P11-2004-139

Б.Ф. Костенко, Я. Прибиш

ТЕПЛОЕМКОСТЬ ЭЛЕКТРОНОВ В ПЛАЗМЕ, ОБРАЗУЮЩЕЙСЯ ПРИ СХЛОПЫВАНИИ КАВИТАЦИОННОГО ПУЗЫРЬКА В D-АЦЕТОНЕ

Костенко Б. Ф., Прибиш Я. Теплоемкость электронов в плазме, образующейся при схлопывании кавитационного пузырька в D-ацетоне

Последние экспериментальные данные по регистрации продуктов ядерных реакций при схлопывании кавитационного пузырька в дейтерированном ацетоне (C₃D₆O) продолжают свидетельствовать в пользу существования нового способа реализации термоядерного синтеза. Теоретическое обоснование процесса, основанное на численном решении системы уравнений в форме законов сохранения для газообразной и жидкой фаз, также подтверждает эту возможность, хотя и нуждается в дальнейшем уточнении. В частности, требует уточнения описание электронных степеней свободы очень плотной неравновесной плазмы, образующейся на завершающей стадии схлопывания пузырька. В настоящей работе на основе прямого численного решения уравнения для химического потенциала произведен расчет теплоемкости электронов в области сильной ионизации атомов дейтерированного ацетона в интервале температур электронов от $T_e \simeq 10^4$ K и выше и степени сжатия $\rho/\rho_0 \simeq 1 \div 100$.

Работа выполнена в Лаборатории информационных технологий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна, 2004

Перевод авторов

Kostenko B.F., Pribiš J. Electron Thermal Capacity in Plasma Generated at Cavitation Bubble Collapse in D-acetone P11-2004-139

P11-2004-139

The latest experimental data on nuclear reaction product registration at cavitation bubble collapse in deuterated acetone (C₃D₆O) still argue in favour of existence of a new possibility to realize the thermonuclear synthesis. Theoretical description based on numerical solution of simultaneous conservation equations for gaseous and liquid phases also confirms this possibility, although it requires further more precise definitions. In particular, description of electron degrees of freedom in very dense nonequilibrium plasma generated at the final stage of bubble collapse needs specification. In the present paper, calculations of electron thermal capacity in the deuterated acetone multiple ionization region at electron temperatures $T_e \simeq 10^4$ K and above and compression range $\rho/\rho_0 \simeq 1 \div 100$ have been fulfilled on the basis of direct numerical solution of equation for chemical potential.

The investigation has been performed at the Laboratory of Information Technologies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2004

введение

С тех пор как в [1] было сообщено о регистрации продуктов термоядерных реакций D(d, p)T и $D(d, n)^3$ He на уровне $10^5 c^{-1}$ при акустической кавитации в C_3D_6O , эта область исследований стала привлекать внимание не только акустиков, но и специалистов по ядерной физике и физике плазмы. Обзор работ, посвященных обсуждению полученных в [1] результатов, опубликован в [2]. Последние экспериментальные данные по наблюдению продуктов ядерных реакций при схлопывании кавитационного пузырька в D-ацетоне приведены в [3]. Они по-прежнему свидетельствуют в пользу этой новой, чрезвычайно простой возможности осуществления реакций термоядерного синтеза.

Описание процесса схлопывания пузырька основано на численном решении следующей системы уравнений в форме законов сохранения массы, энергии и импульса для газообразной и жидкой фаз в приближении сферической симметрии коллапсирующей кавитационной полости:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(\rho u r^2\right) = 0, \\ \frac{\partial}{\partial t} \left(\rho u\right) + \frac{1}{r^2} \frac{\partial}{\partial r} \left(\rho u^2 r^2\right) + \frac{\partial p}{\partial r} = 0, \\ \frac{\partial e}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(u r^2 \left(e + p\right) - \lambda r^2 \frac{\partial T}{\partial r}\right) = 0, \end{cases}$$

где ρ, u, p, T, e и λ — плотность массы, скорость, давление, температура, плотность полной энергии и коэффициент теплопроводности среды соответственно.

В решаемую систему входят также уравнения состояния и условие Герца– Кнудсена–Ленгмюра [4] на границе фазового раздела, учитывающее коэффициент конденсации α . Для ацетона $\alpha = 1$, т.е. доля молекул пара, которые ударяются о поверхность раздела фаз и отражаются обратно, пренебрежимо мала. По этой причине общая масса пара при сжатии пузырька быстро уменьшается. Кроме того, в случае поглощения молекулы границе раздела передается импульс в два раза меньше, чем при ее отражении. Все это сильно снижает сопротивление паров схлопыванию пузырька и является одной из основных причин создания высоких температур и давлений при акустической кавитации в D-ацетоне.

При сверхвысоких давлениях используются уравнение состояния Ми– Грюнайзена [5], потенциальные функции Борна–Майера [5], которые описывают сверхсжатые жидкости, и современные экспериментальные данные об адиабате ударной волны в ацетоне [6]. Учитываются диссоциация и ионизация молекул в момент схлопывания пузырька и соответствующие им потери энергии, а также влияние молекулярной, электронной и ионной теплопроводности. Численное решение системы уравнений может быть найдено с помощью метода Годунова [7], которое характеризуется высокой устойчивостью, весьма важной при описании эволюции ударной волны. Согласно данной модели значения температуры ионов T и плотности ρ в пузырьке на стадии схлопывания достигают значений $T \simeq 10^7 \div 10^8$ K, $\rho \simeq 100$ г/см³ на расстояниях $r \simeq 5 \div 25$ нм от центра пузырька в течение времени $\Delta t \simeq 10^{-13} \div 10^{-12}$ с [1].

Выход термоядерных нейтронов в расчете на один пузырек может быть рассчитан по формуле

$$n = \int dt \int dV \; \frac{n_D^2}{2} < v\sigma(v) >,$$

где n_D — объемная концентрация ядер дейтерия; $\langle v\sigma(v) \rangle$ — эффективная скорость реакций D-D-слияния. Он оказывается в хорошем согласии с экспериментом [2].

В данной модели в соответствии с гипотезой Р.И. Нигматулина для диссоциированной фазы берутся те же уравнения состояния, что и для недиссоциированного ацетона («замороженная» ударная адиабата). Хотя подобное предположение и противоречит экспериментальной ударной адиабате [6], оно может быть оправдано быстротечностью завершающей стадии процесса схлопывания. Поскольку характерные времена протекания процесса в данном случае существенно короче, чем в экспериментах, описанных в [6], можно допустить, что существенная перестройка пространственных положений фрагментов, по сравнению с их расположением в молекулах, не успевает произойти. Таким образом, физический смысл гипотезы Нигматулина сводится к приближенному учету термодинамической неравновесности процесса. Кроме этой гипотезы в теоретическом описании используются два правдоподобных, хотя и не доказанных строго, предположения (также сформулированные Р. И. Нигматулиным) о том, что в многопузырьковой системе в акустическом поле во время схлопывания формируется дополнительный положительный импульс давления в несколько десятков атмосфер и о том, что электроны плазмы не успевают нагреться за время схлопывания ($\sim 10^{-12}$ c).

Оценки времени охлаждения ядер электронами в сверхплотной сильно неравновесной плазме схлопывающегося пузырька были выполнены в работе [8]. Они показали, что начальные температуры электронов в момент образования сверхплотной плазмы с $\rho \simeq 100$ г/см³ действительно существенно

ниже ядерных, а время охлаждения ядерной компоненты того же порядка, что и время протекания термоядерного синтеза. Таким образом, хотя гипотеза о слабом охлаждении ядер электронами на начальной стадии процесса термоядерного синтеза оказывается приблизительно справедливой, определенные потери энергии на более поздних стадиях процесса должны учитываться при более точном описании. Настоящая работа посвящена расчету теплоемкости электронов в области температур и плотностей $T_e \simeq 10^4 \div 10^8$ K, $\rho \simeq (1 \div 100)\rho_0$. Такие оценки являются первым необходимым шагом в направлении учета вышеупомянутых эффектов охлаждения.

1. ФОРМУЛИРОВКА МОДЕЛИ И РЕЗУЛЬТАТЫ РАСЧЕТА

Предполагая локальную компенсацию электрического заряда электронов и ионов, среднее число электронов с энергией E будем описывать распределением Ферми для невзаимодействующих частиц:

$$\langle N \rangle = \frac{1}{e^{(E-\mu(T))/K_BT} + 1},\tag{1}$$

где T — температура электронов, K_B — постоянная Больцмана, $\mu(T)$ — химический потенциал электронов, находящихся в электрическом поле ионов. Поскольку для ацетона температура диссоциации T_d существенно меньше температуры ионизации T_i ($T_d \simeq 3 \cdot 10^3$ K, $T_i \simeq 1, 2 \cdot 10^5$ K), будем считать, что ионизация происходит позже диссоциации и, следовательно, энергии связи электронов совпадают с потенциалами ионизации отдельных атомов [9].

Из того, что при T = 0 все электроны находятся в связанном состоянии следует, что значение химического потенциала μ при нулевой температуре равно наибольшей энергии связи электрона в атомах C, D и O, т. е. 871,1 эВ. Выделяя в выражении для химического потенциала эту величину отдельным слагаемым

$$\mu(T) = \mu(0) + \Delta\mu(T),$$

выражению (1) нетрудно придать вид

$$\langle N_{i,b} \rangle = \frac{1}{e^{-(\epsilon_i + \Delta \mu)/K_B T} + 1},$$
$$\langle N_{k,f} \rangle = \frac{1}{e^{(\epsilon_k - \Delta \mu)/K_B T} + 1}$$

соответственно для связанных и свободных состояний. Здесь

$$\epsilon_i = \mu(0) - E_i$$

- 4	
4	
-	

— энергия связи, отвечающая *i*-му электронному уровню;

$$\epsilon_k = \frac{p_k^2}{2m}$$

— энергия свободного электрона. Полученные формулы позволяют трактовать химический потенциал как своего рода потенциальную яму, при выходе из которой электрон становится свободным (затратив на выход энергию, равную энергии связи). Зависящая от температуры поправка к постоянной части химического потенциала $\Delta \mu(T)$ находится из условия сохранения полного числа электронов

$$\sum_{i} (1 - \langle N_{i,b} \rangle) = \sum_{k} \langle N_{k,f} \rangle, \qquad (2)$$

где суммирование выполняется с учетом кратности вхождения атома данного сорта в молекулу C_3D_6O . Заменяя обычным образом [10] сумму по состояниям свободных электронов интегралом

$$\frac{\sqrt{2}vm^{3/2}}{\pi^2\hbar^3} \int_0^\infty \frac{\sqrt{\epsilon}d\epsilon}{e^{(\epsilon-\Delta\mu)/K_BT}+1} = \frac{\sqrt{2}v(mK_BT)^{3/2}}{\pi^2\hbar^3} \int_0^\infty \frac{\sqrt{z}dz}{e^{z-\Delta\mu/K_BT}+1},$$

получим уравнение для определения величины поправки $\Delta \mu(T)$ (здесь v — объем, приходящийся на одну молекулу вещества).

На рис. 1 показана расчетная зависимость $\Delta \mu(T)$ для C₃D₆O. Тот факт, что поправка $\Delta \mu(T)$ имеет отрицательное значение, объясняется большим статистическим весом свободных состояний, приводящим к понижению тем-

Рис. 1. Расчетная зависимость $\Delta \mu(T)$ для C₃D₆O при сжатиях $\rho/\rho_0 = 1$, 10, 50 и 100 (кривые *l*, *2*, *3* и *4* соответственно)

Рис. 2. Среднее число электронов, выбиваемых с уровней $\epsilon_i = 11,3, 138,1, 490, 871,1$ (кривые *I*, *2*, *3* и *4* соответственно)

пературы начала эффективной ионизации ϵ_i/K_B , которую можно было бы ожидать без учета этого обстоятельства. На рис. 2 показано среднее число электронов

$$\langle N_{i,f} \rangle = 1 - \langle N_{i,b} \rangle,$$

освобождающихся с *i*-го уровня в зависимости от температуры. Видно, что представленная здесь картина последовательного возбуждения все более глубоких уровней вполне аналогична той, которая имеет место при ударной ионизации или в равновесной плазме. Рис. 3 и 4 иллюстрируют некоторые

Рис. 3. Температура 90%-й ионизации различных электронных уровней для степени сжатия $\rho/\rho_0 = 1$ и 100

Рис. 4. Температура 90%-й ионизации в зависимости от сжатия ρ/ρ_0 для самого глубокого электронного уровня $\epsilon_i = 871, 1$ эВ

важные с физической точки зрения характеристики плазмы, образующейся при схлопывании кавитационного пузырька в D-ацетоне. Так, на рис. 3 показана зависимость температуры почти полной ионизации электронных уровней от их энергии связи. Рис. 4 дает информацию о зависимости температуры почти полной ионизации всех атомов плазмы от степени сжатия.

Теплоемкость электронов, отнесенная к одной молекуле вещества, может быть найдена прямым дифференцированием полной энергии свободных электронов:

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V = \frac{3}{2} K_B \sum_i n_i \langle N_{i,f} \rangle + \sum_i n_i \epsilon_i \frac{d \langle N_{i,f} \rangle}{dT}$$

где суммирование выполняется по всем связанным состояниям электронов, а n_i — кратность вхождения атомов в формулу вещества. На рис. 5 представлена рассчитанная таким образом теплоемкость электронов в области сильной ионизации при сжатиях $\rho/\rho_0 = 1$, 10 и 100, переведенная в более удобные для практического использования единицы. Видно, что она не описывается

Рис. 5. Теплоемкость электронов для молекулы D-ацетона при разных сжатиях ρ/ρ_0 , рассчитанная в соответствии с рассматриваемой моделью

линейной зависимостью $C = \gamma T$, справедливой для вырожденного электронного газа в широкой потенциальной яме с плоским дном при температурах меньше или порядка температуры Ферми, когда постоянная (Зоммерфельда) γ может быть рассчитана по формуле

$$\gamma = K_B^2 \left(\frac{\pi}{3}\right)^{2/3} \frac{m}{\hbar^2} N\left(\frac{v}{N}\right)^{2/3},$$

где N — полное число электронов в молекуле [10].

2. ИНТЕРПОЛЯЦИОННЫЕ ФОРМУЛЫ

Для моделирования процессов схлопывания кавитационного пузырька важно иметь простые, но в то же время достаточно точные интерполяционные формулы расчета зависимости $C_V(T_e, \rho/\rho_0)$. Их нахождение представляет собой отдельную вычислительную задачу, которой посвящен настоящий раздел. С этой целью в табл. 1 приведены соответствующие рис. 3 значения теплоемкости C_V для некоторых характерных температур электронов. Точки в табл. 1 выбирались следующим образом. С помощью программы 1, помещенной в прил. 2, вычислялись значения C_V для $T \in \langle T_{\min}, T_{\max} \rangle$ с точностью 10^{-4} , где $T_{\min} = 9000$, 9500 и 10000 K, $T_{\max} = 2 \cdot 10^6$ K для $\rho/\rho_0 = 1$, 10 и 100. Таким образом, для принятого разбиения

$$C_{V_i} = C_V(T_i), \quad T_i = T_{\min} + \tau i, \quad i = 0, \dots, n, \quad \tau = (T_{\max} - T_{\min})/n,$$

ρ/ρ	$p_0 = 1$	ho/ ho	$_{0} = 10$	ρ/ρ_0	$_{0} = 100$
Т, К	C_V , Дж/К · г	Т, К	C_V , Дж/К · г	Т, К	C_V , Дж/К · г
9 000	0,0051	9 500	0,0033	10 000	0,0020
9 500	0,0105	10 000	0,0064	11 000	0,0062
10 000	0,0202	11 500	0,0323	12 750	0,0292
11 500	0,1022	12 750	0,0929	14 000	0,0695
15 250	1,3958	17 000	1,0190	18 250	0,5323
17 750	3,9556	20 000	2,7843	21 750	1,4917
22 250	10,3438	26 750	8,0784	31 750	5,6108
25 750	12,3593	31 000	9,2201	39 750	6,6934
31 000	9,9966	36 250	8,3914	45 000	6,4996
36 000	8,2011	42 250	7,3806	50 000	6,2559
42 000	8,0589	49 000	7,0716	56 000	6,0876
51 000	7,4886	55 000	6,8999	61 000	6,0198
55 500	7,3009	62 000	6,7541	66 750	5,9901
64 250	8,0505	73 250	7,3306	82 750	6,3984
73 000	9,9663	84 500	8,8268	98 750	7,5909
86 000	12,6073	99 750	10,7492	118 250	9,0037
99 000	13,4700	115 250	11,4235	137 500	9,4912
119 000	11,7772	139 000	10,2668	169 000	8,7144
139 000	9,2632	158 750	8,8458	199 000	7,7801
185 250	8,3717	218 000	7,7361	253 750	7,1434
258 000	6,2232	293 000	6,1648	338 750	6,0127
334 500	5,1375	376 750	5,2678	428 250	5,3828
435 000	7,3498	487 500	7,0515	540 000	6,4825
535 500	13,9245	610 000	12,3281	713 750	11,0369
633 250	16,5998	723 750	14,4265	844 500	12,4227
731 000	14,5458	833 000	13,1054	959 000	11,7563
801 000	12,3438	934 000	11,3928	$1 \ 089 \ 000$	10,6373
1 028 250	11,2564	1 146 250	10,5603	1 320 000	9,8826
1 208 500	10,1133	1 328 750	9,8112	1 490 000	9,3405
1 350 000	8,4845	1 527 500	8,2985	1 660 000	8,5153
1 675 000	6,7130	1 751 250	7,1492	1 830 000	7,7340
2 000 000	6,3611	2 000 000	6,6111	2 000 000	7,1757

Таблица 1. Значения теплоемкости C_V для некоторых характерных температур электронов при степенях сжатия $\rho/\rho_0=1,10$ и 100

где n — число делений рассматриваемого интервала температур. Потом выбирались *предварительные* значения элементов таблицы $(T_k, C_{V_k}), k \in \langle 0, n \rangle$ в точках, для которых первая или вторая производная C_V равны нулю, а также некоторые дополнительные промежуточные точки, в которых значения теплоемкости составляли определенный процент относительно скачка между экстремальными значениями на соответствующих температурных ин-

тервалах. Таким образом, число табулируемых точек для каждого табличного значения степени сжатия ρ/ρ_0 было фиксированным. На границах интервалов температур в точках T_{\min} и T_{\max} вычислялись приближенные значения производной теплоемкости по формулам $C'_V(T_{\min}) = (C_{V_1} - C_{V_0})/\tau$ и $C'_V(T_{\max}) = (C_{V_n} - C_{V_n-1})/\tau$. Эти значения приведены в табл. 2.

Таблица 2. Значения производных C'_V на границах интервалов температур при степенях сжатия $\rho/\rho_0=1,10$ и 100

Производные	$\rho/\rho_0 = 1$	$\rho/\rho_0 = 10$	$\rho/\rho_0 = 100$
$C'_V(T_{\min})$	$7,8 \cdot 10^{-6}$	$4, 4 \cdot 10^{-6}$	$2, 5 \cdot 10^{-6}$
$C'_V(T_{\max})$	$-5, 3 \cdot 10^{-7}$	$-1, 3 \cdot 10^{-6}$	$-2, 6 \cdot 10^{-6}$

Далее по выбранным точкам строился кубический сплайн для теплоемкости с вышеуказанными значениями производной на границах, с целью сравнения полученных таким образом величин С_{Vk} с точными. Это позволило определить характерную для табл. 1 относительную ошибку интерполяции теплоемкости при промежуточных, не охватываемых ею, значениях температур электронов. Затем предварительные элементы табл. 1 уточнялись следующим образом. Если для некоторого ρ/ρ_0 на каком-нибудь интервале (a, b) ошибка была больше чем желаемая, для ее уменьшения сперва предпринималась попытка взять вместо рассматриваемой табличной точки некоторую соседнюю в интервале (a, b). Если этого оказывалось недостаточно, в таблицу вкладывалась дополнительная промежуточная точка (T_k, C_{V_k}) . При этом, для сохранения одинакового числа элементов таблицы при разных степенях сжатия, остальным столбцам табл. 1, отвечающим другим ρ/ρ_0 , также приписывалась соответствующая точка с учетом зависимости температуры электронов от степени сжатия (см. ниже). Относительные ошибки интерполяции, отвечающие полученной этим методом табл. 1, указаны на рис. 6.

Для получения C_V при промежуточных, отличных от табличных, значениях сжатия можно воспользоваться следующими интерполяционными формулами, в которых использовано обозначение $x \equiv \rho/\rho_0$.

Для $1 \leq x \leq 10$:

$$T(x) = T(1) + (T(10) - T(1)) \lg x, \ C_V(x) = C_V(1) + (C_V(10) - C_V(1)) \lg x, C'_V(x) = C'_V(1) + (C'_V(10) - C'_V(1)) \lg x.$$

Для $10 \leq x \leq 100$:

$$T(x) = T(10) + (T(100) - T(10)) \lg \frac{x}{10}, \ C_V(x) = C_V(10) + (C_V(100) - C_V(10)) \lg \frac{x}{10}, \ C'_V(x) = C'_V(10) + (C'_V(100) - C'_V(10)) \lg \frac{x}{10}.$$

Рис. 6. Относительная ошибка интерполяции кубическим сплайном теплоемкости при промежуточных температурах, получающаяся при использовании табличных значений теплоемкости

Качество такой интерполяции иллюстрирует рис. 7, на котором непрерывными линиями нанесены значения теплоемкости, рассчитанные в соответствии с описанной выше моделью ионизации, а точки обозначают значения теплоемкости, полученные на основе вышеуказанной логарифмической интерполяции и табл. 1. Относительные ошибки такой процедуры показаны на рис. 8.

В приложениях к данной работе находятся следующие материалы. В прил. 1 даны значения химического потенциала $\Delta \mu$, позволяющие рассчитать, используя распределение Ферми, средние числа заполнения электронных уровней при различных температурах и сжатиях.

В прил. 2 приведены программы, которые использовались в данной работе для вычисления теплоемкости электронов. Программа 1 вычисляет значения C_V , решая уравнение (2). Она легко может быть приспособлена для проведения аналогичных расчетов и для других веществ. Программа 2 вычисляет значения потенциала при промежуточных значениях сжатия, не совпадающих с табличными, с помощью интерполяционной формулы и табл. 1. Программы написаны в среде SCILAB 3.0-RC1 (May 17, 2004), которая является бесплатно распространяемым аналогом MATLAB (см. сайт http://scilabsoft.inria.fr).

Рис. 7. Теплоемкость электронов для молекулы D-ацетона при разных промежуточных сжатиях ρ/ρ_0

Рис. 8. Относительная ошибка интерполяции табличных значений теплоемкости кубическим сплайном

Разумеется, они могут быть также использованы и при расчетах в среде MATLAB после замены небольшого числа функций и команд, список которых можно найти в редакторе SCILAB.

Работа поддержана Международным научно-техническим центром (проект № 1471) и Российским фондом фундаментальных исследований (проекты 02-01-00606 и 02-02-16397).

ЛИТЕРАТУРА

- Taleyarkhan R. P., West C. D., Cho J. S., Lahey Jr. R. T., Nigmatulin R. I., Block R. C. // Science. 2002. V. 295. P. 1868–1873.
- Беляев В.Б., Костенко Б.Ф., Миллер М.Б., Сермягин А.В., Топольников А.С. Сверхвысокие температуры и акустическая кавитация. Сообщение ОИЯИ РЗ-2003-214. Дубна, 2003.
- 3. Taleyarkhan R. P., Cho J. S., West C. D., Lahey Jr. R. T., Nigmatulin R. I., Block R. C. // Phys. Rev. E. 2004. V. 69. P.036109.
- 4. Schrage R. W. A Theoretical Study of Interphase Mass Transfer. N.Y.: Columbia U.P., 1953.
- 5. Зельдович Я. Б., Райзер Ю. П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука, 1966.
- Трунин Р. Ф., Гударенко Л. Ф., Жерноклетов М. В., Симаков Г. В. Экспериментальные данные по ударно-волновому сжатию и адиабатическому расширению конденсированных веществ. Саров: РФЯЦ-ВНИИЭФ, 2001.
- 7. Годунов С. К., Забродин А. В., Иванов М. Я., Крайко А. Н., Прокопов Г. П. Численное решение многомерных задач газовой динамики. М.: Наука, 1976.
- Костенко Б. Ф., Прибиш Я. Оценка времени охлаждения ядер электронами в сверхплотной сильно неравновесной плазме. Сообщение ОИЯИ Р4-2004-42. Дубна, 2004.
- 9. Справочник физических величин / Под ред. И.К. Кикоина. М.: Атомиздат, 1976.
- 10. Ландау Л. Д., Лифииц Е. М. Статистическая физика. М.: Наука, 1976. Ч. 1.

-	
ИE	
H	
Ϋ́E	
RO	
Ē	
Ы	

Значение химического потенциала $\Delta \mu$ для некоторых характерных температур электронов при разных

степенях сжатия $p/\rho o$		
степенях сжатия р/ро	1	
степенях сжатия ρ/\rhoo	-	
степенях сжатия $\rho/\rho o$		
степенях сжатия ρ/\rhoo		
степенях сжатия ρ/\rhoo		
степенях сжатия ρ/I	•	00
степенях сжатия		$\rho/1$
степенях сжат		ВИ
степенях с		жат
степенял	-	5
степе		КKH
Ē		епе
		CT

				$\Delta \mu(T), \Im \mathbf{B}$			
T, \mathbf{K}	$ ho/ ho_0=1$	$ ho/ ho_0=2$	$ ho/ ho_0=5$	$ ho/ ho_0=10$	$ ho/ ho_0=20$	$ ho/ ho_0=50$	$ ho/ ho_0=100$
$10 \ 000$	-4,0816	-3,7823	-3,3862	-3,0863	-2,7859	-2,3877	-2,0852
$20\ 000$	-9,0609	-8,4624	-7,6711	-7,0722	-6,4727	-5,6789	-5,0770
30000	-14,3790	-13,4813	-12,2946	-11,3966	-10,4981	-9,3089	-8,4078
40 000	-19,9172	-18,7202	-17,1380	-15,9410	-14,7434	-13,1589	-11,9587
50000	-25,6192	-24,1227	-22,1450	-20,6488	-19,1522	-17, 1725	-15,6731
60 000	-31,4519	-29,6558	-27,2823	-25,4870	-23,6914	-21,3163	-19,5179
70 000	-37,3931	-35,2973	-32,5281	-30,4336	-28,3388	-25,5685	-23,4710
80 000	-43,4275	-41,0318	-37,8667	-35,4729	-33,0791	-29,9134	-27,5170
90 000	-49,5432	-46,8475	-43,2865	-40,5934	-37,9005	-34, 3395	-31,6440
$100\ 000$	-55,7312	-52,7355	-48,7784	-45,7860	-42,7939	-38,8376	-35,8431
200 000	-120,4622	-114,4604	-106,5376	-100,5497	-94,5643	-86,6535	-80,6684
300000	-188,6064	-179,5892	-167,6929	-158,7053	-149,7240	-137,8565	-128,8800
400 000	-258,9748	-246,9342	-231,0570	-219,0662	-207,0864	-191,2600	-179, 2912
$500\ 000$	-331,0023	-315,9307	-296,0658	-281,0685	-266,0878	-246,3005	-231, 3384
600 000	-404,3559	-386,2460	-362, 3872	-344,3800	-326, 3963	-302,6460	-284,6896
700 000	-478,8151	-457,6603	-429,8013	-408, 7812	-387, 7922	-360,0772	-339,1256
800 000	-554, 2233	-530,0170	-498,1521	-474,1162	-450,1198	-418,4381	-394,4904
000 006	-630,4633	-603,1991	-567, 3227	-540,2681	-513,2623	-477,6123	-450,6675
1 000 000	-707,4440	-677, 1159	-637, 2225	-607, 1463	-577, 1292	-537,5090	-507,5664
2 000 000	-1 506,6203	-1 445,3485	-1 365,0108	$-1 \ 304,5805$	-1 244,3513	-1 164,9420	-1 104,9770
3 000 000	-2 341,3283	-2 248,6227	-2 127,3977	$-2 \ 036, 3870$	-1 945,7844	-1 826,4428	$-1 \ 736, 3833$
4 000 000	-3 199,5199	-3 074,9505	-2 912,4451	-2 790,6520	-2 669, 5319	-2510,1292	-2 389,9101
5 000 000	-4 075,4392	-3 918,6149	-3 714,4686	-3 561,7079	-3 409,9371	$-3 \ 210,3536$	-3 059,9147

ПРИЛОЖЕНИЕ 2

```
//Программа 1
```

```
r_r0=1;
                     //Степень сжатия ro/ro_0.
kb=8.617d-5;
                     //Постоянная Больцмана [эВ/К].
                     //Энергия связи, отвечающая і-му
                     //электронному уровню [эВ].
ep1=13.6;
ep2=[11.3,24.4,47.9,64.5,392.,490.];
                                                n2=length(ep2);
ep3=[13.6,35.1,54.9,77.4,113.9,138.1,739.1,871.1];
                                                n3=length(ep3);
f1='sqrt(x)/(exp(x-MT/(kb*T))+1)';
f2='1.-(1./(exp(-(ep+MT/(kb*T)))+1.))';
                    //Краевые точки и точность для вычисления
                    //определенного интеграла от f.
aa=0; bb=10; er1=1d-10;
num=2000;
                    //Число делений интервала T=[10\ 4,2*10\ 6]
                    //для расчета дельта мю (рекомендуем не
num1=10000;
                    //меньше 2000). Число делений интервала
                    //T=[10\ 4,2*10\ 6] для расчета <N_i_f>
                    //и Cv (рекомендуем не меньше 10000).
TMIN=1d4; TMAX=2d6; //Интервал температур.
HT=(TMAX-TMIN)/num;
ht=(TMAX-TMIN)/num1;
TT(2:num+2)=TMIN:HT:TMAX;
TT(1)=TMIN-ht; TT(num+3)=TMAX+ht;
   //Тело программы
for kk=1:num+3,
    T=TT(kk);kk
    con1=0.6736d-6*T^ (1.5)/r_r0;
    a=-1d7; b=-1d5; //Краевые точки для бисекции (для других
                    //интервалов температуры рекомендуем
                    //подобрать индивидуально). Вычисление
                    //значений левой части уравнения (2)
                    //в краевых точках.
    MT=a; sula=eval(f2);
    MT=b; sulb=eval(f2);
    ep=ep1; su2a=0.;su2b=0.;su3a=0.;su3b=0.;
    for j=1:n2,
        ep=ep2(j);
        MT=a; su2a=su2a+eval(f2);
        MT=b; su2b=su2b+eval(f2);
    end;
    for j=1:n3,
        ep=ep3(j);
        MT=a; su3a=su3a+eval(f2);
```

```
MT=b; su3b=su3b+eval(f2);
    end;
    lefa=(6*su1a+3*su2a+su3a)/con1;
    lefb=(6*su1b+3*su2b+su3b)/con1;
//Вычисление значений правой части уравнения (2) в краевых
//точках, в том числе вычисление определенного интеграла.
MT=a; riga=integrate(f1,'x',aa,bb,er1);
MT=b; rigb=integrate(f1,'x',aa,bb,er1);
//Применение метода бисекции для решения уравнения (2) и
//вычисление значений дельта мю в зависимости от температуры.
vyssa=lefa-riga;
vyssb=lefb-rigb;
epserr=1d-10; //Требуемая точность метода бисекции.
if (vyssa*vyssb<0) then
   vyss=vyssb;
   while (b-a)>epserr,
          MT = (b+a)/2.;
//Левая часть уравнения.
   ep=ep1; su1=eval(f2); su2=0.; su3=0.;
   for j=1:n2,
       ep=ep2(j); su2=su2+eval(f2);
   end;
   for j=1:n3,
       ep=ep3(j); su3=su3+eval(f2);
   end;
   lef=(6*su1+3*su2+su3)/con1;
//Правая часть уравнения - вычисление определенного интеграла.
   rig=integrate(f1,'x',aa,bb,er1);
   vyss=lef-rig;
   if ((vyss>0 {\& vyssa>0) \vert  (vyss<0 {\& vyssa<0)) then
      a=MT;
   else b=MT;
  end;
  end;
 MT_e(kk)=MT; //Значения дельта мю.
 else
  'WRONG BOUNDARY POINTS', abort;
 end;
end;
//Интерполяция значений дельта мю для последующей подстановки в
//формулы для <N_i_f> и Cv.
tt=TT(1):ht:TT(num+3);
MMT=splin(TT,MT_e');
MT_end=interp(tt,TT,MT_e',MMT);
nnn=length(tt);
//Энергии связи [ЭВ].
```

```
15
```

```
epp=[11.3,13.6,13.6,24.4,35.1,47.9,54.9,64.5,77.4,113.9,
    138.1,392,490,739.1,871.1];
//Кратность вхождения атомов в формулу вещества.
ni=[3,6,1,3,1,3,1,3,1,1,1,3,3,1,1];
//Вычисление среднего числа электронов <N_i_f>.
for j=1:15,
 ep=epp(j);
 for k=1:nnn,
   NIF(j,k)=1-1/(exp(-((epp(j)+MT_end(k))/(kb*tt(k))))+1);
   NNIF(j,k)=ni(j)*NIF(j,k);
 end;
end;
//Вычисление производной d<N_i_f>/dT.
for j=1:15,
  for k=2:nnn-1,
     dNif(j,k)=ni(j)*epp(j)*(NIF(j,k+1)-NIF(j,k-1))/(2.*ht);
  end;
end;
//Вычисление теплоемкости электронов [эВ].
 for k=2:nnn-1,
  ss1(k)=sum(NNIF(:,k));
  ss2(k)=sum(dNif(:,k));
  CV(k)=1.602d3/1.239/0.858*(3./2.*kb*ss1(k)+ss2(k));
end;
   //Результаты
                                      //Температура [К].
Te(1:nnn-2)=tt(2:nnn-1);
mu(1:nnn-2)=MT_end(2:nnn-1);
                                      //Дельта мю [эВ].
Nif(1:15,1:nnn-2)=NIF(1:15,2:nnn-1); //Среднее число электронов
Cv(1:nnn-2)=CV(2:nnn-1);
                                      //связи. Теплоемкость
                                    //электронов [Дж/К г].
```

//Построение графиков

```
subplot(3,1,1); plot2d(Te,mu);
subplot(3,1,2); plot2d(Te,[Nif(1:1:15,:)']);
subplot(3,1,3); plot2d(Te,Cv);
xset("window",2); plot(Te,mu,"T [K]","Delta mu [eV]");
xset("window",3); plot2d(Te,[Nif(1:1:15,:)']);
xset("window",4); plot(Te,Cv,"T [K]","Cv [J/K g]");
```

//Программа 2

clear; r_r0=4; //Степень сжатия (надо задавать из интервала n=2000; //[1, 100]). Число интерполяционных точек.

//Выбор значений температур и теплоемкостей электронов

//при сжатии ro/ro_0=1.

c1=[0.0051,0.0105,0.0202,0.1022,1.3958,3.9556,10.3438,12.3593, 9.9966,8.2011,8.0589,7.4886,7.3009,8.0505,9.9663,12.6073, 13.4700,11.7772,9.2632,8.3717, 6.223,5.1375,7.3498,13.9245, 16.5998,14.5458,12.3438,11.2564,10.1133,8.4845,6.7130, 6.3611];

//Выбор значений температур и теплоемкостей электронов //при сжатии ro/ro_0=10.

8.3914,7.3806,7.0716,6.8999,6.7541,7.3306,8.8268,10.7492, 11.4235,10.2668,8.8458,7.7361,6.1648,5.2678,7.0515, 12.3281,14.4265,13.1054,11.3928,10.5603,9.8112,8.2985, 7.1492,6.6111];

//Выбор значений температур и теплоемкостей электронов //при сжатии ro/ro_0=100.

```
t3=[10000,11000,12750,14000,18250,21750,31750,39750,45000,
50000,56000,61000,66750,82750,98750,118250,137500,169000,
199000,253750,338750,428250,540000,713750,844500,959000,
1089000,1320000,1490000,1660000,1830000,2000000];
c3=[0.0020,0.0062,0.0292,0.0695,0.5323,1.4917,5.6108,6.6934,
6.4996,6.2559,6.0876,6.0198,5.9901,6.3984,7.5909,9.0037,
9.4912,8.7144,7.7801,7.1434,6.0127,5.3828,6.4825,11.0369,
12.4227,11.7563,10.6373,9.8826,9.3405,8.5153,7.7340,
7.1757];
```

```
//Значения производной Cv на границах интервала
al=7.8d-6; bl=-5.3d-7;
a2=4.4d-6; b2=-1.3d-6;
a3=2.5d-6; b3=-2.6d-6;
```

```
//Вычисление температуры и теплоемкости для
//произвольного сжатия.
if (r_r0<=10) then
    t=t1+(log10(r_r0))*(t2-t1);
    c=c1+(log10(r_r0))*(c2-c1);
    a=a1+(log10(r_r0))*(a2-a1);
    b=b1+(log10(r_r0))*(b2-b1);
```

```
17
```

//Построение графиков

```
//для табличных значений величины сжатия и заданного.
xset("window",1);a=get("current_axes");
p = plot2d(t, c,style=5); p1= plot2d(t1, c1,style=1);
p2= plot2d(t2, c2,style=1); p3= plot2d(t3, c3,style=1);
p=a.children(1).children; set(p,'mark_mode',"on");
set(p,'mark_style',2);
pl=a.children(2).children; set(pl,'mark_mode',"on");
set(p1,'mark_style',2);
p2=a.children(3).children; set(p2,'mark_mode',"on");
set(p2,'mark_style',2);
p3=a.children(4).children; set(p3,'mark_mode',"on");
set(p3,'mark_style',2);
plot2d(T, Cv,style=5); xset("line style",3);
plot2d(T, Cv1,style=2);
plot2d(T, Cv2,style=2);
plot2d(T, Cv3,style=2);
//Построение отдельного графика для заданного сжатия.
xset("window",2);
a=get("current_axes");
```

```
a=get("current_axes");
p=plot2d(t, c, style=2);
p=a.children.children;
set(p,'mark_mode',"on"); set(p,'mark_style',3);
plot2d(T, Cv, style=5);
```

Получено 7 сентября 2004 г.

Редактор О.Г.Андреева

Подписано в печать 30.11.2004. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 1,12. Уч.-изд. л. 1,39. Тираж 310 экз. Заказ № 54682.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@pds.jinr.ru www.jinr.ru/publish/