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1. INTRODUCTION

Assume that the spectrum of a self-adjoint operator A on a Hilbert space H

consists of two disjoint components σ− and σ+, i.e. spec(A) = σ−∪σ+ and

d = dist(σ−,σ+) > 0. (1.1)

Then H is decomposed into the orthogonal sum H = H− ⊕H+ of the spectral
subspaces H± = RanEA(σ±), where EA(δ ) denotes the spectral projection of A
associated with a Borel set δ ⊂ R. It is well known (see, e.g. [18, §135])
that sufˇciently small self-adjoint perturbation V of A does not close the gaps
between the sets σ− and σ+, which allows one to think of the corresponding
disjoint spectral components σ ′

− and σ ′
+ of the perturbed operator L = A +V

as a result of the perturbation of the spectral sets of σ− and σ+, respectively.
Moreover, the decomposition H = H′

−⊕H′
+ with H′

± = RanEL(σ ′
±) is continuous

in V in the sense that the projections EL(σ ′
±) converge to EA(σ±) in the operator

norm topology as ‖V‖→ 0.
Given a mutual disposition of the spectral components σ± of the operator A,

the problem of perturbation theory is to study variation of these components and
the corresponding spectral subspaces under the perturbation V . In particular, the
questions of interest are the following (see [12,15]):

(i) Under what (sharp) condition imposed on ‖V‖ do the gaps between the
sets σ− and σ+ remain open, i.e. dist(σ ′

−,σ ′
+) > 0?

(ii) Having established this condition, can one ensure that it implies inequality

‖EL(σ ′
−)−EA(σ−)‖ < 1? (1.2)

(Surely, (1.2) holds if and only if inequality ‖EL(σ ′
+)−EA(σ+)‖ < 1 does.)

In general, answer to the question (i) is well known: the gaps between σ−
and σ+ remain open if

‖V‖ <
d
2
. (1.3)

Among all perturbations of the operator A we distinguish the ones that are off-
diagonal with respect to the decomposition H = RanEA(σ−)⊕RanEA(σ+), i.e.
the perturbations that anticommute with the difference

J = EA(σ+)−EA(σ−) (1.4)
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of the spectral projections EA(σ+) and EA(σ−). If one restricts oneself to pertur-
bations V of this class, then inequality dist(σ ′

−,σ ′
+) > 0 is ensured by the weaker

condition

‖V‖ <

√
3

2
d (1.5)

proven in [15, Theorem 1]. Similarly to (1.3), condition (1.5) is sharp.
For a review of the known answers to the question (ii), we refer to [12] in

case of the general bounded perturbations and to [15] in case of the off-diagonal
ones. Notice that complete answers to the question (ii) were found only by certain
additional assumptions on the mutual disposition of the sets σ− and σ+. It is
still an open problem whether the corresponding conditions (1.3) and (1.5) imply
(1.2) under the only assumption (1.1) or not.

In the present paper, we are concerned with the off-diagonal perturbations
and restrict ourselves to two particular mutual dispositions of the spectral sets
σ− and σ+. The ˇrst one corresponds to the case where the sets σ− and σ+ are
subordinated, say

supσ− < infσ+. (1.6)

The second case under consideration corresponds to a disposition with one of the
sets σ− and σ+ lying in a gap of the other set, say

σ+∩ conv(σ−) = ∅, (1.7)

where conv(σ) denotes the convex hull of a set σ ⊂ R.
In both these cases, the perturbed spectral sets σ ′

− and σ ′
+ are known to

remain disjoint under requirements on ‖V‖ much weaker than that of (1.5).
In particular, if (1.6) holds then for any bounded off-diagonal perturbation V

the interval (supσ−, infσ+) belongs to the resolvent set of the perturbed operator
L = A +V , and thus σ ′

− ⊂ (−∞,supσ−] and σ ′
+ ⊂ [infσ+,+∞) (see [2], [7];

cf. [14]). Moreover, in this case the following norm estimate holds [7]:

‖EL(σ ′
−)−EA(σ−)‖ � sin

(1
2

arctan
2‖V‖

d

)
<

√
2

2
.

This (sharp) bound on the difference of the spectral projection EL(σ ′
−) and EA(σ−)

is known as the DavisÄKahan tan2Θ Theorem, since it can be written in the

equivalent form ‖ tan2Θ‖ � ‖V‖
d

, where Θ is the operator angle between the

subspaces H′
− and H− (or between the subspaces H′

+ and H+). For deˇnition of
the operator angle between two subspaces see, e.g. [13].

Our ˇrst principal result is an extension of the tan2Θ Theorem, which holds
not only for bounded but also for some unbounded off-diagonal perturbations V .
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Theorem 1. Given a self-adjoint operator A on the Hilbert space H, assume that

spec(A) = σ−∪σ+ and supσ− < infσ+.

Suppose that a symmetric operator V on H with Dom(V )⊃Dom(A) is off-diagonal
with respect to the decomposition H = RanEA(σ−)⊕RanEA(σ+) and the closure
L = A+V of the sum A+V with Dom(A+V ) = Dom(A) is a self-adjoint operator.
Then the spectrum of L consists of two subordinate components σ ′

− and σ ′
+ such

that
σ ′
− ⊂ (−∞,supσ−], σ ′

+ ⊂ [infσ+,+∞),

and the following inequality holds

‖EL(σ ′
−)−EA(σ−)‖ � sin

(
1
2

arctanκ

)
, (1.8)

where

κ = inf
supσ−<µ<infσ+

sup
x ∈ Dom(A)
‖x‖ = 1

|〈x,JVx〉|
〈x, |A− µ |x〉

with J given by (1.4).

Notice that throughout the paper we adopt the natural convention that
arctan(+∞) = π/2. In particular, under this convention, inequality (1.8) for

κ = +∞ reads ‖EL(σ ′
−)−EA(σ−)‖ �

√
2

2
.

By Remark 4.6 (iii) below, the estimate (1.8) is sharp.
Theorem 1 is a corollary to a more general statement (Theorem 4.4) that is

valid even in the case where supσ− = infσ+. In its turn, the DavisÄKahan tan2Θ
Theorem (Theorem 4.7) appears to be a simple corollary to Theorem 1.

We also remark that for a class of unbounded off-diagonal perturbations

studied in [1] (cf. [10], [17]), the rough estimate ‖EL(σ ′
−)−EA(σ−)‖ �

√
2

2
can

be proven by combining [1, Theorem 5.3] and [16, Theorem 5.6]. Example 4.5 to
Theorem 1 shows that estimate (1.8) may hold (even with ˇnite κ) for unbounded
perturbations that do not ˇt the assumptions of [1].

As regards the spectral disposition (1.7), it has been proven in [15] (see
also [14]) that the gaps between σ− and σ+ remain open and the bound (1.2)
holds if the perturbation V satisˇes condition

‖V‖ <
√

2d.

The only known sharp bound [15, Theorem 2.4] for the norm of the difference
EA+V (σ ′

−)−EA(σ−) involves the distance from the initial spectral set σ+ to the
perturbed spectral set σ ′

−, and thus this bound is an a posteriori estimate.

3



Our second principal result just adds an a priori sharp bound for the norm
‖EA+V (σ ′

−)−EA(σ−)‖ in the case where (1.7) holds and ‖V‖ < d.

Theorem 2. Given a self-adjoint operator A on the Hilbert space H, assume that

spec(A) = σ− ∪σ+, dist(σ+,σ−) = d > 0, and σ+ ∩ conv(σ−) = ∅.

Let V be a bounded self-adjoint operator on H off-diagonal with respect to the
decomposition H = RanEA(σ−)⊕RanEA(σ+). Assume in addition that

‖V‖ < d.

Then the spectrum of L = A+V consists of two disjoint components σ ′
− and σ ′

+
such that

σ ′
− ⊂ δ , σ ′

+ ⊂ R\δ , δ = (infσ−−d,supσ− +d), (1.9)

and

‖EL(σ ′
−)−EA(σ−)‖ � sin

(
arctan

‖V‖
d

)
=

‖V‖√
d2 +‖V‖2

. (1.10)

We conjecture that estimate (1.10) also holds for d � ‖V‖ <
√

2d.
The proofs of both Theorems 1 and 2 are performed by constructing the

direct rotation [6] from the subspace RanEA(σ−) to the subspace RanEL(σ ′
−).

Recall that the direct rotation U from a closed subspace M of a Hilbert space
H to a closed subspace N ⊂ H with dim(M∩N⊥) = dim(M⊥ ∩N) is a unitary
operator on H mapping M onto N and being such that for any other unitary
W on H with RanW |M = N the following inequality holds: ‖I−U‖ � ‖I−W‖,
where I is the identity operator on H. That is, the direct rotation is closer (in the
operator norm topology) to the identity operator than any other unitary operator
on H mapping M onto N. The norm of the difference between the corresponding
orthogonal projections onto M and N is completely determined by location of
spec(U) on the unit circumference.

We extract information on the spectrum of the direct rotation from RanEA(σ−)
to RanEL(σ ′

−) using the following auxiliary result which, we think, is of inde-
pendent interest.

Theorem 3. Let T be a closed densely deˇned operator on a Hilbert space H

with the polar decomposition T = W |T |. Assume that G is a bounded operator
on H such that both GT and G∗T ∗ are accretive (resp. strictly accretive). Then
the products GW and WG are also accretive (resp. strictly accretive) operators.

Notice that in this theorem and below an operator T on the Hilbert space H

is called accretive (resp. strictly accretive) if

Re〈x,T x〉 � 0 (resp. Re〈x,Tx〉 > 0) for any x ∈ Dom(T ),‖x‖ = 1.
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We also adopt the convention that the partial isometry W in the polar decompo-
sition T = W |T | is extended to Ker(T ) by

W |Ker (T) = 0. (1.11)

In this way, the isometry W is uniquely deˇned on the whole space H (see,
e.g. [11, §VI.7.2]).

A convenient way to construct the direct rotation between two closed sub-
spaces of a Hilbert space is rendered by using a pair of self-adjoint involutions
associated with these subspaces. Although the relative geometry of two subspaces
is studied in great detail (see, e.g. [9, 11, 18]), for convenience of the reader we
give in Sec. 2 a short but self-contained exposition of the subject reformulating
some results in terms of a pair of involutions.

The remaining part of the article is organized as follows. Section 3 contains
a proof of Theorem 3. The principal result of this section is Theorem 3.4, which
allows one to compare two involutions, one of which is associated with a self-
adjoint operator. Theorem 1 and some others related statements are proven in
Sec. 4. Section 5 contains a proof of Theorem 2.

We conclude the introduction with description of some more notations that
are used throughout the paper. The identity operator on any Hilbert space H is
denoted by I. Given a linear operator T on H, by � (T ) we denote its numerical
range,

� (T ) = {λ ∈ C |λ = 〈x,T x〉 for some x ∈ Dom(T ),‖x‖ = 1}.

We use the standard concepts of commuting and anticommuting operators dealing
only with the case where at least one of the operators involved is bounded (see,
e.g. [5, §3.1.1]). Assuming that S and T are operators on H, suppose that the
operator S is bounded. We say that the operators S and T commute (resp.
anticommute) and write S � T or T � S (resp. S � T or T � S) if ST ⊂ TS
(resp. ST ⊂−TS).

2. A PAIR OF INVOLUTIONS

2.1. An Involution. We start with recalling the concept of a (self-adjoint)
involution on a Hilbert space. This concept is a main tool we use in the present
paper. Notice that in the theory of spaces with indeˇnite metric the involutions
are often called canonical symmetries (see, e.g. [4]).

Deˇnition 2.1. A linear operator J on the Hilbert space H is called an involution
if

J∗ = J and J2 = I. (2.1)
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In particular, if P− and P+ = I − P− are two complementary orthogonal
projections on H, then the differences P+−P− and P−−P+ are involutions.

By deˇnition, any involution J is a self-adjoint operator. In fact, it is also
a unitary operator since (2.1) yields J∗ = J−1. Hence spec(J) = {−1,1} and the
spectral decomposition of J reads

J =
∫

R

λEJ(dλ ) = EJ({+1})−EJ({−1}),

which implies that any involution on H is the difference between two comple-
mentary orthogonal projections. Obviously, the projections EJ({±1}) are equal
to

EJ({+1}) =
1
2
(I + J) and EJ({−1}) =

1
2
(I− J). (2.2)

Deˇnition 2.2. Let J be an involution on the Hilbert space H. The subspaces

H− = RanEJ({−1}) and H+ = RanEJ({+1}) (2.3)

are called the negative and positive subspaces of the involution J, respectively.
The decomposition

H = H−⊕H+ (2.4)

of H into the orthogonal sum of the subspaces (2.3) is said to be associated with
J.

Recall that a linear operator A on H is called diagonal with respect to decom-
position (2.4) if the subspace H− (and hence the subspace H+) reduces A. A linear
operator V on H is said to be off-diagonal with respect to decomposition (2.4) if

H−∩Dom(V ) = RanP−|Dom(V), H+∩Dom(V ) = RanP+|Dom(V),

where P− and P+ are orthogonal projections onto H− and H+, respectively, and

RanV |H−∩Dom(V) ⊂ H+, RanV |H+∩Dom(V) ⊂ H−. (2.5)

A criterion for an operator on H to be diagonal or off-diagonal with respect
to the orthogonal decomposition of H associated with an involution J can be
formulated in terms of a commutation relation between this operator and J.

Lemma 2.3. A linear operator A on the Hilbert space H is diagonal with respect
to the orthogonal decomposition of H associated with an involution J if and only
if J � A.

Proof. This assertion is an immediate corollary to [5, Theorem 1 in §3.6].
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Lemma 2.4. A linear operator V on the Hilbert space H is off-diagonal with
respect to the orthogonal decomposition of H associated with an involution J if
and only if J � V .

Proof. ©Only if part.ª Assume that V is off-diagonal with respect to an or-
thogonal decomposition of H associated with J. Let P± = EJ({±1}). Then
J = P+−P− and P+ +P− = I. By the hypothesis, one infers that P±x ∈ Dom(V )
for any x ∈ Dom(V ). Hence x ∈ Dom(V ) implies Jx ∈ Dom(V ). Moreover, for
any x ∈ Dom(V ) the following chain of equalities holds

VJx = VP+x−VP−x

= P−VP+x−P+VP−x

= P−V (P+ +P−)x−P+V (P+ +P−)x

= (P−−P+)Vx

= −JVx,

since P+VP+x = P−VP−x = 0 (cf. (2.5)). Thus J � V .
©If part.ª Suppose that J � V , which means that (i) x ∈ Dom(V ) implies

Jx ∈ Dom(V ) and (ii) VJx = −JVx for all x ∈ Dom(V ). Let H± = RanEJ({±}).
Condition (i) and equalities (2.2) imply that EJ({±1})x ∈ Dom(V ) whenever
x ∈ Dom(V ). Therefore, it follows from condition (ii) that if x− ∈H−∩Dom(V ),
then Vx− = −VJx− = JVx−. Hence Vx− ∈ H+ for all x− ∈ H− ∩Dom(V ). In
a similar way one veriˇes that Vx+ ∈ H− for all x+ ∈ H+ ∩Dom(V ). Hence V
is off-diagonal with respect to the decomposition of H associated with J, which
completes the proof.

Remark 2.5. Operators that are diagonal or off-diagonal with respect to the de-
composition (2.4) are often written in the block operator matrix form,

A =
(

A− 0
0 A+

)
, V =

(
0 V+
V− 0

)
,

where A± are the parts of the diagonal operator A in H±, and V± are the corre-
sponding restrictions of the off-diagonal operator V to H±,

A± = A|Dom(A)∩H± , V± = V |Dom(V)∩H± .

In particular, if both A and V are closed operators and, in addition, V is
bounded, then the closed operator L = A+V with Dom(L) = Dom(A) admits the
block operator matrix representation

L =
(

A− V+
V− A+

)
. (2.6)
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In this case

A =
1
2
(L+ JLJ), V =

1
2
(L− JLJ),

where J is the involution that corresponds to the decomposition (2.4).

Notice that the study of invariant subspaces for block operator matrices of
the form (2.6) is closely related to the question concerning existence of solutions
to the associated operator Riccati equations (see, e.g. [3] and references therein).

2.2. Involutions in the Acute Case. Recall that two closed subspaces M

and N of a Hilbert space H are said to be in the acute case if

M∩N⊥ = {0} and M⊥ ∩N = {0}.

To formulate the notion of the acute case in terms of the corresponding involu-
tions, we adopt the following deˇnition.

Deˇnition 2.6. Involutions J and J′ on the Hilbert space H are said to be in the
acute case if

Ker(I + J′J) = {0}.

Remark 2.7. By inspection, Ker(I + J′J) = Ker(I + JJ ′), which means that this
deˇnition is symmetric with respect to the entries J and J′.

Lemma 2.8. If involutions J and J′ are in the acute case and J � J′, then J = J′.

Proof. Taking into account the self-adjointness of both J and J′, the hypothesis
JJ′ = J′J implies that the unitary operator J′J is self-adjoint. Hence spec(J′J) ⊂
{−1,1}. Then from the assumption that J and J ′ are in the acute case it follows
that −1 �∈ spec(J′J). This yields J′J = I and hence J = J′.

Some criteria for a pair of involutions J and J′ to be in the acute case are
presented in Lemma 2.9 below. In particular, this lemma justiˇes Deˇnition 2.6
stating that J and J′ are in the acute case if and only if their negative (resp.
positive) subspaces are in the acute case.

One of the criteria in Lemma 2.9 involves the numerical range � (J′J) of
the product J′J. Since J′J is a unitary operator, its numerical range is a subset of
the unit disc {λ ∈ C | |λ | � 1}. Equalities J ′J = J(JJ′)J = J(JJ′)J−1 imply that
the products J′J and JJ′ are unitarily equivalent. Hence � (J′J) = � (JJ′). By
JJ′ = (J′J)∗ this means that the numerical range of J′J is symmetric with respect
to the real axis.

Lemma 2.9. Let J and J′ be two involutions on H. Assume that H± = RanEJ({±1})
and H′

± = RanEJ′({±1}). The following four statements are equivalent:

(i) H−∩H′
+ = {0} and H+∩H′

− = {0},
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(ii) Ker(I + J′J) = {0},

(iii) ‖(J′ − J)x‖ < 2‖x‖ for all x ∈ H, x �= 0,

(iv) −1 �∈� (J′J).

Proof. We prove the implications (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i).
(i)⇒ (ii). We prove this implication by contradiction. Suppose that Ker(I +

J′J) �= {0} and x ∈ Ker(I + J ′J) is a nonzero vector. Representing this vector as
x = x−+x+ with x− ∈H− and x+ ∈H+, one obtains (I +J′J)x = (I−J′)x−+(I +
J′)x+ and hence

(I− J′)x− +(I + J′)x+ = 0 (2.7)

since (I +J′J)x = 0. Applying (I−J ′) to both parts of (2.7) gives (I−J′)2x− = 0
and thus J′x− = x−. Therefore, x− is an eigenvector of the operator J′ corre-
sponding to the eigenvalue +1, which means x− ∈ H− ∩H′

+. In a similar way,
by applying (I + J′) to both parts of (2.7), one concludes that J′x+ = −x+ and
hence x+ ∈ H+ ∩H′

−. Then it follows from condition (i) that x− = x+ = 0 and
thus x = 0, which contradicts the assumption.

(ii) ⇒ (iii). It follows from condition (ii) that ‖(I + J′J)x‖ > 0 for any
nonzero x ∈ H. Then by taking into account the identities

‖(J− J′)x‖2 +‖(J + J′)x‖2 = 4‖x‖2

and
‖(J + J′)x‖ = ‖J′(J′ + J)x‖ = ‖(I + J′J)x‖

one easily concludes that (ii) implies (iii).
(iii) ⇒ (iv). By inspection,

‖x‖2 +Re〈x,J′Jx〉 =
1
2

{
4‖x‖2−‖(J− J′)x‖2

}
.

Hence (iii) implies

‖x‖2 +Re〈x,J′Jx〉 > 0 for any nonzero x ∈ H.

In particular, this means that Re〈x,J′Jx〉 > −1 for any x ∈ H such that ‖x‖ = 1
and therefore −1 �∈� (J′J).

(iv)⇒ (i). Suppose that at least one of the subspaces H−∩H′
+ and ∈H+∩H′

−
is nontrivial. Pick up vectors x− ∈ H− ∩H′

+ and x+ ∈ H+ ∩H′
− in such a way

that at least one of them is nonzero. Clearly, J′J(x− + x+) = J′(−x− + x+) =
−(x− + x+), which means that −1 is an eigenvalue of the operator J′J, and
thus −1 ∈ � (J′J). This contradicts the assumption (iv) and thus proves the
implication.
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Remark 2.10. Making use of relationship (2.2) between an involution and its
spectral projections yields

P′+−P+ = P−−P′− =
J′ − J

2
,

where P± = EJ({±1}) and P′± = EJ′({±1}).

Corollary 2.11. If

‖P′−−P−‖ < 1 (or ‖P′+−P+‖ < 1)

holds, then the involutions J and J′ are in the acute case. Hence, the negative
(resp. positive) subspaces of J and J′ are also in the acute case.

2.3. The Direct Rotation. Let J and J′ be involutions on H. Assume that
H− and H+ are the negative and positive subspaces of J, respectively. Similarly,
assume that H′

− and H′
+ are the negative and positive subspaces of J′. It is well

known (see, e.g. [6, Theorem 3.1]) that if

dim(H− ∩H′
+) = dim(H+∩H′

−), (2.8)

then there exists a unitary operator W on H mapping H− onto H′
− and H+ onto

H′
+. Clearly, this W satisˇes the commutation relation

J′W = WJ. (2.9)

In particular, by Lemma 2.9 such a unitary W exists if J and J′ are in the acute
case. The canonical choice of the unitary mapping of one subspace in the Hilbert
space onto another, the so-called direct rotation, was suggested by C. Davis in [6]
and T. Kato in [11, Sections I.4.6 and I.6.8]. The idea of this choice goes back
yet to B. Sz.-Nagy (see [18, §105]). We adopt the following deˇnition of the
direct rotation.

Deˇnition 2.12. Let J and J′ be involutions on the Hilbert space H. A unitary
operator U on H is called the direct rotation from J to J′ if

(i) J′U = UJ, (ii) U2 = J′J, (iii) ReU � 0. (2.10)

Remark 2.13. The spectrum of any direct rotation is a subset of the unit cir-
cumference lying in the closed right half-plane symmetrically with respect to the
real axis. To see this, observe that equalities (i) and (ii) imply U∗ = JUJ by
taking into account that U is a unitary operator. Hence the operator U is unitary
equivalent to its adjoint and thus the spectrum of U is symmetric with respect to
the real axis. From (iii) it follows that this spectrum is a subset of the half-plane
{z ∈ C | Re z � 0}. To complete the proof of the statement, it only remains to
recall that the spectrum of any unitary operator lies on the unit circumference.
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We give a short proof of the existence and uniqueness of the direct rotation
for the instance where the corresponding involutions are in the acute case. For a
different proof of this fact see [7, Propositions 3.1 and 3.3].

Theorem 2.14. If involutions J and J′ are in the acute case, then there is a unique
direct rotation from J to J′.

Proof. We divide the proof into two parts. In the ˇrst part, we prove the existence
of a direct rotation from J to J′. The uniqueness of the direct rotation is proven
in the second part.

(Existence.) Set T = I + J′J. One easily veriˇes that T is a normal operator. By
hypothesis,

Ker(T ) = Ker(T ∗) = {0} (2.11)

taking into account Remark 2.7. Hence the isometry U in the polar decomposition

T = U |T | = |T |U, (2.12)

is a unitary operator (see [18, §110]).
By inspection,

J′T = TJ (2.13)

and thus

J|T |2 = JT ∗T = T ∗J′T = T ∗TJ = |T |2J,

J′|T |2 = J′TT ∗ = TJT ∗ = TT ∗J′ = |T |2J′.

Hence J � |T | and J′ � |T |. Then (2.12) and (2.13) yield |T |(J′U −UJ) = 0,
which implies that

J′U = UJ (2.14)

since Ker(|T |) = Ker(T ) = {0}. Observing that J ′JT ∗ = T , by the same reasoning
one obtains |T |(U − J′JU∗) = 0. Hence U = J′JU∗ and thus

U2 = J′J. (2.15)

Finally, T + T ∗ = |T |2 and T + T ∗ = |T |(U +U∗) imply |T |(U +U∗ − |T |) = 0.
Therefore,

ReU =
1
2
|T | � 0. (2.16)

Comparing (2.14), (2.15), and (2.16) with (2.10), one concludes that U is the
direct rotation from J to J′.
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(Uniqueness.) Suppose that U ′ is another unitary operator such that U ′2 =U2 and
ReU ′ � 0. By inspection,

(ReU ′)2 =
1
2

(
I +Re(U ′2)

)
=

1
2

(
I +Re(U2)

)
= (ReU)2.

Then it follows from the uniqueness of the positive square root of a positive
operator that ReU = ReU ′. In addition, the requirement Im(U2) = Im(U ′2) im-
plies ReU(ImU − ImU ′) = 0, which means that ImU = ImU ′ since Ker(ReU) =
Ker(|T |) = {0} by combining (2.11) and (2.16). Thus U ′ = ReU + i ImU = U ,
completing the proof.

Remark 2.15. In the nonacute case, the direct rotation exists if and only if (2.8)
holds (see [7, Proposition 3.2]). If it exists, it is not unique.

To specify location of the spectrum of a unitary operator on the unit circum-
ference, we introduce the notion of the spectral angle.

Deˇnition 2.16. Let W be a unitary operator. The number

ϑ (W ) = sup
z∈spec(W)

|argz|, argz ∈ (−π ,π ],

is called the spectral angle of W .

Remark 2.17. ϑ (W ∗) = ϑ (W ).

Remark 2.18. The (self-adjoint) operator angle between two closed subspaces
in a Hilbert space is expressed through the direct rotation U from one of these
subspaces to the other one by Θ = arccos(ReU) (see [7, Eq. (1.18)]). This
implies that ϑ (U) is nothing but the spectral radius of the corresponding operator
angle Θ.

The next statement shows that the spectral angle ϑ (W ) is a quantity that
characterizes the distinction of the unitary operator W from the identity operator.

Lemma 2.19. Let W be a unitary operator. Then

‖I−W‖ = 2sin

(
ϑ (W )

2

)
. (2.17)

Proof. Observe that I−W is a normal operator. Then using the spectral mapping
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theorem one concludes that the following chain of equalities holds:

‖I−W‖ = sup
λ∈spec(I−W )

|λ |

= sup
z∈spec(W)

|1− z|

= sup
z∈spec(W)

2sin

(
|argz|

2

)
= 2sin

(1
2

sup
z∈spec(W)

|argz|
)

= 2sin

(
ϑ (W )

2

)
,

where argz ∈ (−π ,π ].

Remark 2.20. If U is the direct rotation from an involution J to an involution J′

then it possesses the extremal property

ϑ (U) � ϑ (W ),

where W is any other unitary operator satisfying (2.9). This can be easily seen
from (2.17) by using [6, Theorem 7.1], which states that ‖I−U‖� ‖I−W‖.

Remark 2.21. Again assume that U is the direct rotation from an involution J to
an involution J′. Then by (2.10) the spectral mapping theorem implies

0 � ϑ (U) � π
2

and ϑ (U) =
1
2
ϑ (J′J). (2.18)

Since ‖J′ − J‖ = ‖I− J′J‖, by (2.17) it follows from (2.18) that

‖J′ − J‖= 2sin

(
ϑ (J′J)

2

)
= 2sinϑ (U).

Hence by Remark 2.10,

‖P′+−P+‖ = ‖P′− −P−‖ = sinϑ (U), (2.19)

where P± = EJ({±1}) and P′± = EJ′({±1}).
In the proof of the next lemma, we will use the following notation. Assume

that � is a subset of the complex plane. Then eiϕ� denotes the result of rotation
of � by the angle ϕ ⊂ (−π ,π ] around the origin, that is,

eiϕ
� = {z ∈ C | z = eiϕζ for some ζ ∈� }.
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Lemma 2.22. Let W1 and W2 be two unitary operators on the Hilbert space H.
Then

|ϑ (W1)−ϑ (W2)| � ϑ (W2W1) � ϑ (W1)+ϑ (W2). (2.20)

Proof. First, we prove inequality

ϑ (W2W1) � ϑ (W1)+ϑ (W2). (2.21)

Denote by ϑ1, ϑ2 and ϑ3 the spectral angles of W1, W2, and W2W1, re-
spectively. The case ϑ1 +ϑ2 � π is trivial since ϑ3 � π by Deˇnition 2.16.
If ϑ1 +ϑ2 < π , we prove (2.21) by contradiction. Suppose that the opposite
inequality holds, that is,

ϑ3 > ϑ1 +ϑ2.

Then there is a number ϕ ∈ (−π ,π ] such that eiϕ ∈ spec(W2W1) and

ϑ1 +ϑ2 < |ϕ | � π . (2.22)

Since W2W1 is a normal (unitary) operator, there exists a sequence of vectors
xn ∈ H, n = 1,2, . . . , such that

‖xn‖ = 1 and ‖W2W1xn − eiϕxn‖→ 0, n → ∞. (2.23)

Indeed, if eiϕ is an eigenvalue of W2W1, to satisfy (2.23) one simply takes xn = xϕ ,
n = 1,2, . . . , where xϕ is a normalized eigenvector of W2W1 corresponding to the
eigenvalue eiϕ , i.e. W2W1xϕ = eiϕxϕ . Otherwise such a sequence exists by the
Weyl criterion for the essential spectrum.

Let z1,n = 〈xn,W1xn〉 and z2,n = 〈xn,W ∗
2 xn〉. Clearly, (2.23) yields

|z1,n − eiϕz2,n| → 0, n → ∞, (2.24)

since by the Schwartz inequality we have

|z1,n − eiϕz2,n| = |〈xn,W1xn − eiϕW ∗
2 xn〉| �
� ‖W1xn − eiϕW ∗

2 xn‖ = ‖W2W1xn − eiϕxn‖.

Taking into account that z1,n ⊂� (W1) and z2,n ⊂� (W ∗
2 ), from (2.24) one con-

cludes that
dist

(
� (W1),eiϕ

� (W ∗
2 )

)
= 0. (2.25)

Meanwhile, if W is a unitary operator with the spectral angle ϑ , the spectral
theorem implies

� (W ) ⊂�ϑ and � (W ∗) ⊂�ϑ ,

where
�ϑ = {z ∈ C | Rez � cosϑ and |z| � 1}
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is a segment of the closed unit disc centered at the origin. Therefore, � (W1) ⊂
�ϑ1 and � (W ∗

2 ) ⊂�ϑ2 . Obviously, eiϕ� (W ∗
2 ) ⊂ eiϕ�ϑ2 and hence

dist
(
� (W1),eiϕ

� (W ∗
2 )

)
� dist

(
�ϑ1 ,e

iϕ
�ϑ2

)
. (2.26)

One easily veriˇes by inspection that by the assumption (2.22) we have

dist
(
�ϑ1 ,e

iϕ
�ϑ2

)
= 2sin

(
|ϕ |−ϑ1−ϑ2

2

)
sin

(
|ϕ |+ϑ2−ϑ1

2

)
> 0

and thus by (2.26) we get

dist
(
� (W1),eiϕ

� (W ∗
2 )

)
> 0,

which contradicts (2.25). This completes the proof of (2.21).
By Remark 2.17, inequality (2.21) implies

ϑ (W2) = ϑ (W2W1W
∗
1 ) � ϑ (W2W1)+ϑ (W∗

1 ) = ϑ (W2W1)+ϑ (W1), (2.27)

ϑ (W1) = ϑ (W ∗
2 W2W1) � ϑ (W ∗

2 )+ϑ (W2W1) = ϑ (W2)+ϑ (W2W1). (2.28)

Combining (2.27) and (2.28) yields the left inequality in (2.20). The proof is
complete.

Remark 2.23. Setting W1 = eiϑ1I and W2 = eiϑ2I with ϑ1, ϑ2 appropriate reals,
one veriˇes that both inequalities of (2.20) are sharp.

3. A PROPERTY OF THE POLAR DECOMPOSITION

In this section, we give a proof of Theorem 3. We also derive corollaries to
this theorem for the case where one of the involved operators is self-adjoint and
the other one is related to an involution.

We start with an auxiliary result.

Lemma 3.1. Let A be a positive operator on the Hilbert space H. Suppose that
x,y ∈ H are such that

Re〈x,A(A2 +α)−1y〉 > 0 (� 0) for any α > 0. (3.1)

Then
Re〈x,Qy〉 > 0 (� 0), (3.2)

where Q is the orthogonal projection onto Ker(A)⊥.
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Proof. By the spectral theorem

Re〈x,A(A2 +η2)−1y〉 =
∫

R

λm(dλ )
λ 2 +η2 =

∫
(0,+∞)

λm(dλ )
λ 2 +η2 , 0 �= η ∈ R,

where for any Borel set δ ⊂ R the LebesgueÄStieltjes measure m(δ ) reads

m(δ ) = Re〈x,EA
(
δ )y〉.

Hence for any ε > 0

1/ε∫
ε

dη Re〈x,A(A2 +η2)−1y〉 =

1/ε∫
ε

dη
∫

(0,+∞)

λm(dλ )
λ 2 +η2

=
∫

(0,+∞)
m(dλ )

∫ 1/ε

ε

λdη
λ 2 +η2

by the Fubini theorem. Therefore,

1/ε∫
ε

dη Re〈x,A(A2 +η2)−1y〉 =

=
∫

(0,+∞)
m(dλ )

[
arctan

(
1
λε

)
− arctan

( ε
λ

)]
. (3.3)

From (3.3) one immediately infers that

lim
ε↓0

1/ε∫
ε

dη Re〈x,A(A2 +η2)−1y〉 =
π
2

m
(
(0,+∞)

)
. (3.4)

Notice that m
(
(0,+∞)

)
= Re〈x,Qy〉 since Q = EA

(
(0,+∞)

)
. Hence (3.4) yields

Re〈x,Qy〉 = lim
ε↓0

2
π

1/ε∫
ε

dη Re〈x,A(A2 +η2)−1y〉. (3.5)

Clearly, by (3.5) inequalities (3.2) follow directly from the corresponding as-
sumptions (3.1). The proof is complete.

With Lemma 3.1 we are ready to prove Theorem 3.
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Proof of Theorem 3. First assume that the operators GT and G∗T ∗ are both ac-
cretive. To prove that GW is also an accretive operator, pick up arbitrary α > 0
and x ∈ H and set

g = (T ∗T +α)−1x. (3.6)

Taking into account that g ∈ Dom(T ), introduce

h = Tg = T (T ∗T +α)−1x. (3.7)

Clearly, h ∈ Dom(T ∗) and
x = αg+T∗h. (3.8)

By using (3.6), (3.7), and (3.8), it is easy to verify that the following chain of
equalities holds

Re〈W ∗G∗x, |T |(|T |2 +α)−1x〉 = Re〈G∗x,W |T |g〉
= Re〈G∗x,Tg〉
= Re〈x,Gh〉
= Re〈αg+T ∗h,Gh〉
= α Re〈g,Gh〉+Re〈Gh,T ∗h〉
= α Re〈g,GTg〉+Re〈h,G∗T ∗h〉. (3.9)

Since by hypothesis both GT and G∗T ∗ are accretive, (3.9) implies that

Re〈W ∗G∗x, |T |(|T |2 +α)−1x〉 � 0 for any α > 0 and x ∈ H,

and hence by Lemma 3.1

Re〈W ∗G∗x,Qx〉 = Re〈x,GWQx〉 � 0,

where Q is the orthogonal projection onto Ker(|T |)⊥. According to the convention
(1.11) we have Ker(|T |) = Ker(T ) = Ker(W ). Then one concludes that WQ = W
and hence

Re〈x,GWx〉 � 0 for all x ∈ H,

which proves that the operator GW is accretive.
Further, assume that GT and G∗T ∗ are both strictly accretive operators. In

particular, this implies that

Ker(T ) = Ker(|T |) = {0}. (3.10)

In this case, if x �= 0 then neither g nor h deˇned in (3.6) and (3.7) can be
zero vectors. Indeed, the equality g = 0 implies h = Tg = 0 and hence by (3.8)
it contradicts the assumption x �= 0. Independently, the equality h = 0 yields
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g ∈ Ker(T ) by taking into account (3.7). Then x ∈ Ker(T ) since x = αg by (3.8).
This is again a contradiction because of (3.10).

Therefore, if x �= 0 and α > 0, then necessarily g �= 0, h �= 0. Hence, by (3.9)
now we have a strict inequality

Re〈W ∗G∗x, |T |(|T |2 +α)−1x〉 > 0.

Then by taking into account (3.10), Lemma 3.1 proves the strict accretiveness of
the operator GW .

The accretiveness (resp., the strict accretiveness) of the operator WG can be
proven in a similar way.

Now assume that T is a self-adjoint operator on the Hilbert space H and
Ker(T ) = {0}. Then the isometry J′ in the polar decomposition

T = J′|T | (3.11)

is an involution that reads

J′ = ET
(
(0,+∞)

)
−ET

(
(−∞,0)

)
.

Clearly, the negative and positive subspaces of this involution coincide with the
corresponding spectral subspaces of T :

H′
− = RanET ((−∞,0)) and H′

+ = RanET ((0,+∞)).

Below we will show that in some cases Theorem 3 allows one to determine the
spectral angle of the product J′J, where J is another involution on H. The norm of
the difference between the orthogonal projections onto the corresponding positive
(or negative) subspaces of J′ and J is then easily computed by using (2.19).

We study the two following cases.

Hypothesis 3.2. Let J be an involution on the Hilbert space H. Assume that T is
a self-adjoint operator on H such that

(a) Ker(T ) = {0} and the product JT is accretive
or

(b) the product JT is strictly accretive.

Obviously, if the assumption (b) holds, then the assumption (a) holds, too.
Therefore, both (a) and (b) assume that Ker(T ) = {0}. Hence, any of these two
assumptions implies that the isometry J′ in the polar decomposition (3.11) of T
is an involution.

To describe the accretive operators in some more detail, we introduce the
following deˇnition.

18



Deˇnition 3.3. Let S be an accretive operator on the Hilbert space H. Then the
ˇnite or inˇnite number

k(S) = sup
z∈� (S)\{0}

| Imz|
Rez

is called the sector bound of S.

Clearly, if k(S) is ˇnite, then S is a sectorial operator (see [11, §V.3.10]) with
vertex 0 and semiangle θ = arctank(S).

Main result of this section is the following.

Theorem 3.4. Assume Hypothesis 3.2 (a). Let T = J′|T | be the polar decompo-
sition of T . Then the involutions J′ and J are in the acute case, and

ϑ (U) � 1
2

arctank(JT )
(
� π

4

)
, (3.12)

where U is the direct rotation from J to J′.

Proof. Since JT is accretive and T = J′|T |, it follows from Theorem 3 that the
operator J′J is also accretive. Hence −1 /∈� (J′J), and thus by Lemma 2.9 the
involutions J and J′ are in the acute case.

If k(JT ) = 0 then � (JT ) is a subset of the real axis, which means that JT is
a symmetric operator. This implies J � T since T is self-adjoint. Hence J′ � J
(see, e.g. [11, Lemma VI.2.37]) and thus J = J′ by Lemma 2.8. In this case,
estimate (3.12) is trivial since ϑ (U) = 0.

Further, assume that k(JT ) > 0. Set

ϕ =
π
2
− arctank(JT ), ϕ ∈ [0,π/2),

and observe that the operators GT and G∗T ∗ with G = eiϕJ are both accre-
tive. Then by Theorem 3 one concludes that the products eiϕJ′J and e−iϕJ′J
are also accretive operators. Hence � (J′J) is a subset of the closed sector{

z ∈ C

∣∣∣ |argz| � π
2
−ϕ , argz ∈ (−π ,π ]

}
. Then from the inclusion spec(J′J) ⊂

� (J′J) it follows that the spectral angle of the unitary operator J′J satisˇes

ϑ (J′J) � arctank(JT ). (3.13)

Now (3.12) follows immediately from (3.13) and (2.18), completing the proof.

In the two following statements, we present some uniqueness results con-
cerning the involution J′ referred to in Theorem 3.4.
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Theorem 3.5. Assume Hypothesis 3.2 (a). Let J̃′ be an involution on H such that

(i) J̃′ and J are in the acute case, (ii) J̃′ � T , and (iii) J̃′ �= J′,

where J′ is the involution in the polar decomposition of T . Then

ϑ (Ũ) � π
2
− 1

2
arctank(JT )

(
� π

4

)
, (3.14)

where Ũ is the direct rotation from J to J̃′.

Theorem 3.6. Assume Hypothesis 3.2 (b). Let T = J′|T | be the polar decompo-
sition of T . Then J′ is a unique involution on H such that

(i) J and J′ are in the acute case, (ii) J′ � T , and (iii) ϑ (U) � π
4

,

where U is the direct rotation from J to J′.

Proof of Theorem 3.5. For the proof by contradiction suppose that instead of
(3.14) the opposite inequality holds. Then by (2.18) in Remark 2.21 we have

ϑ (J̃′J) < π− arctank(JT ). (3.15)

Similarly, Theorem 3.4 yields

ϑ (JJ′) � arctank(JT ). (3.16)

By (3.15) and (3.16), Lemma 2.22 implies that

ϑ (J̃′J′) = ϑ ((J̃′J)(JJ′)) � ϑ (J̃′J)+ϑ (JJ′) < π .

In particular, this means that −1 /∈ spec(J̃′J′), which proves that the involutions
J′ and J̃′ are in the acute case.

By hypothesis, J̃′ commutes with T and J′ is the isometry in the polar decom-
position of T . Hence [11, Lemma VI.2.37] implies J̃′ � J′. Then from Lemma
2.8 it follows that J̃′ = J′, which contradicts the assumption (iii). Therefore,
ϑ (Ũ) satisˇes (3.14) completing the proof.

Proof of Theorem 3.6. Arguing by contradiction, suppose that there is an involu-
tion J̃′ distinct from J′ and such that conditions (i)Ä(iii) are satisˇed. In particular,
this implies that ϑ (J̃′J) � π/2 and hence

Re〈x,JJ̃′x〉 � 0 for all x ∈ H.

Since JT is strictly accretive and T = J′|T |, by Theorem 3 the operator JJ′ is
also strictly accretive, that is,

Re〈x,JJ′x〉 > 0 for all x ∈ H, x �= 0.
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Therefore,

Re〈x,JJ′x〉+Re〈x,JJ̃′x〉 > 0 for all x ∈ H, x �= 0. (3.17)

Now assume that there is y ∈ Ker(I + J̃′J′) such that y �= 0. Then applying J̃′

to both parts of the equality y+ J̃′J′y = 0 yields J′y+ J̃′y = 0. Hence

Re〈y,JJ′y〉+Re〈y,JJ̃′y〉 = 0,

and it follows from (3.17) that y = 0. This proves that Ker(I + J̃′J′) = {0}, i.e.
the involutions J̃′ and J′ are in the acute case.

Clearly, J̃′ � J′ since by hypothesis J̃′ commutes with T , and J′ is the
isometry in the polar decomposition of T (see [11, Lemma VI.2.37]). Hence, by
Lemma 2.8 J̃′ = J′, which contradicts the assumption that J̃′ is distinct from J′.

The proof is complete.

4. AN EXTENSION OF THE DAVISÄKAHAN tan2Θ THEOREM.
PROOF OF THEOREM 1

Throughout this section we adopt the following hypothesis.

Hypothesis 4.1. Given a self-adjoint operator A on the Hilbert space H, assume
that

Ker(A− µ) = {0} for some µ ∈ R. (4.1)

Let V be a symmetric operator on H such that

(i) Dom(A) ⊂ Dom(V ),

(ii) V � J, where J = EA((µ ,+∞))−EA((−∞,µ)),

and

(iii) the closure L = L0 of the operator L0 = A+V with Dom(L0) = Dom(A) is
a self-adjoint operator.

By this hypothesis, the product J(L− µ) appears to be a strictly accretive
operator. Moreover, the sector bound k

(
J(L− µ)

)
admits an explicit description

in terms of the perturbation V .

Lemma 4.2. Assume Hypothesis 4.1. Then J(L−µ) is a strictly accretive operator
and

k
(
J(L− µ)

)
= sup

x ∈ Dom(A)
‖x‖ = 1

|〈x,JVx〉|
〈x, |A− µ |x〉 . (4.2)
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Proof. Obviously, by Hypothesis 4.1

J(A− µ) = |A− µ |> 0.

Hence by items (ii) and (iii) of this hypothesis we have

Re〈x,J(A+V − µ)x〉 = 〈x, |A− µ |x〉 for all x ∈ Dom(A). (4.3)

Pick up an arbitrary y ∈ Dom(L). By the assumption (iii), it follows that there
exists a sequence of vectors yn ∈ Dom(A) such that yn → y and L0yn → Ly as
n → ∞, and thus

Re〈yn,J(L0 − µ)yn〉 → Re〈y,J(L− µ)y〉 as n → ∞. (4.4)

Then (4.3) and (4.4) imply Re〈y,J(L− µ)y〉 � 0. Moreover, y ∈ Ker(|A− µ |) ⊂
Dom(A) whenever Re〈y,J(L−µ)y〉 = 0. Taking into account that Ker(|A−µ |) =
Ker(A− µ) = {0}, one infers that

Re〈y,J(L− µ)y〉 > 0 for all nonzero y ∈ Dom(L),

which means that the operator J(L− µ) is strictly accretive.
Now observe

k
(
J(L− µ)

)
� κ, (4.5)

where

κ = sup
x ∈ Dom(A)
‖x‖ = 1

|〈x,JVx〉|
〈x, |A− µ |x〉 . (4.6)

Indeed,

k
(
J(L− µ)

)
= sup

x ∈ Dom(L)
‖x‖ = 1

| Im〈x,J(L− µ)x〉|
Re〈x,J(L− µ)x〉

� sup
x ∈ Dom(A)
‖x‖ = 1

| Im〈x,J(A+V − µ)x〉|
Re〈x,J(A+V − µ)x〉

since by Hypothesis 4.1 (iii) Dom(A) ⊂ Dom(L) and L|Dom(A) = A +V. Then
(4.5) holds by (4.3), since Hypothesis 4.1 (ii) implies

Im〈x,J(A+V − µ)x〉 = 〈x,JVx〉 for any x ∈ Dom(A). (4.7)

Clearly, if κ =∞, then (4.2) follows immediately from inequality (4.5). If κ

is ˇnite, then by (4.3) and (4.7) from (4.6) we have

| Im〈x,J(L0 − µ)x〉| � κ Re〈x,J(L0 − µ)x〉 for any x ∈ Dom(L0) = Dom(A).
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Since L is the closure of L0, by continuity of the inner product the same inequality
holds for L, that is,

| Im〈x,J(L− µ)x〉| � κ Re〈x,J(L− µ)x〉 for any x ∈ Dom(L).

In particular, this means that

sup
x ∈ Dom(L)
‖x‖ = 1

| Im〈x,J(L− µ)x〉|
Re〈x,J(L− µ)x〉 = k

(
J(L− µ)

)
� κ. (4.8)

Now combining (4.5), (4.6), and (4.8) completes the proof.

Remark 4.3. Since J(L−µ) is a strictly accretive operator, the isometry J′ in the
polar decomposition L− µ = J′|L− µ | is an involution. Clearly, it reads

J′ = EL((µ ,+∞))−EL((−∞,µ)).

Theorem 4.4. Assume Hypothesis 4.1. Let L−µ = J′|L−µ | be the polar decom-
position of L− µ . Then the involutions J and J′ are in the acute case, and

ϑ (U) � 1
2

arctan
(

sup
x ∈ Dom(A)
‖x‖ = 1

|〈x,JVx〉|
〈x, |A− µ |x〉

) (
� π

4

)
, (4.9)

where U is the direct rotation from J to J′. Moreover, J′ is a unique involution
on H with the properties

(i) J′ and J are in the acute case, (ii) J′ � L, and (iii) ϑ (U) � π
4

. (4.10)

The spectral angle of the direct rotation Ũ from J to any other involution J̃′

distinct from J′ and satisfying (i) and (ii) is bounded from below as follows

ϑ (Ũ) � π
2
− 1

2
arctan

(
sup

x ∈ Dom(A)
‖x‖ = 1

|〈x,JVx〉|
〈x, |A− µ |x〉

) (
� π

4

)
. (4.11)

Proof. The operators J and T = L− µ satisfy Hypothesis 3.2 (b) (and hence
Hypothesis 3.2 (a)). Then the assertion is proven simply by combining Theorems
3.4, 3.5, and 3.6 with Lemma 4.2.

With Theorem 4.4 one can easily prove Theorem 1.
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Proof of Theorem 1. Pick up arbitrary µ ,ν ∈ (supσ−, infσ+), µ < ν . Clearly,
Hypothesis 4.1 holds for both µ and ν with the same involution J = EA(σ+)−
EA(σ−). By Remark 4.3, the isometries J′µ and J′ν in the polar decompositions
L− µ = J′µ |L− µ | and L− ν = J′ν |L− ν | are involutions. By Theorem 4.4, the
involutions J and J′µ are in the acute case, J′µ � L, and ϑ (Uµ) � π/4, where Uµ
is the direct rotation from J to J′µ . The same holds for J′ν and the corresponding
direct rotation Uν from J to J′ν . Therefore, (4.10) is satisˇed for both J′ = J′µ
and J′ = J′ν . Hence, Theorem 4.4 implies J′µ = J′ν , which by Remark 4.3 yields

EL
(
(µ ,ν)

)
= 0. Since µ ,ν ∈ (supσ−, infσ+) are arbitrary, then one concludes

that EL
(
(supσ−, infσ+)

)
= 0, and thus the interval (supσ−, infσ+) belongs to the

resolvent set of L. Hence,

J′µ = EL(σ ′
+)−EL(σ ′

−) for all µ ∈ (supσ−, infσ+),

where σ ′
− and σ ′

+ are the parts of the spectrum of L in the intervals (−∞,supσ−]
and [infσ+,+∞), respectively. Since J′µ does not depend on µ ∈ (supσ−, infσ+),
the direct rotation Uµ does not, either. Then estimate (4.9) of Theorem 4.4 yields

tan2ϑ (U) � inf
supσ−<µ<infσ+

sup
x ∈ Dom(A)
‖x‖ = 1

|〈x,JVx〉|
〈x, |A− µ |x〉 , (4.12)

where U is the direct rotation from the involution EA(σ+)−EA(σ−) to the invo-
lution EL(σ ′

+)−EL(σ ′
−). Now inequality (4.12) proves the bound (1.8) by taking

into account (2.19) in Remark 2.21. The proof is complete.

Example 4.5. Let �a = R\(−a,a) for some a � 0. Given κ � 0, assume that A
and V are operators on the Hilbert space H = L2(�a) deˇned by

(Ax)(t) = |t|x(−t), (Vx)(t) = κ t x(t), t ∈�a,

Dom(A) = Dom(V ) =
{

x ∈ H |
∫
�a

t2|x(t)|2dt < +∞
}
.

(4.13)

Both A and L = A+V are self-adjoint operators. The spectrum of the operator A
is purely absolutely continuous. For a > 0 it consists of two disjoint components
σ− = (−∞,−a] and σ+ = [a,+∞) and for a = 0 it covers the whole real axis. Ob-
viously, the isometry J in the polar decomposition A = J|A| is the parity operator,
(Jx)(t) = x(−t), x ∈ H, and the absolute value of A is given by (|A|x)(t) = |t|x(t),
x ∈ Dom(A). Clearly, J is an involution on H such that J � A and J � V . There-
fore, for a > 0 (resp. for a = 0) the operators A and V satisfy the hypothesis of
Theorem 1 (resp. the hypothesis of Theorem 4.4 for µ = 0).

Our analysis of the subspace perturbation problem involving A and V given
by (4.13) is divided into three parts below.
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(i) For any x ∈ Dom(A), ‖x‖ = 1, we have

|〈x,JVx〉| =
∣∣∣∫
�a

κtx(t)x(−t)dt
∣∣∣

� κ

∫
�a

|t||x(t)x(−t)|dt

� κ

∫
�a

|t| |x(−t)|2 + |x(t)|2
2

dt (4.14)

= κ

∫
�a

|t||x(t)|2dt

= κ〈x, |A|x〉.

Moreover, if x ∈ Dom(A) is such that x(−t) = isign(t)x(t), then inequalities in
(4.14) turn into equalities. Hence, by taking this into account, (4.14) implies

sup
x ∈ Dom(A)
‖x‖ = 1

|〈x,JVx〉|
〈x, |A|x〉 = κ. (4.15)

An explicit evaluation of the involution J′ = EL((+∞,0))−EL((−∞,0)) by using
the polar decomposition L = J′|L| yields

(J′Jx)(t) =
1√

1+κ2
x(t)+ sign(t)

κ√
1+κ2

x(−t). (4.16)

From (4.16) it follows by inspection that the spectrum of the unitary operator J′J
consists of the two mutually conjugate eigenvalues,

spec(J′J) =
{

1− iκ√
1+κ2

,
1+ iκ√
1+κ2

}
.

This implies that ϑ (J′J) = arctanκ and then the spectral angle of the direct

rotation U from J to J′ is equal to ϑ (U) =
1
2

arctanκ. Combining this with

(4.15) yields that in the case under consideration

ϑ (U) =
1
2

arctan
(

sup
x ∈ Dom(A)
‖x‖ = 1

|〈x,JVx〉|
〈x, |A|x〉

)
for any a � 0. (4.17)

(ii) Now set J̃′ = −J′. Clearly, ϑ (J̃′J) = π −ϑ (J′J) and thus the spectral

angle of the direct rotation Ũ from J to J̃′ reads

ϑ (Ũ) =
π
2
− 1

2
arctan

(
sup

x ∈ Dom(A)
‖x‖ = 1

|〈x,JVx〉|
〈x, |A|x〉

)
. (4.18)
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Notice that the involution J̃′ commutes with L since J′ does. By (4.16), it follows
that Ker(I − J′J) = {0} whenever κ �= 0. Hence, Ker(I + J̃′ J) = {0} whenever

κ �= 0, which means that for κ > 0 the involutions J and J̃′ are in the acute case.
(iii) For a > 0 we have

inf
|µ|<a

sup
x ∈ Dom(A)
‖x‖ = 1

|〈x,JVx〉|
〈x, |A− µ |x〉 � sup

x ∈ Dom(A)
‖x‖ = 1

|〈x,JVx〉|
〈x, |A|x〉 . (4.19)

Since sinϑ (U) = ‖EL
(
(−∞,−a]

)
−EA

(
(−∞,−a]

)
‖, by Theorem 1 the strict in-

equality in (4.19) implies

ϑ (U) <
1
2

arctan
(

sup
x ∈ Dom(A)
‖x‖ = 1

|〈x,JVx〉|
〈x, |A|x〉

)
,

which contradicts (4.17). Hence only the equality sign in (4.19) is allowed and
thus

inf
|µ|<a

sup
x ∈ Dom(A)
‖x‖ = 1

|〈x,JVx〉|
〈x, |A− µ |x〉 = sup

x ∈ Dom(A)
‖x‖ = 1

|〈x,JVx〉|
〈x, |A|x〉 . (4.20)

Remark 4.6. Example 4.5 shows the following:

(i) Estimate (4.9) of Theorem 4.4 is sharp. This is proven by equality (4.17).

(ii) Estimate (4.11) of the same theorem is sharp. This is proven by equality
(4.18).

(iii) Estimate (1.8) of Theorem 1 is sharp. This is proven by combining equal-
ities (4.17) and (4.20).

The celebrated sharp estimate for the operator angle between the spectral
subspaces RanEA(σ−) and RanEL(σ ′

−) known as the DavisÄKahan tan2Θ Theo-
rem [7] (cf. [16]) appears to be a simple corollary to Theorem 1.

Theorem 4.7 (The DavisÄKahan tan2Θ Theorem). Given a self-adjoint operator
A on the Hilbert space H, assume that

spec(A) = σ− ∪σ+, d = dist(σ−,σ+) > 0, and supσ− < infσ+.

Suppose that a bounded self-adjoint operator V on H is off-diagonal with respect to
the decomposition H = RanEA(σ−)⊕RanEA(σ+). Then the spectrum of L = A+V
consists of two disjoint components σ ′

− and σ ′
+ such that

σ ′
− ⊂ (−∞,supσ−] and σ ′

+ ⊂ [infσ+,+∞),
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and

‖EL(σ ′
−)−EA(σ−)‖ � sin

(1
2

arctan
2‖V‖

d

)
. (4.21)

Proof. Hypothesis of Theorem 1 is satisˇed and thus we only need to prove the

estimate (4.21). Set µ0 =
1
2
(supσ+ + infσ−). Clearly,

inf
supσ−<µ<infσ+

sup
x ∈ Dom(A)
‖x‖ = 1

|〈x,JVx〉|
〈x, |A− µ |x〉 � sup

x ∈ Dom(A)
‖x‖ = 1

|〈x,JVx〉|
〈x, |A− µ0|x〉

� sup
x ∈ Dom(A)
‖x‖ = 1

‖V‖
〈x, |A− µ0|x〉

� 2‖V‖
d

,

which immediately implies (4.21) by taking into account (1.8).

5. PROOF OF THEOREM 2

In the proof of the main result of this section, we will use some auxiliary
statements. We start with the following lemma.

Lemma 5.1. Let T be a densely deˇned operator on a Hilbert space H with
dim(H) � n for some n ∈ N. Assume that t(x,y) is a sesquilinear form on H such
that

Dom(T ) ⊂ Dom(t) and t(x,y) = 〈x,Ty〉 for any x,y ∈ Dom(T ).

Suppose that there are orthogonal projections Pi �= 0, i = 1,2, . . . ,n, on H with the
properties

PiPj = 0 if i �= j,
n

∑
i=1

Pi = I, and Pix ∈ Dom(t) whenever x ∈ Dom(t).

Let � be a set of ordered n-element orthonormal systems in H deˇned by

� =
{
{ei}n

i=1 ⊂ Dom(t)
∣∣ ei ∈ RanPi and ‖ei‖ = 1 for all i = 1,2, . . . ,n

}
.

Then
� (T ) ⊂

⋃
e∈�

� (te), (5.1)

27



where for any e ∈ � the n×n matrix te is given by

(te)i j = t(ei,e j) with ei,e j ∈ e, i, j = 1,2, . . . ,n.

If, in addition, Dom(t) = Dom(T ), then

� (T ) =
⋃
e∈�

� (te). (5.2)

Proof. By hypothesis, Dom(T ) = H and hence Dom(t) = H, too. Therefore, there

exists y ∈ Dom(t) such that Piy �= 0 for all i = 1,2, . . . ,n. Set ei =
Piy

‖Piy‖
. Taking

into account that by hypothesis Piy ∈ Dom(t) and thus ei ∈ Dom(t), i = 1,2, . . . ,n,
one concludes that {ei}n

i=1 ∈ � . Hence, the set � is nonempty.
Assume that z ∈� (T ). Then there exists x ∈ Dom(T ) such that 〈x,Tx〉 = z

and ‖x‖ = 1. Pick up an arbitrary f = { fi}n
i=1 ∈ � and deˇne the orthonormal

system g = {gi}n
i=1 by

gi =


Pix

‖Pix‖
, ‖Pix‖ �= 0,

fi, ‖Pix‖ = 0.

Obviously, g ∈ � and

n

∑
i, j=1

t(gi,g j)‖Pix‖‖Pjx‖ = 〈x,T x〉 = z,

which implies z ∈� (tg) since ∑n
i=1 ‖Pix‖2 = ‖x‖2 = 1. This proves the inclusion

(5.1).
To prove the converse inclusion in the case where Dom(t) = Dom(T ), pick

up an arbitrary h = {hi}n
i=1 ∈ � and assume that z∈� (th). Then there are αi ∈C,

i = 1,2, . . . ,n, such that

z =
n

∑
i, j=1

t(hi,h j)αiα j,
n

∑
i=1

|αi|2 = 1.

Set x = ∑n
i=1αihi. Clearly, ‖x‖ = 1 and x ∈ Dom(t) = Dom(T ). Hence z =

t(x,x) = 〈Tx,x〉. This yields z ∈ � (T ) and hence � (th) ⊂ � (T ). One then
concludes that ⋃

e∈�
� (te) ⊂� (T ),

and hence (5.2) holds, completing the proof.

The next simple result on the numerical range of a 2×2 numerical matrix is
well known (see, e.g. [8, Lemma 1.1Ä1]).
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Lemma 5.2. Given numbers α > 0, β > 0, and γ ∈ C, let M be a 2×2 matrix of
the form

M =
(

α −γ
γ β

)
.

The matrix M is strictly accretive and its sector bound reads

k(M) =
|γ |√
αβ

.

The numerical range � (M) is a (possibly degenerate) elliptical disc with foci at
the eigenvalues of M.

Now we are in a position to prove the main statement of the section. We
only recall that by a gap of a closed set σ ⊂ R one understands an open ˇnite
interval on the real axis that does not intersect this set but both its ends belong
to σ .

Theorem 5.3. Given a self-adjoint operator A on the Hilbert space H, assume
that

spec(A) = σ− ∪σ+, dist(σ+,σ−) = d > 0, and σ+ ∩ conv(σ−) = ∅.

Denote by ∆ the gap of σ+ that contains σ−, and by |∆| the length of ∆. Suppose
that V is a bounded self-adjoint operator on H anticommuting with J = EA(σ+)−
EA(σ−) and such that

‖V‖ <
√

d(|∆|−d). (5.3)

Then the spectrum of L = A+V consists of two disjoint components σ ′
− and σ ′

+
such that

σ ′
− ⊂ ∆, σ ′

+ ⊂ R\∆, (5.4)

and the involutions J and J′ = EL(σ ′
+)− EL(σ ′

−) are in the acute case. The
spectral angle of the direct rotation U from J to J′ satisˇes the bound

ϑ (U) � 1
2

arctanκ
(
‖V‖

) (
� π

4

)
, (5.5)

where the function κ(v) is deˇned for 0 � v <
√

d(|∆|−d) by

κ(v) =



2v
d

if v �
√

d
2

(
|∆|
2

−d

)
,

v
|∆|
2

+

√
d(|∆|−d)

[( |∆|
2

−d
)2

+ v2
]

d(|∆|−d)− v2 if v >

√
d
2

(
|∆|
2

−d

)
.

(5.6)
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Moreover, J′ is a unique involution on H with the properties

(i) J′ and J are in the acute case, (ii) J′ � L, and (iii) ϑ (U) � π
4

.

The spectral angle of the direct rotation Ũ from J to any involution J̃′ distinct
from J′ and satisfying (i) and (ii) is bounded from below as follows

ϑ (Ũ) � π
2
− 1

2
arctanκ(‖V‖). (5.7)

Proof. One may assume without loss of generality that the gap ∆ is centered at
the point zero. Under this assumption we set

∆= (−b,b) with b =
|∆|
2

.

Then
σ+ ⊂ R\ (−b,b) and σ− ⊂ [−a,a], (5.8)

where

a =
|∆|
2

−d, 0 � a < b.

By Remark 2.5, the operator L admits the matrix representation (2.6) with
respect to the decomposition H = H−⊕H+, where

H− = RanEA(σ−) and H+ = RanEA(σ+)

are the negative and positive subspaces of J, respectively. Then [14, Theorems 1
(i) and 3.2] imply that the intervals (−b,−a′) and (a′,b) with

a′ = a+‖V‖ tan

(
1
2

arctan
2‖V‖
a+b

)
< b

are in the resolvent set of L. Hence the interval (a′2,b2) lies in the spectral gap
of L2, and also the inclusions (5.4) hold. Taking into account (5.3), one veriˇes
by inspection that a′2 � a2 + ‖V‖2 < b2. Therefore, the interval (a2 +‖V‖2,b2)
belongs to the resolvent set of L2. Thus, the spectral projections EL2−µ

(
(−∞,0)

)
and EL2−µ

(
(0,∞)

)
do not depend on

µ ∈ (a2 +‖V‖2,b2). (5.9)

Moreover,

EL2−µ
(
(−∞,0)

)
= EL(σ ′

−), EL2−µ
(
(0,∞)

)
= EL(σ ′

+),
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and hence
EL2−µ

(
(0,∞)

)
−EL2−µ

(
(−∞,0)

)
= J′. (5.10)

Now for any µ satisfying (5.9) set

Tµ = J(L2 − µ), Dom
(
Tµ

)
= Dom(L2), (5.11)

and

tµ(x,y) = 〈LJx,Ly〉− µ〈x,Jy〉, x,y ∈ Dom(tµ) = Dom(L). (5.12)

Clearly, Dom
(
Tµ

)
⊂ Dom(tµ) and tµ(x,y) = 〈x,Tµy〉 for any x,y ∈ Dom

(
Tµ

)
.

Further, introduce the set � of ordered orthonormal two-element systems in H by

� =
{
{e−,e+} ⊂ Dom(tµ)

∣∣ e± ∈ H±, ‖e±‖ = 1
}
.

Then by Lemma 5.1 the following inclusion holds

�
(
Tµ

)
⊂

⋃
e∈�

�
(
teµ

)
, (5.13)

where teµ are 2×2 matrices given by

teµ =
(

tµ(e−,e−) tµ(e−,e+)
tµ(e+,e−) tµ(e+,e+)

)
, e = {e−,e+} ∈ � .

By taking into account that A � J and V � J, one observes

teµ =
(

µ−‖Ae−‖2 −‖Ve−‖2 −(〈Ae+,Ve−〉+ 〈Ve+,Ae−〉)
〈Ae+,Ve−〉+ 〈Ve+,Ae−〉 ‖Ae+‖2 +‖Ve+‖2 − µ

)
. (5.14)

From (5.8) it follows that for {e−,e+} ∈ �

‖Ae−‖ � a and ‖Ae+‖ � b. (5.15)

Hence, by the assumption (5.9) by Lemma 5.2 it follows from (5.14) and (5.15)
that for all e ∈ � the numerical ranges �

(
teµ

)
are elliptical discs that lie in the

open right half-plane {z ∈ C | Rez > 0}. Then (5.13) implies that the numerical
range �

(
Tµ

)
also lies in the open right half-plane, that is, the operator Tµ is

strictly accretive. Hence, taking into account (5.10) and (5.11), Theorem 3.4
yields that the involutions J and J′ are in the acute case. Moreover, for the direct
rotation U from J to J′ the following inequality holds

ϑ (U) � 1
2

arctank(Tµ), (5.16)
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where µ is an arbitrary point from the interval (5.9). In its turn, inclusion (5.13)
implies

k(Tµ) � sup
e∈�

k(teµ). (5.17)

Since

|〈Ae+,Ve−〉+ 〈Ve+,Ae−〉| � ‖Ae+‖‖Ve−‖+‖Ae−‖‖Ve+‖, e = {e−,e+} ∈ � ,

by Lemma 5.2 it follows from (5.14) that

k
(
teµ

)
� fµ(α−,α+,v−,v+), (5.18)

where

fµ(α−,α+,v−,v+) =
α−v+ +α+v−

(µ−α2
−− v2

−)1/2(α2
+ + v2

+− µ)1/2

with α± = ‖Ae±‖ and v± = ‖Ve±‖.
By (5.15), we have

0 � α− � a and α+ � b, (5.19)

while
0 � v− � ‖V‖ and 0 � v+ � ‖V‖. (5.20)

A direct computation shows that the supremum of the function fµ over the set in
R4 constrained by (5.19) and (5.20) equals

κ(µ) =


‖V‖(a+b)

(µ−a2−‖V‖2)1/2(b2 +‖V‖2 − µ)1/2
if a(b2 − µ) > b‖V‖2,

[b2‖V‖2 +a2(b2 − µ)]1/2

(µ−a2−‖V‖2)1/2(b2 − µ)1/2
if a(b2 − µ) � b‖V‖2.

Then by (5.16)Ä(5.18) one infers that

ϑ (U) � 1
2

arctanκ(µ) for any µ ∈ (a2 +‖V‖2,b2).

In particular,

ϑ (U) � 1
2

arctanκmin, (5.21)

where
κmin = inf

a2+‖V‖2<µ<b2
κ(µ). (5.22)

By inspection, the function κ(µ) is continuously differentiable on the interval
(a2 + ‖V‖2,b2). The (global) minimum of κ on this interval is just equal to
κ
(
‖V‖

)
. By (5.21), the equality κmin = κ

(
‖V‖

)
proves the bound (5.5).

The uniqueness of an involution J′ with the properties (i)Ä(iii) follows from
Theorem 3.6. Estimate (5.7) is an immediate corollary to Theorem 3.5.

The proof is complete.
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Remark 5.4. Notice that in the case where the operator A is bounded, the estimate

‖EL(σ ′
−)−EA(σ−)‖ <

√
2

2
(or equivalently ϑ (U) < π/4) may be obtained by

combining [14, Theorem 1 (ii)] and [16, Theorem 5.6].

Theorem 2 is an immediate corollary to Theorem 5.3.

Proof of Theorem 2. The inclusions (1.9) follow from [15, Theorem 4].
Let ∆ be the gap of the set σ+ that contains σ−. Obviously, |∆|� 2d, where

|∆| is the length of ∆, and thus ‖V‖ < d �
√

d(|∆|−d). By Theorem 5.3, one
concludes that

‖EL(σ ′
−)−EA(σ−)‖ � sin

(1
2

arctanκ
(
‖V‖

))
with κ(v) given by (5.6). Observing that for 0 � v < d

κ(v) � 2vd
d2 − v2 = tan

(
2arctan

v
d

)
completes the proof.

Example 5.5. Let A be a self-adjoint operator on H = C4 deˇned by

A = diag{−b,−a,a,b}, 0 � a < b.

Divide the spectrum of A into the two disjoint sets σ− = {−a,a} and σ+ =
{−b,b}. Clearly, d = dist(σ−,σ+) = b−a > 0. The interval ∆= (−b,b) appears
to be the gap of the set σ+ containing the set σ−. The involution J = EA(σ+)−
EA(σ−) reads

J = diag{+1,−1,−1,+1}.
Assume that V is a 4×4 matrix of the form

V =


0 v1 v2 0
v1 0 0 v2

v2 0 0 v1

0 v2 v1 0

 , (5.23)

where v1,v2 � 0. By inspection, V anticommutes with J and ‖V‖ = v1 + v2. The
involution J′ = EL(R\∆)−EL(∆) is computed explicitly as soon as the eigenvec-
tors of the 4×4 matrix L = A+V are found. By the assumption that (5.3) holds,
that is, for ‖V‖2 < b2 − a2, the explicit evaluation of the spectral angle of the
direct rotation U from J to J′ results in

ϑ (U) =
1
2

arctan

(
2a(v1− v2)+2b‖V‖

b2 −a2−‖V‖2 +(v1− v2)2

)
.
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Taking into account that the value of v1−v2 for different matrices (5.23) with the
same norm ‖V‖ runs through the interval [−‖V‖,‖V‖], one easily veriˇes that
the maximal possible value ϑmax of ϑ (U) is equal to

ϑmax =
1
2

arctanκ(‖V‖) (5.24)

with κ(v) given by (5.6). In particular, if a = 0 then

ϑmax = arctan

(
‖V‖

d

)
. (5.25)

Remark 5.6. Example 5.5 shows the following:

(i) Estimate (5.5) of Theorem 5.3 is sharp. This is proven by equality (5.24).

(ii) Estimate (1.10) of Theorem 2 is also sharp. This is proven by equality
(5.25).
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