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Two-Loop GhostÄAntighost Condensation for SU(2) YangÄMills Theories in the
Maximal Abelian Gauge

In the framework of the formalism of Cornwall et al. for composite operators I
study the ghostÄantighost condensation in SU(2) YangÄMills theories quantized in
the Maximal Abelian Gauge and derive analytically a condensating effective potential
at two ghost loops. I ˇnd that in this approximation the one-loop pairing ghostÄ
antighost is not destroyed and no mass is generated if the ansatz for the propagator
suggested by the tree level HubbardÄStratonovich transformations is used.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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INTRODUCTION

The ghostÄantighost condensation in SU(2) YangÄMills theories quantized
in the Maximal Abelian Gauge [1] was proposed by Martin Schaden [2] in 1999.
The original aim was to investigate how to preserve the methods of perturbation
theory when infrared divergences plague the high temperature phase of QCD [3].
In fact, the analysis of Schaden provided analytical propagators for all ˇelds
except for the Abelian photon due to a dynamically generated screening mass.
Later on [4, 5], this phenomenon was connected with a possible explanation of
the Abelian Dominance in non-Abelian gauge ˇeld theories.

This analysis was given in the mean ˇeld approximation at one-loop order.
In this work I will extend this analysis at two-loop order within the functional
formalism of CornwallÄJackiwÄTomboulis, which has been already used to study
the dynamical mass generation in the model of CornwallÄNorton [6] and the
chiral symmetry breaking in Quantum Chromodynamics [7]. The aim of this
paper is to shed light on the dynamics of the ghost condensation. I will prove
that the ghostÄantighost propagator suggested at tree level [2,4,5], using HubbardÄ
Stratonovich transformations, is not compatible at quantum level with a dynamical
mass generation.

1. SU(2) YANGÄMILLS THEORIES
IN THE MAXIMAL ABELIAN GAUGE

I shall consider the Maximal Abelian Gauge ˇxed SU(2) YangÄMills action
in the four-dimensional continuum Minkowski space [8]

S =
∫

d4x

[
− 1

4g2
F a

µνF aµν − 1
4g2

FµνFµν − 1
2α

(
Dab

µ Abµ
)2

+

+ caDab
µ Dµbccc − εabεcdcacdAb

µAcµ − α

4
εabεcdc̄ac̄bcccd

]
. (1)

According to [9] I have chosen the diagonal generator of the gauge group SU(2)
as Abelian charge and have made the following decompositions for the gluons,
ghosts and antighosts ˇelds, respectively: (Aµa, Aµ), (ca, c), (c̄a, c̄), a = 1, 2
labels the off-diagonal components of the Lie-algebra valued ˇelds.
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The covariant derivative Dab
µ is deˇned with respect to the diagonal compo-

nent Aµ of the Lie algebra valued connection

Dab
µ ≡ ∂µδab − εabAµ. (2)

The components of the ˇeld strength are

F a
µν = Dab

µ Ab
ν − Dab

ν Ab
µ,

Fµν = ∂µAν − ∂νAµ + εabAa
µAb

ν . (3)

In the action S the partial gauge ˇxing condition has been used:

Dab
µ Aµb = 0. (4)

The action S manifests a residual U(1) gauge symmetry which can be ˇxed
imposing for example the Landau condition

∂µAµ = 0. (5)

In the following I will not consider the FaddeevÄPopov terms related to (5) since
they do not play any role.

In (1) the value of the gauge parameter α has been taken equal to the
®coupling constant¯ of the quartic ghostÄantighost interaction. In the Maximal
Abelian Gauge this interaction is needed for renormalizability and appears at tree
level with an arbitrary coupling in order to remove the logarithmic divergence
of the full two Aµ and two Aa

µ exchanges between a pair of ghostÄantighost
scattering [8]. This phenomenon reminds the renormalizability of scalar quantum
electrodynamics [10]. In particular, model (1) depends on only one parame-
ter, the U(1) invariance is preserved at every order in perturbation theory as a
consequence of the global symmetry [11]

c → c + θ (6)

which allows for the c independence of S.

2. THE EFFECTIVE POTENTIAL
AND ONE-LOOP CALCULATIONS

In order to investigate about the dynamical generation of the condensate

〈0 | c̄aεabcb | 0〉 (7)

I will construct the HartreeÄFock approximation to the generalized effective po-
tential [6] for the model of the previous section. This effective potential will de-
pend only on the complete propagators of the theory G(x, y) for the off-diagonal
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ghosts, ∆a(x, y) and ∆(x, y) for off-diagonal and diagonal gluons, respectively.
A ˇeld dependence is not included, since we do not expect that any of the ˇelds
acquire a vacuum expectation value. Thus for our problem we have

V (G, ∆a, ∆) = −ı

∫
d4p

(2π)4
tr

[
log(S−1(p)G(p)) − S−1(p)G(p) + 1

]

+
ı

2

∫
d4p

(2π)4
tr

[
log(Da

−1(p)∆a(p)) − Da
−1(p)∆a(p) + 1

]

+
ı

2

∫
d4p

(2π)4
tr

[
log(D−1(p)∆(p)) − D−1(p)∆(p) + 1

]
+ V2(G, ∆a, ∆). (8)

In the previous formula all space-time and gauge indices have been suppressed.
S(p), Da(p) and D(p) are the free propagators

(Da)ab
µν(p) = −ı

g2

p2
δab

[
ηµν − (1 − α)pµpν

p2

]
,

Dµν(p) = −ı
g2

p2

[
ηµν − pµpν

p2

]
, (9)

Sab(p) = − ı

p2
δab.

In order to focus on the ghostÄantighost condensation let us consider the ap-
proximation in which ∆a(p) = Da(p) and ∆(p) = D(p). It will be proved in
the following that the accuracy of this approximation is under control because I
work in the weak coupling regime, g2 � 1. In this approximation V2 includes
the contribution of diagrams which are two-particle irreducible with respect to
ghostÄantighost lines only.

To compute effective potential (8) I make the following ansatz for the ghost
propagator:

Gab(p) = −ı
p2δab + ϕ(p2)εab

p4 + ϕ2(p2)
(10)

by deˇning
−ıϕ(p2)εab = G−1

ab − S−1
ab . (11)

If ϕ(p2) is constant ansatz (10) agrees with the ghost propagator used in [2, 4, 5]
by making HubbardÄStratonovich transformations.

The behaviour of ϕ(p2) can be seen from the DysonÄSchwinger equation
for the ghost propagator or equivalently from the mass gap equation [6] of
the effective potential V . I will investigate about the complete system of the
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DysonÄSchwinger equations in the Maximal Abelian Gauge in a subsequent pa-
per. Concerning now I observe that disregarding the tadpole terms and replacing
the complete Aµc̄c vertex by the bare one (HartreeÄFock approximation)

∂µc̄aεabAµcb − c̄aεabAµ∂µcb (12)

the two-loop part of V is

V2 = −ı

∫
d4pd4q

(2π)8
[
pρ(pµ + qµ)Gfa(p)εacGcd(q)εdfDµρ(p − q)

]
. (13)

The mass gap equation for (8)
δV

δG
= 0 (14)

becomes in this approximation, with deˇnition (11),

ϕ(p2) = −4ıg2

∫
d4q

(2π)4
ϕ(q2)

q2(q − p)2
, (15)

where the propagator for Aµ in the Feynman gauge has been used. Nevertheless
for a nontrivial ϕ(p2) equation (15) is not compatible with the rest coming from
the symmetric part of (10)

0 = g2

∫
d4q

(2π)4
q4

q4 + ϕ2(p2)
1

(p − q)2
. (16)

If I ignore this important point the result is no mass generation due to ghost
condensation.

Equation (15) is similar in structure to the equation for the chirally asymmet-
ric part of the inverse electron propagator in the BakerÄJohnsonÄWilley approach
to electrodynamics [12]. Guided by the work of these authors I ask if there is a
solution to (15) whose asymptotic behaviour is

ϕ(p2) =
{

ϕ | −p2 |≤ Λ2

ϕ(− p2

Λ2 )−ε | −p2 |� Λ2,
(17)

in which Λ is taken as a ˇxed massive parameter. Of course ϕ(p2) must be a
continuous function and one should specify the transition between the high-energy
and the low-energy behaviour. However various reasonable transition behaviours
make only a small difference in the numerical coefˇcient of the ˇnal result of
effective potential [6].

Integral equation (15) is equivalent to the following differential equation:

d

dx

(
x2 d

dx
ϕ(x)

)
= − 4g2

16π2
ϕ(x). (18)
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If I put ansatz (17) I obtain, for g2 � 1, the solution

ε =
4g2

16π2
+ O(g2). (19)

Because ε is small, ansatz (17) is a good approximation also in the infrared
domain [6,13]. However in the following ε → 0, playing the role of a regulator,
therefore in any gauge I will assume an order of magnitude given by (19).

I would like to stress that ϕ(p2)εab is, in my notation, the antisymmetric part
of the propagator G but ϕ is p2-independent and plays the role of some suitably
regularized value of 〈0 | c̄aεabcb | 0〉.

The one-loop contribution to (8) up to ϕ-independent terms is obtained from
(9) and (10):

V1(ϕ) = −ı

∫
d4p

(2π)4

[
log

(
1 − ϕ2(p2)

p4 + ϕ2(p2)

)
+

2ϕ2(p2)
p4 + ϕ2(p2)

]
. (20)

This expression takes the following form in the Euclidean region:

V1(ϕ) = − 1
16π2

∫ +∞

0

dx x

[
log

(
1 − ϕ2(x)

x2 + ϕ2(x)

)
+

2ϕ2(x)
x2 + ϕ2(x)

]
. (21)

The evaluation proceeds by inserting (17) into (21) and keeping only terms that
are proportional to inverse power of ε as well of zero-order in ε. In practice I
set ε to zero everywhere as long as no divergence arises; if ε = 0 is not allowed
(17) is used. Therefore

V1(ϕ) = − 1
16π2

∫ Λ2

0

dx x

[
log

(
1 − ϕ2

x2 + ϕ2

)
+

2ϕ2

x2 + ϕ2

]

− 1
16π2

∫ +∞

Λ2
dx x

[
log

(
1 −

ϕ2 · ( x
Λ2 )−2ε

x2 + ϕ2 · ( x
Λ2 )−2ε

)
+

+
2ϕ2 · ( x

Λ2 )−2ε

x2 + ϕ2 · ( x
Λ2 )−2ε

]
. (22)

Performing the Laurent expansion around ε = 0 we get the result:

V1 =
ϕ2

32π2
− ϕ2

32π2ε
+

ϕ2

32π2
log

(
ϕ2

Λ4

)
. (23)

It agrees with the computed result in the MS scheme [4].
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3. CONTRIBUTIONS OF TWO-LOOP DIAGRAMS

Now let me consider the two-loop contribution to the effective potential.
I am looking for connected, two-particle irreducible graphs of order �

2 in the
expression

ı� < 0 | T exp
{
−ı�

∫
d4x

[
∂µc̄aεabAµcb − c̄aεabAµ∂µcb+

+
α

2
εabεcdc̄acbc̄ccd − c̄acaAµAµ − εabεcdc̄acdAb

µAµc
]}

| 0 >, (24)

the parameter � has been introduced in order to count loops, but it will be put
equal to one at the end of the calculation. Upon scaling the ˇelds in (24) like
ψ → �

1/2ψ, expanding the exponential to the relevant order and applying Wick's
theorem, I am left with four integrals. Let me consider the ˇrst one:

I1

�2
= g2

∫
d4p

(2π)4
d4q

(2π)4

{
pρ(pµ + qµ)

(p − q)2

(
ηµρ − (pµ − qµ)(pρ − qρ)

(p − q)2

)
×

×
[
− 2p2q2

(p4 + ϕ2(p2))(q4 + ϕ2(q2))
+

2ϕ(p2)ϕ(q2)
(p4 + ϕ2(p2))(q4 + ϕ2(q2))

]}
. (25)

After making some standard integration on the angles [15], I get in the Euclidean
region

I1

�2
=

3g2

256π4

∫ +∞

0

dxdy

{
xy

(x2 + ϕ2(x))(y2 + ϕ2(y))
−

− ϕ(x)ϕ(y)
(x2 + ϕ2(x))(y2 + ϕ2(y))

}
× [y2θ(x − y) + x2θ(y − x)

]
. (26)

Using the expression given in (17) I obtain the following decomposition:

I1

�2
=

3g2

128π4
×

[∫ Λ2

0

dy
y3

y2 + ϕ2

∫ Λ2

y

dx
x

x2 + ϕ2
−

−
∫ Λ2

0

dy
y2

y2 + ϕ2

∫ Λ2

y

dx
ϕ2

x2 + ϕ2
+

+
∫ Λ2

0

dy
y3

y2 + ϕ2

∫ Λ2

y

dx
x

x2 + ϕ2
(

x
Λ2

)−2ε −

−
∫ Λ2

0

dy
y2

y2 + ϕ2

∫ +∞

Λ2
dx

ϕ2
(

x
Λ2

)−ε

x2 + ϕ2
(

x
Λ2

)−2ε +
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+
∫ +∞

Λ2
dy

y3

y2 + ϕ2
(

y
Λ2

)−2ε

∫ +∞

y

dx
x

x2 + ϕ2
(

x
Λ2

)−2ε −

−
∫ +∞

Λ2
dy

y2
(

y
Λ2

)−ε

y2 + ϕ2
(

y
Λ2

)−2ε

∫ +∞

y

dx
ϕ2

(
x
Λ2

)−ε

x2 + ϕ2
(

x
Λ2

)−2ε

]
. (27)

After making analytical continuation [16] and Laurent expansion of (27) around
ε = 0 I get [17]

I1

�2
=

3g2

512π4ε
ϕ2 +

3g2ϕ2

256π4

(
−π2

6
+

1
2

)
− 3g2

512π4
ϕ2 log

(
ϕ2

Λ4

)
. (28)

In Appendix I will give more details about how I performed the integrals of (27).
Now let me consider the second integral coming from the expansion of (24):

I2

�2
= −α

{[∫
d4p

(2π)4
ϕ(p2)

p4 + ϕ2(p2)

]2

+
[∫

d4p

(2π)4
p2

p4 + ϕ2(p2)

]2
}

. (29)

Substituting expression (17) in (24) I get for the ˇrst term after the usual change
of variables p0 → ıp0, analytical continuation [16] around ε = 0:

I2

�2
=

αϕ2

256π4

(
−1

2
log

(
ϕ2

Λ4

)
+

1
ε

)2

, (30)

and for the second term ∫
d4p

(2π)4
p2

p4 + ϕ2(p2)
= O(ε). (31)

It will be proved in Appendix.
Finally it is easy to see that the sum of the last two integrals that can be

extracted from (24) is

I3 + I4

�2
= 2

∫
d4p

(2π)4
p2

p4 + ϕ2(p2)

∫
d4q

(2π)4
α

q2
, (32)

and it is O(ε) due to (31).
By using the same method and deˇning for massive off-diagonal gluons the

following propagator

(∆a)ab
µν(p) = −ı

g2

p2 − M2(p2)
δab

[
ηµν − (1 − α)pµpν

p2 − M2(p2)

]
(33)

with

M2(p2) =
{

M2 | −p2 |≤ Λ2

M2(− p2

Λ2 )−2ε | −p2 |� Λ2,
(34)
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it is easy to see that the vertex c̄cAA will provide a O(ε) contribution to the
effective potential V , which must be disregarded for g2 � 1. The main point
of this paper is the following. If one uses ansatz (10), the effective potential
does not possess, at the lowest order in the weak coupling regime, the necessary
mixing term between M and ϕ for the generation of a mass for off-diagonal
gluons related to the ghostÄantighost condensate. That is because the symmetric
part of (10) does not satisfy the DysonÄSchwinger equations.

Moreover it is possible to say that due to (31) the approximation ∆a = Da is
compatible with the weak coupling regime. Since the propagator ∆ is supposed
to coincide with the normal perturbative solution because no symmetry-breaking
effects are expected, the weak coupling regime controls also the approximation
∆ = D.

4. EFFECTIVE POTENTIAL AND THE GHOST CONDENSATE

Collecting the results found in the previous section and keeping only terms
that are proportional to inverse powers of the coupling g (these come from inverse
powers of ε) as well as terms of zeroth order in ε and coupling I get the two-loop
effective potential

V (ϕ) =
ϕ2

32π2

(
1 − 1

ε

)
+

1
32π2

ϕ2 log
(

ϕ2

Λ4

)

+
αϕ2

256π4

(
1
2

log
(

ϕ2

Λ4

)
− 1

ε

)2

, (35)

where terms divergent at ε = 0 but multiplied by higher powers of the coupling
constant have been dropped.

In the weak coupling regime the effective potential is independent on the
gauge parameter ζ of the U(1) symmetry. In fact it is easy to check, using the
results of the previous section, that in a general covariant gauge one should add
to (35)

ζg2ϕ2

256π4

(
1
2

log
(

ϕ2

Λ4

)
− 1

ε

)2

(36)

which is negligible compared to the term proportional to α if α � g2.
Although (35) is not the end of the story, it is worth to remark that the

effective potential V (ϕ) must be bounded from below therefore:

α > 0 (37)

which is equivalent to state the concavity of V (ϕ) [18]. Moreover since this
potential manifests a nontrivial absolute minimum if

α > −ε

4
(38)
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and since we work for ε → 0 inequality (38) is satisˇed if V (ϕ) is bounded from
below. The absolute minimum of our effective potential is found to be at

log
(

ϕ2

Λ4

)
=

2
ε
− 1 − 16π2

α
. (39)

I observe that the quartic ghostÄantighost interaction seems to play a crucial
role in this mechanism of condensation. This interaction seems to affect the
effective potential much more than the cubic vertex c̄cA which only perturbs the
one-loop result. It is worth to remark that α positive could be related to a sort of
®ghost attraction¯, but unfortunately I do not have any general argument to state
the positivity of

−α

4
εabεcdc̄ac̄bcccd = αc̄1c1c̄2c2 (40)

when the usual assignments of hermiticity [19]

c† = c,

c̄† = −c̄ (41)

are given.
The contributions to the effective potential proportional to α are dominated

by the term
αϕ2

1024π4
log2

(
ϕ2

Λ4

)
(42)

which is clearly a symmetry restoring term. Nevertheless if

α ≈ 16π2ε (43)

the absolute minima of V1 and V are on the same value and it is possible to see
easily (

V

ϕ2
− V1

ϕ2

)
min

= O(g2). (44)

Therefore for α ∼ O(g2) the two-loop contribution corresponds to a small per-
turbation of the one-loop result.

DISCUSSION

I have derived a two-loop ghostÄantighost condensating effective potential in
the weak coupling regime using an ansatz found at tree level, but not efˇcient
at quantum level. The consequence of this wrong ansatz has been that in the
off-diagonal gluon propagator no mass or infrared cut-off is generated as claimed
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in [2,4]. In order to improve this study it becomes mandatory to know more about
the complete propagators of the theory, for example from the complicated system
of the DysonÄSchwinger equations. The complete propagators are expected to
show a richer structure than in (10) due to the dependence on the most general
BRST invariant [20] condensate of dimension two

< 0|Aa
µAµa + αc̄aca|0 > . (45)

This condensate for YangÄMills theories in the Maximal Abelian Gauge is
now under investigations [21]. For its computation the residual U(1) gauge
invariance of the theory after the partial gauge ˇxing condition (4) could be
crucial. In fact taking α = −1 and calling ξ the coupling constant of the self
interaction between ghosts the action can be written as:

S =
∫

d4x

[
− 1

4g2
(∂µAν − ∂νAµ)2 +

1
2g2

Aν
aDab

µ Dµ
bcA

νc−

− 1
2g2

(εabAν
aAb

µ)2 + caDab
µ Dµbccc +

ξ

2
(c̄aca)2 − εabεcdcacdAµ

bAcµ

]
. (46)

This action represents a sort of scalar electrodynamics of charged off-diagonal
gluons and the off-diagonal ghosts and antighosts ˇelds interacting each other by
usual quartic scalar terms. These classes of models, constraints by the vanishing
of the vacuum expectation value of every charged scalar ˇelds, provided a stable
vacuum due the pair condensates of the charged scalar ˇelds [22]. Using these
results condensate (45) could be evaluated providing a gauge invariant mass
generation for continuum YangÄMills theories.

APPENDIX
INTEGRALS

I will give more details about the calculations of two integrals met in Sec. 2.
The ˇrst integral

J1 =
∫ +∞

Λ2
dy

y3

y2 + ϕ2
(

y
Λ2

)−2ε

∫ +∞

y

dx
x

x2 + ϕ2
(

x
Λ2

)−2ε (47)

is easily shown to be equal to

Λ4

∫ +∞

1

dy
y3

y2 + f2y−2ε

∫ +∞

y

dx
x

x2 + f2x−2ε
(48)
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with f2 = ϕ2

Λ2 . Since [17]

∫ +∞

y

dx
x

x2 + f2x−2ε
=

1
2(1 + ε)

log
(

1 +
y2+2ε

f2

)
(49)

our integral becomes in its convergence region [16]

J1 =
Λ4

2(1 + ε)

∫ +∞

1

dy
y3+2ε

y2+2ε + f2
log

(
1 +

y2+2ε

f2

)
. (50)

I adopt the following trick:

J1 =
Λ4

2(1 + ε)

∫ +∞

1

dy

[(
y3+2ε

y2+2ε + f2
− y +

f2

y

)
log

(
1 +

y2+2ε

f2

)

+
(

y − f2

y

)
log

(
1 +

y2+2ε

f2

)]
. (51)

But ∫ +∞

1

dy
f4 − f2y2 + f2y2+2ε

y(f2 + y2+2ε)
log

(
1 +

y2+2ε

f2

)
=

∫ +∞

1

dy
f4

y(f2 + y2)
log

(
1 +

y2

f2

)
+ O(ε) =

f2

12

[
3 log2

(
1 +

1
f2

)
+ π2 + 6Li2

(
− 1

f2

)]
+ O(ε), (52)

where in the last equality Li2(x) is the dilogarithm function with the property

Li2(x) + Li2(1 − x) =
π2

6
− log x log (1 − x), (53)

and it has been used the change to the variable z = log
(

1 +
y

f2

)
.

Moreover [17]

∫ +∞

1

dy y log
(

1 +
y2+2ε

f2

)
=

=
f2

2ε
+

1
2

[
(1 + f2)

(
1 − log

(
1 +

1
f2

))
− f2 log f2

]
+ O(ε). (54)
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Thus [17]

∫ +∞

1

dy

y
log

(
1 +

y2+2ε

f2

)
=

f2

2
Li2

(
− 1

f2

)
+ O(ε). (55)

The ˇnal result is

J1 =
ϕ2

2ε
+

Λ4

2
− Λ4

2
log

(
1 +

1
f2

)
+

ϕ2

4
log2

(
1 +

1
f2

)

−ϕ2

2
log

(
1 +

1
f2

)
+ ϕ2

(
π2

12
+

1
2

)
+ O(ε). (56)

Now I will prove (31)

∫
d4p

(2π)4
p2

p4 + ϕ2(p2)
= O(ε). (57)

Using hyperspherical Euclidean coordinates the integral becomes proportional to

∫ Λ2

0

dx
x2

x2 + ϕ2
+

∫ +∞

Λ2
dx

x2

x2 + ϕ2x−2ε
. (58)

But [17]

∫ +∞

Λ2
dx

x2

x2 + ϕ2

Λ2 x−2ε
=

= − Λ2

(3 + 2ε)ϕ2 2F1

(
1,

3 + 2ε

1 + 2ε
,

4 + 4ε

1 + 2ε
, −Λ2

ϕ2

)
(59)

if Re (ε) < − 3
2 .

Since (59) can be prolonged [16] at ε = 0, the Laurent expansion of (57):

Λ2

(
−1 +

ϕ

Λ2
arctan

Λ2

ϕ
+ O(ε)

)
= −

∫ Λ2

0

dx
x2

x2 + ϕ2
+ O(ε), (60)

and I get result (57).
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