P12-2004-209

О. Д. Маслов, А. В. Сабельников, С. Н. Дмитриев

ПОЛУЧЕНИЕ 225 Ac В ФОТОЯДЕРНОЙ РЕАКЦИИ 226 Ra(γ, n) НА УСКОРИТЕЛЕ ЭЛЕКТРОНОВ — МИКРОТРОНЕ МТ-25

Направлено в журнал «Радиохимия»

Маслов О. Д., Сабельников А. В., Дмитриев С. Н. P12-2004-209 Получение ²²⁵Ас в фотоядерной реакции ²²⁶Ra(γ , n) на ускорителе электронов — микротроне МТ-25 ²²⁵Ас был получен в реакции ²²⁶Ra(γ , n) на ускорителе электронов — микротроне МТ-25 ЛЯР. Радиационный выход ²²⁵Ас в условиях облучения составил 550 Бк/мкА · ч · мг ²²⁶Ra. Очистку ²²⁵Ас от материала мишени и сопутствующих радиоактивных примесей проводили с применением ионного обмена. Соотношение активностей ²²⁵Ас/²²⁷Ас/²²⁶Ra в препарате было равно $1/\cong 2 \cdot 10^{-9}/ \le 6 \cdot 10^{-5}$ Бк/Бк. Работа выполнена в Лаборатории ядерных реакций им. Г. Н. Флерова ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2004

Перевод авторов

Maslov O. D., Sabelnikov A. V., Dmitriev S. N.P12-2004-209Production of 225 Ac in the 226 Ra(γ, n) Photonuclear ReactionP12-2004-209at the Electron Accelerator — MT-25 MicrotronP12-2004-209

 $^{225}\mathrm{Ac}$ was obtained in the $^{226}\mathrm{Ra}(\gamma,n)$ reaction at the electron accelerator — MT-25 microtron of the LNR. The $^{225}\mathrm{Ac}$ radiation yield under experimental conditions amounted to 550 Bq/µA \cdot h \cdot mg $^{226}\mathrm{Ra}$. The $^{225}\mathrm{Ac}$ isolation from the target material and other radioactive impurities was realized by means of ion exchange. The ratio $^{225}\mathrm{Ac}/^{227}\mathrm{Ac}/^{226}\mathrm{Ra}$ was estimated equal to $1/\cong 2\cdot 10^{-9}/\leqslant 6\cdot 10^{-5}$ Bq/Bq.

The investigation has been performed at the Flerov Laboratory of Nuclear Reactions, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2004

Одним из актуальных направлений современной ядерной медицины является применение новых радиоактивных изотопов для развития методов диагностики и лечения различных заболеваний. С этой точки зрения представляет большой интерес получение ²²⁵ Ас. В настоящее время он используется в качестве материнского нуклида для получения ²¹³Bi [1], который находит применение при радиотерапии раковых заболеваний, в особенности микрометастазов опухолей. ²²⁵ Ас может быть с успехом применен для этих же целей благодаря своим ядерно-физическим свойствам [2], а именно: распад посредством испускания α -частиц, сравнительно небольшой период полураспада (10 сут) и наличие в цепочке распада дополнительно трех дочерних короткоживущих альфа-излучателей: ²²¹ Fr, ²¹⁷ At и ²¹³ Po (рис. 1).

²²⁵Ac
$$\xrightarrow{\alpha}_{10 \text{ cyt}}$$
 ²²¹Fr $\xrightarrow{\alpha}_{4,8 \text{ MuH}}$ ²¹⁷At $\xrightarrow{\alpha}_{0,03 \text{ c}}$ ²¹³Bi $\xrightarrow{97,8 \% \beta}_{45,7 \text{ MuH}}$ ²¹³Po $\xrightarrow{\alpha}_{4,2 \text{ Mkc}}$ ²⁰⁹Pb $\xrightarrow{\beta}_{3,3 \text{ q}}$ ²⁰⁹Bi (cra6.)

Рис. 1. Схема распада ²²⁵Ас

Производство ²²⁵Ac в масштабах, удовлетворяющих потребности ядерной медицины, является актуальной задачей ядерно-физических исследований. В связи с этим проводятся поиски различных путей получения ²²⁵Ac с целью выявления наиболее оптимальных.

В литературе рассматриваются способы получения ²²⁵ Ас при облучении мишеней радия нейтронами [1], протонами [4–7] и дейтронами [7], тория — нейтронами [1] и протонами [3, 8], урана — протонами [3, 8]. Одним из наиболее удобных методов получения ²²⁵ Ас является выделение его из препаратов тория-229 [1, 3], который образуется в результате α -распада ²³³ U, нарабатываемого для военных и энергетических целей.

Целью данной работы является исследование возможности получения ²²⁵Ас в фотоядерной реакции ²²⁶Ra(γ, n)²²⁵Ra $\xrightarrow{\beta-}$ ²²⁵Ас на ускорителе электронов — микротроне МТ-25 ЛЯР ОИЯИ.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для определения выхода ²²⁵Ас были изготовлены две тонкие мишени, содержащие по 0,65 мкг ²²⁶Ra каждая, одна из которых представляла собой смесь порошков сульфатов бария и радия, а другая — нитрат радия на

алюминиевой подложке. Каждую мишень помещали в отдельный цилиндрический алюминиевый контейнер диаметром 8 мм и высотой 5 мм. Контейнер закрывали алюминиевой крышкой толщиной 0,1 мм.

Контейнер размещали в центре алюминиевого держателя, открытого с одной стороны. Открытую сторону держателя плотно закрывали алюминиевой фольгой толщиной 50 мкм. Мишени облучали фотонами микротрона МТ-25 в течение 30 и 20 ч при токе электронов 15 мкА и максимальной энергии фотонов 24 МэВ. Схема облучения была такой же, как в работе [9].

По окончании облучения мишени «выдерживали» в течение 18 дней для максимального накопления ²²⁵Ac (рис. 2), контролируя изменение активности актиния по его дочерним продуктам ²²¹Fr ($E_{\gamma} = 217,6$ кэB, 12,5%, $T_{1/2} = 4,8$ мин) и ²¹³Bi ($E_{\gamma} = 439,7$ кэB, 27,3%, $T_{1/2} = 45,6$ мин) [2].

Рис. 2. Изменение активности $^{225}{\rm Ra}~(T_{1/2}=14,8~{\rm суг})$ и $^{225}{\rm Ac}~(T_{1/2}=10~{\rm суr})$ [2] после окончания облучения

Облученную $Ra(NO_3)_2$ мишень растворяли в 9 М HCl, раствор упаривали до влажных солей, которые растворяли в 0,1 М HCl. Далее разделение продуктов реакции проводили методом ионообменной хроматографии по методике, прототипом которой послужила схема, описанная в работе [10]:

1. Исходный раствор 0,1 М HCl объемом 0,5 мл переносили на катионообменную колонку 0,2 \times 4 см, содержащую катионит Dowex-50 (200–400 меш).

2. Колонку промывали раствором 9 М $HClO_4$ объемом 4 мл (вымываются Al, Fe, Mg, Ra, Pa, Po, Pb, Bi).

3. ²²⁵Ас элюировали раствором 5 М НNO₃ объемом 1 мл.

С целью определения разницы в величинах радиационных выходов 225 Ra при облучении тонкой и толстой мишеней из 226 Ra были поставлены модельные опыты с использованием в качестве мишени хлорида свинца. Тонкая мишень содержала 9,6 мг порошка PbCl₂ (7,16 мг по Pb). Схема облучения тонкой мишени была идентична схеме облучения тонких мишеней из 226 Ra. Толстая мишень представляла собой стальной цилиндр с внутренним диаметром 8 мм, в который помещали порошок PbCl₂ массой 2,69 г (2,008 г по Pb). Обе мишени облучали в течение 10 мин при токе электронов 15 мкА и максимальной энергии фотонов 24 МэВ. Измерения активности мишеней производили спустя 5 сут после окончания облучения. В случае толстой мишени облученный порошок PbCl₂ извлекали из трубки, тщательно перемешивали и отбирали пробу массой 13 мг (9,7 мг по Pb), которую измеряли в тех же геометрических условиях, что и тонкую мишень. По результатам измерений были сделаны расчеты по радиационным выходам 203 Pb.

СПЕКТРОМЕТРИЯ ²²⁵АС

Гамма-спектрометрические измерения различных фракций и конечного препарата проводили с использованием детектора из сверхчистого Ge с разрешением 1,5 кэВ на линии 1,33 МэВ (⁶⁰Co). Альфа-измерения проводили на Si(Au)-детекторе площадью 0,6 см² и разрешением 16 кэВ. Источники для α -спектрометрии были изготовлены путем нанесения аликвоты, отобранной из фракции актиния, на подложку из нержавеющей стали с последующим испарением раствора. Детектирование ²²⁵ Ас производили по линиям с $E_{\alpha} = 5,581$ МэВ (1,2 %), 5,609 МэВ (1,2 %), 5,638 МэВ (4,4 %), 5,683 МэВ (1,3 %), 5,724 МэВ (3,2 %), 5,732 МэВ (10,2 %), 5,792 МэВ (8,7 %), 5,794 МэВ (18,2 %), 5,830 МэВ (50,9 %) [2].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты экспериментов представлены в табл. 1.

Результаты α -измерений препарата ²²⁵Ас представлены на рис. 3. В представленном спектре фон от α -частиц с энергией 4,785 МэВ (94,4 %), 4,602 МэВ (5,55 %) [2], относящихся к ²²⁶Ra, соответствовал его содержанию в препарате на уровне $6 \cdot 10^{-5}$ Бк.

При взаимодействии электронов с материалом тормозной мишени, γ -квантов с облучаемым препаратом и конструкционными материалами мишенного блока образуются нейтроны. Поэтому предельно достижимая минимальная величина отношения ²²⁷Ac/²²⁵Ac будет определяться наработкой ²²⁷Ac в реакции ²²⁶Ra(n, γ)²²⁷Ra $\xrightarrow{\beta-}$ ²²⁷Ac. Выход данной реакции определяется конкретными условиями эксперимента. В табл. 2 даны сечения некоторых реакций на нейтронах для ²²⁶Ra и ²²⁷Ac.

3

Облучение мишеней из ²²⁶ Ra							
Мишень	Содержание ²²⁶ Ra, мкг	Ток элект- ронов, мкА	Время облучения, ч	Выход ²²⁵ Ас, Бк/ч · мкА · мг ²²⁶ Ra			
$\begin{array}{c} \text{RaSO}_4 + \text{BaSO}_4 \\ \text{BaSO}_4 \end{array}$	0,65	15	30	550			
$Ra(NO_3)_2$	0,65	15	20	550			
Облучение мишеней из PbCl ₂							
Мишень	Содержание Рb, мг	Ток элект- ронов, мкА	Время облучения, мин	Выход ²⁰³ Рb Бк/ч · мкА · мг Рb			
PbCl ₂	7,16	15	10	34			
PbCl ₂	2008	15	10	28			

Таблица 1. Результаты экспериментов

Рис. 3. Альфа-спектр $^{225}\mathrm{Ac}$

Для представленных экспериментальных условий поток тепловых нейтронов, равный $10^5 \text{ см}^{-2} \cdot \text{c}^{-1}$, оценен нами с использованием реакций 197 Au $(n,\gamma)^{198}$ Au. Исходя из данного значения, предельно достижимая величина отношения 227 Ac/ 225 Ac равна $\cong 1.8 \cdot 10^{-9}$ Бк/Бк для данных в табл. 1.

4

Изотоп	<i>σ</i> т., б	$\sigma_{\rm надтепл.},$ б	$\sigma_{\rm делен.},$ б	$\sigma_{\rm делен.},$ б
	Нейтроны	Фотоны [12]		
²²⁶ Ra	$1,28\cdot 10^1$	$2,8\cdot 10^2$	$<5.0\cdot10^{-5}$	$9{,}5\cdot10^-4$
²²⁷ Ac	$8,9\cdot 10^2$	$1,66 \cdot 10^3$	$< 2,9 \cdot 10^{-4}$	$3,0\cdot10^{-3}$

Таблица 2. Сечения некоторых реакций для ²²⁶Ra и ²²⁷Ac

Из результатов опытов видно, что чистота $^{225}{\rm Ac},$ получаемого по реакции $^{226}{\rm Ra}$ ($\gamma,n)$ зависит от чистоты исходного $^{226}{\rm Ra}$ и от интегрального потока фотонов.

Из модельных опытов с хлоридом свинца следует, что при переходе от тонкой мишени к толстой с массой вещества до 2 г удельный выход конечного продукта уменьшается не более, чем на 20%. Таким образом, на микротроне МТ-25 при токе электронов 25 мкА и времени облучения 100 ч из 10 мг (1 г) 226 Ra можно получить $1,4 \cdot 10^7$ Бк $(1,4 \cdot 10^9$ Бк) 225 Ac. При использовании линейных ускорителей электронов, где энергии γ -квантов могут достигать 50 МэB, токи электронов — 500 мкА и более, можно получать более 1 Ки 225 Ac менее чем за 150 ч облучения 1 г 226 Ra.

Рис. 4. Последовательное выделение ²²⁵Ас из облученной мишени

5

Выход ²²⁵Ас повышается в 1,5 раза, если производить не одну, а несколько последовательных операций по выделению его из облученной мишени (рис. 4).

ЗАКЛЮЧЕНИЕ

Разработан метод получения $^{225}{\rm Ac}$ в реакции $^{226}{\rm Ra}(\gamma,n)^{225}{\rm Ra}$ с выходом $^{225}{\rm Ac}$ около 550 Бк/(мкА · ч) на 1 мг исходного $^{226}{\rm Ra}.$

Получен препарат $^{225}{\rm Ac}$ с радиохимической и изотопной чистотой $^{225}{\rm Ac}/^{227}{\rm Ac}/^{226}{\rm Ra}=1/\cong 2\cdot 10^{-9}/\leqslant 6\cdot 10^{-5}$ Бк/Бк.

В заключение авторы выражают благодарность А. Г. Белову за проведение облучений на микротроне.

ЛИТЕРАТУРА

- Koch L. et al. // Czechoslovak Journal of Physics. 1999. V.49. Suppl. S1. Part II. P.817–822.
- Схемы распада радионуклидов. Энергия и интенсивность излучения: Рекомендации МКРЗ: В 2 ч. В 4 кн. / Под ред. А. А. Моисеева. Публикация 38-я. Пер. с англ. М.: Энергоатомиздат, 1987. 2 ч. 2 кн. С. 1–479.
- 3. *Халкин В.А., Цупко-Ситников В.В., Зайцева Н.Г. //* Радиохимия. 1997. Т. 39. № 6. С. 481–490.
- 4. Bonetty R., Chiesa C., Guglielmetti A. // Nucl. Phys. 1993. V. 562. P. 32.
- Beyer G. J., Hermann E., Molnar F. // Radioch. & Radioanal. Letters. 1972. V. 12. P. 259.
- Moellenbeck J., Schweickert H. // Nachrichten, Forschungszentrum Karlsruhe, Jahrg. 2000. V. 32. № 1–2. P. 87–90.
- Chaudhri M.A. // Book of Abstracts. The Fifth International Conference «Modern Problems of Nuclear Physics». Samarkand, Uzbekistan, 12–15 August 2003. Samarkand, 2003. P. 236.
- Molinet R. et al. // Proc. of 4th Int. Conf. On Nuclear and Radiochemistry. Saint-Malo. France. Sept. 8–13, 1996. Orsay, 1996. H-P2.
- 9. Дмитриев С. Н. и др. // Радиохимия. 1998. Т. 40, № 6. С. 533-537.
- 10. Гусева Л. И., Тихомирова Г. С. // Радиохимия. 1994. Т. 36, № 1. С. 51.
- 11. *Mughabghab S. F., Divadeenam M., Holden N. E.* Neutron Cross Sections from Neutron Resonance Parameters and Thermal Cross Sections. http://isotopes.lbl.gov/ngdata/sig.htm
- 12. Центр данных фотоядерных экспериментов http://cdfe.sinp.msu.ru/

Получено 27 декабря 2004 г.

Корректор Е. В. Сабаева

Подписано в печать 18.02.2005. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,5. Уч.-изд. л. 0,61. Тираж 200 экз. Заказ № 54795.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@pds.jinr.ru www.jinr.ru/publish/