)

contribute only to the excitation of the ∆N = 0 and ∆N = 2 states, re-

spectively. Following [8], we express the zx component of r2Y21 =
√

5
16π D

= −
√

15
8π z(x + iy) as

zx = P0 + P2.

Hence, we have

ε0
∑

mi(∆N=0)

| < 0|
A∑

s=1

zsxs|mi > |2 = ε0
∑
mi

| < 0|
A∑

s=1

P0(s)|mi > |2

=
1
2

< 0|[
A∑

s=1

P0(s), [H,

A∑
s=1

P0(s)]]|0 >, (65)

where ε0 = �(ωx − ωz). The above commutator is easily evaluated for the
Hamiltonian (60), as

< 0|[
A∑

s=1

P0(s), [H,

A∑
s=1

P0(s)]]|0 >=

=
�

2m
ε0

(
< 0|

∑A
s=1 z2

s |0 >

ωx
− < 0|

∑A
s=1 x2

s|0 >

ωz

)
.

20



Taking into account the axial symmetry and using the deˇnitions

Q00 =< 0|
A∑

s=1

(2x2
s + z2

s)|0 >, Q20 = 2 < 0|
A∑

s=1

(z2
s − x2

s)|0 >, Q20 = Q00
4
3
δ,

we transform this expression to

< 0|[
A∑

s=1

P0(s), [H,

A∑
s=1

P0(s)]]|0 >=
�

6m
ε0Q00

(
1 + 4

3δ

ωx
−

1 − 2
3δ

ωz

)
. (66)

With the help of the self-consistent expressions for ωx, ωz (62) one comes to the
following result:

< 0|[
A∑

s=1

P0(s), [H,

A∑
s=1

P0(s)]]|0 >=
Q00

6m

ε20
ω̄2

=
�

2

6m
Q0

00

(
ω0

ωz
− ω0

ωx

)2

. (67)

By using the fact that the matrix elements for the zy component of r2Y21 are
identical to those for the zx component, because of axial symmetry, we ˇnally
obtain

ε0
∑

mi(∆N=0)

| < 0|
A∑

s=1

r2
sY21|mi > |2 =

5
16π

Q00

mω̄2
ε20 =

=
5

16π

Q0
00

m

ε20
ω2

0

(
1 + 4

3δ

1 − 2
3δ

)1/3

. (68)

By calculating a double commutator for the P2 operator, we ˇnd

ε2
∑

mi(∆N=2)

| < 0|
A∑

s=1

r2
sY21|mi > |2 =

5
16π

Q00

mω̄2
ε22 =

=
5

16π

Q0
00

m

ε22
ω2

0

(
1 + 4

3δ

1 − 2
3δ

)1/3

, (69)

where ε2 = �(ωx + ωz).
We need also the sums Dτ

0 and Dτ
2 calculated separately for neutron and

proton systems with the mean ˇelds V n and V p, respectively. The necessary
formulae are easily derivable from the already obtained results. There are no any
reasons to require the fulˇllment of the self-consistency conditions for neutrons
and protons separately, so one has to use formula (66). The trivial change of
notation gives

< 0|[
Z∑

s=1

P0(s), [Hp,
Z∑

s=1

P0(s)]]|0 >=
�

6m
εp0Q

p
00

(
1 + 4

3δp

ωp
x

−
1 − 2

3δp

ωp
z

)
, (70)
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εp0
∑

mi(∆N=0)

| < 0|
Z∑

s=1

r2
sY21|mi > |2 =

5
16π

�

m
εp0Qp

00

(
1 + 4

3δp

ωp
x

−
1 − 2

3δp

ωp
z

)
,

(71)

εp2
∑

mi(∆N=2)

| < 0|
Z∑

s=1

r2
sY21|mi > |2 =

5
16π

�

m
εp2Qp

00

(
1 + 4

3δp

ωp
x

+
1 − 2

3δp

ωp
z

)
.

(72)
The nontrivial information is contained in oscillator frequences of the mean ˇelds
V p and V n (formula (3))

(ωp
x)2 = ω2[1 − 2

mω2
(κQp

20 + κ̄Qn
20)], (ωp

z )2 = ω2[1 +
4

mω2
(κQp

20 + κ̄Qn
20)],

(ωn
x)2 = ω2[1 − 2

mω2
(κQn

20 + κ̄Qp
20)], (ωn

z )2 = ω2[1 +
4

mω2
(κQn

20 + κ̄Qp
20)].

(73)

The above-written formulae can be used also to calculate the analogous
sums for various components of the angular momentum. Really, by deˇnition
Î1 = yp̂z − zp̂y, Î2 = zp̂x − xp̂z . In accordance with (64), we have

xp̂zψnxψnz =

= −i
�

2

√
ωz

ωx
(
√

nxnzψnx−1ψnz−1 −
√

(nx + 1)(nz + 1)ψnx+1ψnz+1+

+
√

(nx + 1)nzψnx+1ψnz−1 −
√

nx(nz + 1)ψnx−1ψnz+1).

Therefore,

Î2ψnxψnz =

= i
�

2
(
√

ωz

ωx
−

√
ωx

ωz
)(
√

nxnzψnx−1ψnz−1 −
√

(nx+ 1)(nz+ 1)ψnx+1ψnz+1)+

+i
�

2
(
√

ωz

ωx
+

√
ωx

ωz
)(

√
(nx + 1)nzψnx+1ψnz−1−

√
nx(nz + 1)ψnx−1ψnz+1).

Having these formulae, one derives the following expressions for matrix elements
coupling the ground state with ∆N = 2 and ∆N = 0 excitations:

< nx + 1, nz + 1|Î2|0 >= i
�

2
(ω2

x − ω2
z)

ωx + ωz

√
(nx + 1)(nz + 1)

ωxωz
,
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< nx + 1, nz + 1|xz|0 >=
�

2m

√
(nx + 1)(nz + 1)

ωxωz
,

< nx + 1, nz − 1|Î2|0 >= i
�

2
(ω2

x − ω2
z)

ωx − ωz

√
(nx + 1)nz

ωxωz
,

< nx + 1, nz − 1|xz|0 >=
�

2m

√
(nx + 1)nz

ωxωz
.

It is easy to see that

< nx + 1, nz + 1|Î2|0 >= im
(ω2

x − ω2
z)

ωx + ωz
< nx + 1, nz + 1|xz|0 >,

< nx + 1, nz − 1|Î2|0 >= im
(ω2

x − ω2
z)

ωx − ωz
< nx + 1, nz − 1|xz|0 > .

Due to the degeneracy of the model all particle-hole excitations with ∆N = 2
have the same energy ε2, and all particle-hole excitations with ∆N = 0 have the
energy ε0. This fact allows one to join the last two formulae into one general
expression

< ph|Î2|0 >= i�m
(ω2

x − ω2
z )

εph
< ph|xz |0 > .

Taking into account the axial symmetry we can write the analogous formula for
Î1:

< ph|Î1|0 >= −i�m
(ω2

x − ω2
z )

εph
< ph|yz |0 > .

The magnetic transition operator Ô1±1 is proportional (15) to the angular mo-

mentum: Ô1±1 = − ie

4mc

√
3
2π

z∑
s=1

(Î2 ∓ iÎ1)s. Therefore, we can write

< ph|Ô1±1|0 >= − e�

2c
√

5
(ω2

x − ω2
z )

εph
< ph|r2Y2±1|0 > . (74)
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