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INTRODUCTION

The ˇrst goal of this work is to extend the well-known Brodsky, Lepage
and Mackenzie (BLM) procedure [1] of scale setting for any order of pQCD.
Let me start with an appropriate citation: ®...One, therefore, has to address the
question of what is the ®best¯ choice for μ2 within a given scheme, usually MS.
There is no deˇnite answer to this question Ä higher-order corrections do not
®ˇx¯ the scale, rather they render the theoretical predictions less sensitive to its
variation¯ (I. Hinchliffe, Particle Data Group booklet [2]). It will show that higher
orders of pQCD in the MS scheme unambiguously determine the new scales in
the BLM prescription sense in contrast to the premonitory citation. Namely,
the effects of the coupling renormalization encoded in β-function coefˇcients
are absorbed into a set of proper scales μ2

i of the couplings ai = as(μ2
i ) at

any ˇxed order of pQCD. To simplify the analysis of the structure of radiation
corrections, the renormalization-group invariant quantities like Adler function
(D) are considered below. The procedure of this absorbtion is constructed in
Secs. 3, 4 and includes as a partial case the ®bubble approximation¯ elaborated
in [3, 4, 5]. The corresponding new perturbation series is obtained in Sec. 4,
so that the initial BLM suggestion [1] appears to be completed by the sequential
BLM (sBLM) procedure. Quantities like heavy quark potential VQ [6]; Bjorken
sum rules, Gross-Levellin Smith sum rule and so on (see [8, 7] for review), can
be considered in the same manner. The name ®practical¯ means that the empirical
relation between the QCD βÄfunction coefˇcients bi, bi ∼ bi+1

0 has been used.
The hierarchy of the contributions of coupling renormalization to the perturbation
coefˇcients at every order of as is based on this power law for bi. This detailed
hierarchy requires a matrix representation for the perturbation expansion (PE)
rather than the standard series. The mentioned power relation works at least up
to the last known coefˇcient b3 (at Nf = 0 ÷ 5), instead of the usually discussed
proposition of the so-called ®largeÄb0¯ limit (at −Nf � 1, e. g., b0 ∼ b1) (see
for review [9]). This power law, bi ∼ bi+1

0 , should of course fail somewhere in
the higher orders of the PE when its expected factorial explosion starts.

Different kinds of extensions of BLM approach has been discussed in a num-
ber of interesting articles [3Ä5, 7, 10Ä13] appeared in last decade. Our approach
differs from them mainly in two items: i) the generalized scheme is formulated
explicitly for any ˇxed order of PE; ii) all the sources of the coupling renormaliza-
tion are taken into account and absorbed into the coupling scales. The important
issues about the scheme ambiguity of BLM procedure [14] as well as the role of
anomalous dimensions (for the corresponding quantities) in the optimization pro-
cedures [15] are not discussed here, all the calculations are performed at the ˇxed
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MS scheme for the massless QCD. Our procedure can be formulated in terms of
the dynamic characteristics only, the β-function coefˇcients, rather than in terms
of certain SU (3)c Casimir operators that may appear at an intermediate stage.
This β-function expansion is performed for the 4-loop D function (Appendix C),
then the sBLM procedure is applied to this D function in Sec. 5 to highlight
the advantages and disadvantages of the procedure in the case of this physical
quantity.

The sBLM procedure cannot be related to the improvement of the perturbation
series. The next goal here is to supply this procedure with the mechanism a'la
Fast Apparent Convergence (FAC) [16] to improve the convergence of the series.
This machinery, using the proper scales of the sBLM, is considered in Secs. 5
and 6. This generalization of the sBLM procedure that has been named xBLM is
formulated in Sec. 6. In Sec. 1, a convolution representation is proposed which
can be useful for an interpretation of the BLM procedure.

1. CONVOLUTION REPRESENTATION FOR THE AMPLITUDES

Here we rewrite the standard perturbation power expansion for an amplitude
in the form of a formal integral representation. This representation in contrast to
the similar ones in [3,4] and in [13] does not involve integration over an intrinsic
momentum k. It is not related to Feynman integral in momenta. The properties
of this representation are discussed. We shall use this form in the next section
as a convenient ®perturbative tool¯ to interpret the BLM task from the point of
view of average virtuality 
ows.

Let us consider the formal perturbation series s(a) for the two-point ampli-
tudes at the external momentum Q2. The coupling a ≡ as(μ2) = αs(μ2)/(4π)
is normalized at the same external scale μ2 = Q2. In this case the coefˇcients
of the expansion dn are numbers in the MS-like schemes, due to cancellation of
the logarithms ln(Q2/μ2) there. However, the constant parts (ln(C)) of these
logarithms accompanied by the β-function coefˇcients are left in dn and we shall
be interested in these traces. For further convenience we introduce a new scaled
expansion parameter A = |b0|a,

s(a) = d0 +
∑
n=1

andn ≡ S(A) = d0 +
d1

b0
·
∑
n=1

AnDn with D1 = 1, (1)

and new coefˇcients Di =
di

d1b
i−1
0

that simplify intermediate calculations and will

help us to maintain contact with the ®large b0¯ limit, b0 � 1, A � 1. Note that
in the real world, below the c-quark threshold (at Nf = 3), we have b0 = 9 � 1
and A(μ2) ≡ α(μ2) b0

4π ≈ 0.32 < 1 at the NLO level at μ2 = 1 GeV2.
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The generation function P(α) can be introduced for these expansion coefˇ-
cients,

Dn =
∫ ∞

0

P(α)αn−1dα ≡ 〈αn−1〉, (2)

with the normalization condition∫ ∞

0

P(α)dα = 1.

At large α the behaviour P(α) ∼ αγ+1e−α/c corresponds to the expected asymp-
totic behaviour for the expansion coefˇcients Dn [17],

P(α) ∼ αγ+1e−α/c → Dn ∼ cnΓ(n + 1 + γ), (3)

the familiar behaviour exhibits purely renormalon divergence that is proportional
to n!.

The running of the coupling A → Ā(t) (or a → ā(t)) follows the renormal-
ization group (RG) equation

d

dt
Ā ≡ B(Ā) = −

(
Ā2 + c1Ā

3 + c2Ā
4 + . . .

)
, (4)

where

ci =
bi

bi+1
0

, (5)

B(A) is the modiˇed β function and t = ln
(

Q2

Λ2

)
is a natural variable for

MS-like schemes. The Ā(t) has the following behaviour at large t, Ā(t) 	 1
t .

Below we shall construct the representation for (1) based on Eq. (4).
1.1. 1-Loop Integral Representation. For the 1-loop case the evolution (4)

leads to
1
n!

(
− d

dt

)n

Ā(1) =
(
Ā(1)

)n+1
. (6)

Substituting (2) and (6) into the deˇnition (1) and changing the order of the sum
and the integration one obtains the formal integral representation

S(Ā1) = d0 +
d1

b0
·
∫ ∞

0

P(α)
[
exp

(
−α

d

dt

)
Ā(1)(t)

]
dα =

= d0 +
d1

b0
·
∫ ∞

0

P(α)Ā(1)(t − α)dα (7)

that is linearized in the coupling Ā1 as a convolution∫ ∞

0

P(α)Ā(1)(t − α)dα ≡ 〈Ā(1)(t − α)〉. (8)
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This representation seems to be close to that invented by Neubert [3]. V. Braun,
M. Beneke, and collaborators [4, 5] also widely used a similar kind of the con-
volution basing on the Borel representation. An essential difference between
these representations and the one like Eq. (7) will be demonstrated in the next
subsection. The representation in Eq. (7) is ®formal¯ because the change of the
order in the derivation has not been proved. Nevertheless, the integration of the
Taylor expansion of factor Ā(1)(t − α) in the integrand in Eq. (7) leads to the
initial series, Eq. (1), up to any ˇnite order of the expansion. We shall call just
this Eq. (7) as the ®sum¯ of the perturbative series (1) in the one-loop running
approximation. The integrand in (7) has pole-singularity at t = α which re
ects
the fact that the representation is ill-deˇned. One can discuss how the contour
should be deformed to give a sense to this integral [18, 19]. The residue of the
pole can be taken as a measure of the uncertainty of the asymptotic series and it
re
ects the factorial grows of the perturbation coefˇcients Dn (see [3, 9, 18]).

We would not discuss here the non-perturbative interpretations of Eq. (7).
Let me only mention that quantum ˇeld models with the integrable running
coupling Ā(1)(t) lead to a ˇnite expression for convolution in Eq. (8). Therefore,
the ˇniteness of the coupling of the analytic perturbation theory (APT) [20, 21],
AAPT

(1) (t) � 1 provides an example of the ®convergent¯ perturbation series in the
sense of the convolution representation (in weak sense). The brief discussion of
this observation is presented in Appendix A.

1.2. N-Loop Generalization of the Integral Representation. Let Ā(N) be the
solution of the RG equation at the N -loop approximation in the r.h.s. of Eq. (4).
Then the initial series, Eq. (4), with the coupling Ā(N) can be represented as

S(Ā(N)) = d0+
d1

b0
·
∫ ∞

0

P(α) Ā(N)

(
t + α ·

Ā2
(N)

B(Ā(N))

)
dα ≡ d0+

d1

b0
·P∗Ā(N).

(9)
This representation can be proved in the same way as Eq. (7); this is outlined in
Appendix A. Consider the factor Ā(N) (t + . . .) in the integrand of Eq. (9). Its
Taylor expansion in the second term of the argument generates PE in Eq. (1) for
the case A = Ā(N). Further we shall consider S(Ā(N)) in Eq. (9) as a ®sum¯ of
the perturbative series in the N -loop running approximation.

2. AN ILLUSTRATION: 1-LOOP BLM PROCEDURE

Following the Neubert's proposal [3] it is convenient to consider the integra-
tion in Eqs. (7) and (9) as an average of the corresponding coupling A over P
and then use its linear property,

S(Ā1) = d0 +
d1

b0
· 〈Ā(1)(t − α)〉. (10)
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Let (t0, A0) belong to the RG trajectory. Based on the RG law Ā(t) = A(t −
t0, A0) that leads to Ā(1)(t) = A0/ (1 + A0(t − t0)) in the one-loop case, one
can expand the average 〈Ā(1)(t − α)〉

〈 A0

1 + A0(t − t0 − α)
〉 = A0 − A2

0(t − t0 − 〈α〉)+

+ A3
0

(
(t − t0)2 − 2(t − t0)〈α〉 + 〈α2〉

)
+ . . . (11)

Recall that 〈αn〉 ≡ Dn+1 in accordance with the deˇnition (2); D2 is proportional
to the coefˇcient d2 of the initial series (1) which contains the term proportional to
b0 appearing due to the coupling renormalization. Introducing the representation

d2 = d1 · (b0d2[1] + d2[0]) (12)

we get

〈α〉 ≡ D2 =
d2

d1b0
= d2[1] +

d2[0]
b0

. (13)

Suppose the NLO order coefˇcient (at A2
0) in the expansion (11) satisˇes the

conditions:
• The coefˇcient is nulliˇed in Eq. (11), t0 = t−D2 ⇒ μ2 = Q2 exp(−D2).

This term is accumulated as a whole by the new expansion parameter A0 Ä this
is the Fastest Apparent Convergence (FAC) procedure [16],

〈Ā(1)(t − α)〉 = A0 + A2
0 · 0 + O(A3

0). (14)

Here the structure of the O(A3
0) tail looks like A3

0

(
D3 − D2

2

)
+ O(A4

0) [3] and
the distribution P can be written as P(α) → PFAC

1 = δ(α−D2) in this approxi-
mation.

• The contribution d2[1] to the coefˇcient is nulliˇed, so that t0 = t−d2[1] ⇒
μ2 = Q2 exp(−d2[1]). Only the ®a-renormalization¯ responsible term, d2[1], is
accumulated by the new expansion parameter A0 Ä this is the BLM procedure
[1, 7],

〈Ā(1)(t − α)〉 = A0 + A2
0 ·

d2[0]
b0

+ O(A3
0). (15)

The remainder term of this procedure at A2
0 is suppressed by the inverse power

of the ®large b0¯. The N2LO term in Eq. (15) looks like A3
0 (D3 − 2D2d2[1]+

(d2[1])2
)
.

Following the BLM procedure one deals with those parts of the coefˇcients
Di (di) that are responsible for the ®a-renormalization¯. Therefore, it is conve-
nient to introduce the partial distribution P1 just for these parts, 〈αn−1〉1,

〈αn−1〉1 ≡
∫ ∞

0

P1(α)αn−1dα and 〈α〉1 = d2[1]. (16)
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At the considered LO approximation for the BLM scale ˇxing one can put
P1(α) = δ(α − d2[1]) that determines an intrinsic ®scale¯, d2[1], and shifts the
normalization scale from t to t0. Let us compare the distributions P and P1 from
the standard PE point of view. In this case P can be represented as a formal
series

P(α) =
∑
n=0

(−1)n

n!
δ{n}(α) · Dn+1. (17)

Suppose P is a smooth function, then the series, Eq. (17), provides an insufˇcient
approximation to P except the case when P is strongly concentrated near the
origin α = 0. Indeed, for any other cases one should take into account a lot more
terms of the expansion in Eq. (17) or even its inˇnite subseries to approximate
the real behaviour anywhere not close to the origin, say, near the next extremum
in α. The distribution δ(α − d2[1]) looks preferable from this point of view, the
approximation takes into account at once (admittedly in a rather crude manner)
the behaviour of P(α). What parts of PE in next orders should one involve in the
procedure to improve P1? Which are diagram classes that generate these parts?
To clarify this (and to deˇne next approximations for P) one should analyze the
structure of dn coefˇcients at NnLO of the PE.

3. BLM TASK, THE FIRST STAGE OF GENERALIZATION

3.1. The β-Function Structure of the Perturbation Coefˇcients. In N2LO
the a-renormalization coming from one-gluon line and vertices generates contri-
butions proportional to a3b2

0, a3b1, see Fig. 1, a), b).

Fig. 1. The diagram insertions for αs-radiative corrections to, e. g., photon polarization
operator Π. a) The chain of gluon bubbles, two-bubble chain contributes to the b2

0-term
in d3. b) The diagrams with the renormalization of gluon ˇelds and vertices contribute to
the b1-term in d3. c) The diagrams that contribute to the b0-term in d3. d) The diagrams
generating by b2- and b0b1-terms in d4. e) The diagrams without intrinsic renormalization
contribute to the ®genuine¯ term, d3[0]

A contribution like a3b0 is generated by two-gluon exchange with the renor-
malization of one of these gluon lines/vertices, see Fig. 1, c. The ˇnal representa-
tion for d3 seems similar to that in Eq. (12) and looks like an expansion in power
series in b0, b1, . . .
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d3 = d1 ·
(
b2
0d3[2, 0] + b1d3[0, 1] + b0d3[1, 0] + d3[0]

)
, (18)

where the ˇrst argument n0 of the expansion coefˇcients dn[n0, n1, . . .] corre-
sponds to the power of b0; and the second one n1 Å to the power of b1, etc. The
coefˇcient dn[0] corresponds to the so-called [14] ®genuine¯ corrections with ni =
0 for all possible bi powers. One of the diagram sources of these contributions is
presented in Fig. 1, e. If all the arguments of the coefˇcient dn[. . . , m, 0, . . . , 0]
to the right of m are equal to zero, then we shall omit these arguments for sim-
plicity and write dn[. . . , m] hereinafter. In N3LO the a-renormalization gener-
ates contributions proportional to a4b3

0, a4b0b1, a4b2 originating from one-gluon
lines/vertices; contributions proportional to a4b2

0, a4b1, a4b0 originate from the
mixing of the a-renormalization from different gluon lines/vertices; and contribu-
tion like a4 appears from the ®genuine¯ corrections. The d4 coefˇcient looks in
this notation like

d4 = d1 · (b3
0d4[3] + b1b0d4[1, 1] + b2d4[0, 0, 1] +

+ b2
0d4[2] + b1d4[0, 1] + b0d4[1] + d4[0]). (19)

The same ordering of the β-function elements holds for all the next dn. It is
convenient for our purposes to present this ®β-structure¯ for the ®normalized¯
variables Ā and Di. The Di coefˇcients have an evident form

Ā1(t) D1 = 1,

Ā2(t) D2 = d2[1] + 1
b0

· d2[0],

Ā3(t) D3 = d3[2] + c1d3[0,1] +
1
b0

·
(

d3[1] +
1
b0

d3[0]
)

,

Ā4(t) D4 = d4[3] + c1d4[1,1] + c2d4[0,0,1] +

1
b0

·
(

d4[2] + c1d4[0, 1] +
1
b0

·
(

d4[1] +
1
b0

d4[0]
))

,

Ā5(t) D5 = d5[4] + c1d5[2,1] + c21d5[0,2] + c2d5[1,0,1] +

c3d5[0,0,0,1] +
1
b0

·
(

d5[3] + c1d5[1, 1] + c2d5[0, 0, 1]+

1
b0

·
(

d5[2] + c1d5[0, 1] +
1
b0

·
(

d5[1] +
1
b0

d5[0]
)))

, (20)

. . . . . .

7



where ci are deˇned in Eq. (5). Here we do not discuss how to derive this
representation for the known multi-loop results. We suppose that the elements
of the structure in Eq. (20) have already been obtained. The ˇrst column of
the coefˇcients dn[n−1] in Eq. (20) corresponds to the ®bubble approximation¯
that includes the contributions from the diagrams with the maximum numbers
of the bubbles, see Fig. 1, a. These ®bubble¯ contributions involved into the
extended BLM procedure were considered in [3, 4, 5, 7]. However, there are
other unsuppressed contributions emphasized in the bold type in the ®table¯ of
Eq. (20). Really, the known ci are of the order of 1 for the QCD MS scheme
(below their certain values are obtained at Nf = 3),

c1 ≈ 0.79; c2 ≈ 0.88; c3 ≈ 1.9; c4 = ? (21)

Therefore, one has no reasons to neglect the other terms emphasized in Eq. (20)
in the bold type. These terms, see the c1-term in D3 in Eq. (20), originate in
part from the diagrams in Fig. 1, b; the c2- and c1-terms in D4 there Ä from
Fig. 1, d, and so on. To extend our ˇnal results far more broadly, we suggest the
same estimates, ci = O(1), for the unknown required coefˇcients as well (see the
discussion in Introduction).

We face two different expansion parameters in the representation (20), cou-
pling Ā for the lines and b−1

0 for the horizontal direction. To simplify the handling
of these parameters, it is convenient to introduce the notation Āi · yij · b−j+1

0 for

the contributions and Di = yij · b−j+1
0 for their coefˇcients. The Y = ||yij || is

a triangular matrix with ®genuine¯ terms ynn ≡ dn [0 ] in the diagonal. These
diagonal terms are maximally suppressed by the b−1

0 powers in Dn, while the
unsuppressed terms are contained in the ˇrst column of the matrix Y

y11 ≡ 1; (22)

y21 = d2[1]; (23)

y31 = d3[2] + c1d3[0,1]; (24)

y41 = d4[3] + c1 d4[1,1] + c2 d4[0,0,1]; (25)

. . .

All these terms originate from the renormalization of a single coupling/gluon
line. For details see the skeleton diagram in Fig. 2, a which accumulates all the
diagrams like in Fig. 1, a, b, d.

3.2. BLM Scheme for n Loop. Let us ˇnd a new pair (t1, A(t1)) to nullify all
the ®bold type¯ contributions yi1 and to accumulate them into the new expansion
parameter A(t1)

Ā(t) → Ā(t1) ≡ A1,

t − t1 ≡ Δ1 = Δ1,0 + A1 · Δ1,1 + A2
1 · Δ1,2 + . . . (26)
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Here the shift Δ1 of the t to the ˇrst intrinsic scale t1 is found in the form of a
perturbation series in A1 (that has ˇrst been suggested in [11]). The corresponding
procedure consists in the re-expansion of Exp. (20) in the new coupling A1 and
rearrangement of the power series. Following the RG law for the coupling
Ā(t) = A(Δ1, A1) and expanding it in Δ1 one obtains

Ā(t) = A(t − t1, A1) = A1 − B(A1)Δ1 + B′(A1)B(A1)
Δ2

1

2
+ . . .

Substituting this expansion together with the the expansion for Δ1 in Eq. (26)
into Exp. (20) one arrives at the rearranged series

Ā1D1 →Ā1
1 · 1;

Ā2D2 →Ā2
1 · D2 − 1Δ1,0; (27)

Ā3D3 →Ā3
1 · D3 − 2Δ1,0 · D2 − Δ1,0c1 + Δ2

1,0 − Δ1,1; (28)

Ā4D4 →Ā4
1 · D4 − 3Δ1,0 · D3 +

(
3Δ2

1,0 − 2c1Δ1,0

)
D2−

− c2Δ1,0 +
5
2
c1Δ2

1,0 − Δ3
1,0+

+ (2Δ1,0 − 2D2 − c1)Δ1,1 − Δ1,2; (29)

An+1Dn+1 →An+1
1 · Dn+1 − nΔ1,0 · Dn + . . .

The generalized BLM requires that the yi1 contributions should cancel at each
order Āi

1 in the set of Eqs. (27), (28), (29), ... This requirement completely
determines the partial ®scales¯ Δ1,i from the set of algebraic equations. The
explicit expressions for a few Δ1,k are presented in Appendix B; below we write
a few coefˇcients important for further discussion

Δ1,0 = y21 = d2[1], (30)

Δ1,1 = y31 − (y21)2 − c1y21 = d3[2] − d2
2[1] + c1 (d3[0, 1] − d2[1]) , (31)

Δ1,2 = y41 − 3y31y21 − 2(y21)3 − c1 · . . . =

d4[3] − 3d2[1]d3[2] + 2(d2[1])3 + c1 ·. . . (32)

Note that the NLO BLM correction in Eq. (31) cancels in the particular case
d3[2] = (d2[1])2, d3[0, 1] = d2[1]. First of them corresponds to the geometric
progression for the leading logarithms of the RG law, while the second one
corresponds to sub-leading logarithm cancellation. If one applies these conditions
to Δ1, 2 in Eq. (32) (see also Eq. (B.3)), one obtains again the evident ®geometric¯
condition, d4[3] = (d2[1])3, for cancellation of the leading logarithm part at the
next step and so on. This test demonstrates the self-consistence of the calculations.
If the coefˇcients dn+1[n] in yn1 follow the RG law for the leading logarithms,
then they are taken into account even by the ˇrst partial BLM ®scale¯ Δ1,0. For
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the sub-leading contributions one needs more subtle conditions. The absorbtion
of such contributions into the proper scales, see, e. g., c1-terms in Eq. (31),
distinguishes our procedure from the other BLM extensions [7].

In this way one can rearrange the ˇrst column yi1 into Δ1 step by step for
any ˇxed order of the PE. As a result of the procedure the initial series, Eq. (20),
can be reduced to the new one that contains only one unsuppressed term Ā1 · 1,
the ˇrst diagonal term in Eq. (33). All the other terms are suppressed by the
powers of b−1

0 ,

Ā1D1 → Ā1
1 · 1,

Ā2D2 → Ā2
1 · 0 +

y22

b0
,

Ā3D3 → Ā3
1 · 0 +

1
b0

(y32 − 2y21 y22) +
y33

b2
0

,

Ā4D4 → Ā4
1 · 0 +

1
b0

(y42 − 3y21 y32 + y22[5y2
21 − 2y31])+

1
b2
0

(y43 − 3y21y33) +
y44

b3
0

,

AnDn → An
1 · 0 +

1
b0

(yn2 − . . .) . . . (33)

At this stage the matrix Y transforms into the new matrix Y (1), the ˇrst

column of which is now y
(1)
1i = δ1i, and the other few elements are presented in

Eq. (33). The ˇrst BLM stage result can be rewritten in the form of the matrix
representation,

∑
i>j Āi ·yij ·b−j+1

0 ≡ ĀA+Y B, where A =
(
1, Ā, Ā2, . . .

)
,Ai =(

1, Āi, Ā
2
i , . . .

)
, B =

(
1, b−1

0 , b−2
0 , . . .

)
,

Ā
(
A+Y B

)
n

1 stage−→ Ā1

(
A+

1 Y (1)B
)

n
= Ā1

(
1 + Ā1(A+

1 Y (1)B)n−1

)
. (34)

The single unsuppressed (diagonal) term, 1, is picked out in the r.h.s. in the
parentheses while the second term there is formed by the power b−1

0 -suppressed
minor of the matrix Y (1).

4. SEQUENTIAL BLM PROCEDURE

4.1. Next Stages of the BLM Generalization. Let us continue to put the
matrix Y (1) into the diagonal form by reforming its second column. Now we
single out its (Y (1))(n−1)-minor part in Eq. (34) which generates the b−1

0 -sup-
pressed terms

A1(A+
1 Y (1)B)n → Ā1

(
Ā1(A+

1 Y (1)B)n−1

)
.
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Table 1. The structure of Ā ·Āi−1y
(1)
ij b1−j

0 contributions

A1D1 → Ā1· 1 1

A2D2 → Ā1· Ā1(t1) 0 +
d2[0]

b0
· 1

A3D3 → Ā1· Ā2(t1) 0 +
d2[0]

b0
ỹ

(1)
32 +

d3[0]

b2
0

A4D4 → Ā1· Ā3(t1) 0 +
d2[0]

b0
ỹ

(1)
42 +

1

b2
0

y
(1)
43 +

d4[0]

b3
0

A5D5 → Ā1· Ā4(t1) 0 +
d2[0]

b0
ỹ

(1)
52 +

1

b2
0

y
(1)
53 +

1

b3
0

y
(1)
54 +

d5[0]

b4
0

. . . . . . . . .

The elements of this minor are represented in the right column of Table 1. The
ˇrst power b−1

0 -suppressed terms of this minor are emphasized in the bold type
there. Repeating the same procedure as at the ˇrst BLM stage (see the previous

section) with the column y
(1)
i2 , we rearrange again these terms into new expansion

parameter A(t2) at the new ®scale¯ t2

Ā(t1) → Ā(t2) ≡ A2,

t1 − t2 ≡ Δ2 = Δ2,0 + A2 · Δ2,1 + A2
2 · Δ2,2 + . . . (35)

The ˇrst equalities in Eqs. (30)Ä(32) remain valid also for the partial scales Δ2,m

appearing from the y
(1)
i2 with the evident shifting of all the indices by 1.

Therefore, using Eqs. (33) to determine y
(1)
i2 and taking the common factor

d2[0]
b0

to normalize the elements (ỹ(1)
n2 = y

(1)
n2 /y22) one arrives at

Δ2,0 = ỹ(1)
32 =

y32

y22
− 2y21 =

d3[1]
d2[0]

− 2d2[1], (36)

Δ2,1 = ỹ(1)
42 −

(
ỹ(1)
32

)2

− c1ỹ
(1)
32 , (37)

. . .

So column by column the chain of transformations Y → Y (1) → Y (2) → . . . →
Y (n−1) leads to the diagonalization of Table 1. At each stage one will obtain a
new coupling A(ti). The ˇnal result of this successive BLM procedure reduces

11



the initial perturbation series, Eq. (1), to the special form∗

S(A) = d0 +
Ā(t1)

b0
· d1

{
1 +

Ā(t2)
b0

d2[0]
{

1 +
Ā(t3)

b0
d3[0] {1 + . . .}

}}
(38)

containing only the ®genuine¯ coefˇcients di[0] accompanied by the correspond-
ing coupling at its proper scale ti, ti = t1−Δ1− . . .−Δi. Moreover, the series in
powers ān(t) transforms to the series in products

∏n
i=1 ā(ti). Note that Eq. (38)

can be easily presented in the form a'la the continued fraction

S(A) = d0 +
ā1d1[0]

1 − ā2d2[0]

1 + ā2d2[0] − ā3d3[0]

1 + ā3d3[0] − ā4d4[0]
. . . ,

(39)

where āi = ā(ti). The latter may be the source of a new approximation for
the S(A): one can construct an associated continued fraction to Eq. (39) that
possesses better convergent properties or apply Pade approximation to this rep-
resentation. Of course, the ˇnal results, Eq. (38) (or Eq. (39)), look rather
formal because the sBLM procedure constructed above disregards the perturba-
tive applicability constraints for both the pairs (A(ti), ti) and the new expansion
coefˇcients di[0]. We apply this result to known N3LO calculation of the D
function in Section 5.

4.2. Distribution Sense of sBLM. It is instructive to illustrate the discussed
procedure from the ®distribution¯ point of view based on the convolution rep-
resentation, Eq. (9), as it has been demonstrated in Eq. (11) for the one-loop
running. One can rederive the results of the sBLM ˇrst stage using these terms.
Really, expanding the factor Ā(N) in the integrand of the convolution P ∗ Ā in
Eq. (9) in the variable α, and then following the line in Sec. 3 one can arrive at
the same Eqs. (30)Ä(32) for the partial scales. For that, one should specify the
partial distribution P1 in Eq. (16) as the distribution for the ˇrst column of Y ,∫ ∞
0 P1(α)αn−1dα ≡ 〈αn−1〉1 = yn1, and substitute P1 instead of P at the ˇnal

stage of the procedure.
As the result of the ˇrst sBLM stage, Eq. (34), the P1 ∗ Ā contribution

reduces to

P1 ∗ Ā → Ā1 ≡ Ā(t − Δ1) =
∫ ∞

0

δ(α − Δ1)Ā(t − α)dα .

∗Let me stress here that the form of this series differs from those suggested in [7, 10].
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Therefore, the distribution P1 reduces to δ(α−Δ1) that is similar to the standard
BLM result, δ(α − d2[1]), in Sec. 2. This Δ1 accumulates all the ®αsÄrenor-
malizations¯ associated with the single dressed gluon propagator with two dressed
vertices and the connected quark ˇelds in the skeleton diagrams in Fig. 2, a. The
common normalizing factor d1 originates from the ˇrst tree diagrams of these
skeleton diagrams.

At the second stage of sBLM we deal with the contribution from the sec-

ond column of Y (1); a normalized distribution P2 can be introduced for y
(1)
n2 ,∫ ∞

0 P2(α)αn−1dα ≡ 〈αn−1〉2 = ỹ
(1)
n2 . These contributions correspond to ®two-

gluon¯ skeleton diagrams in Fig. 2, b (see also Fig. 1, c). By now the effective

Fig. 2. The elements of skeleton diagrams: oval is dressed vertex; thick wavy strip is
dressed gluon propagator, and thick fermion line is dressed quark propagators. The arrows
with caption denote the value of the sBLM ®scale¯ for the corresponding effective charge.
a) Skeleton diagrams for the ˇrst stage of sBLM. b) Skeleton diagrams with two dressed
gluon lines for the second stage of sBLM

scale of the coupling, Ā(t − Δ1), is already ˇxed at the previous stage. As a
result of this stage, P2 → δ(α − Δ2) and the normalization scale one of the
couplings appears to be shifted, Ā(t − Δ1) → Ā(t − Δ1 − Δ2). The normaliz-
ing factor for the contribution, d2[0]/b0, originates from the undressed diagrams,
which corresponds to the skeleton diagrams in Fig. 2, b.

Executing a number of sBLM stages for P ∗ Ā one arrives at the representa-
tion,

P ∗ Ā →
∫ ∞

0

dα

(
δ(α − Δ1) +

d2[0]
b0

Ā(t − Δ1)×

×δ(α − Δ1 − Δ2) + . . .
)
Ā(t − α). (40)

The kernel of this convolution can be compared with the PE representation
in Eq. (17),
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P(α) =
∑

n

(−1)n

n!
δ{n}(α) · Dn → δ(α − Δ1)+

+ d2[0]/b0Ā(t − Δ1) · δ(α − Δ1 − Δ2) + . . .

The ˇnal sBLM series, Eq. (38), corresponds to the expansion in the skeleton
diagrams. The coefˇcients of this expansion, dn[0] (ynn), originate from the ˇrst
undressed diagrams of the corresponding skeleton diagrams while the scales Δn

appear due to the renormalizations in these skeleton diagrams.

5. sBLM PROCEDURE AND ITS IMPROVEMENT
FOR THE D FUNCTION

5.1. sBLM Procedure for the D Function. The initial well-known series for
D [22] can be rewritten by means of the β-function coefˇcients

D = 3
∑

f

Q2
f

{
d0 + d1

[
a + a2d2 + a3d3 + a4d4 + . . .

]}
, d0 = 1; d1 = 3CF ,

d2 = b0 · d2[1] + d2[0],

d3 = b2
0 · d3[2] + b1 · d3[0, 1] + b0 · d3[1] + d3[0];

d4 = b3
0 · d4[3] + b0b1 · d4[1, 1] + b2 · d4[0, 0, 1] + b2

0 · d4[2] + . . . (41)

A separate problem is to recast D into this form; it is solved in Appendix C on
the basis of the results obtained in [23] and on the partial results for d4 in [24].
Note that the expressions for the expansion elements in (41) remain valid for the
inclusion of light gluinos that contribute to the β function (Appendix A). The
explicit expressions for the d3[m, n] are presented in Appendix C while below
they are written numerically

d2 = b0 · 0.69 +
1
3
, (42)

d3 = b2
0 ·3.104 − b1 ·1.2 +b0 ·55.70 +

(
−573.96− 19.83

(
∑

f Qf )2

3(
∑

f Q2
f )

)
. (43)

We substitute the value b0(Nf = 3) = 9, b1(Nf = 3) = 64 in (43) for an
illustration

d3 = 251.1 − 76.8 + 501.3 + (−573.96− 0) ≈ 101.9 (44)
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to compare the contributions from the different sources. Further we shall apply
the sBLM procedure to D step by step to remove, respectively, the b0-contribution
in N2LO, b2

0 and b1-contributions in N3LO, and so on. The results of sBLM will
be analyzed at every step.

At the ˇrst standard step the BLM scale setting transforms the coefˇcients
d2, d3 (compare with expressions (42)Ä(43)) and the coupling as follows:

d2 → d̃2 = b0 · 0 +
1
3
, (45)

d3 → d̃3 = b2
0

(
d3[2] + d3[0, 1]c1 − d2

2[1] − d2[1]c1

)
+ b0(d3[1]−2d2[0]d2[1])+

+ d3[0] (46)

= b2
0 (2.1555− 1.0251) + b0(55.70 − 0.46) + . . . ≈ 14.7, (47)

A(t) → A(t1); t − t1 = Δ1,0 = d2[1] ≈ 0.69. (48)

We can see that the value of b2
0 y31 reduced approximately by a factor of 2 at the

ˇrst step (at the same condition as for Eq. (44)); the value of b0 y32 practically
does not change; the value of the total coefˇcient reduced to 14.7 in comparison
with the initial value d3 ≈ 101.9 in Eq. (44). This strong cancellation as well as
the other features of the BLM steps appear due to the large and negative value
of the genuine term d3[0].

At the next step of the stage the modiˇed ỹ31 term in Eq. (46) is transferred
into Δ1 by following Eqs. (30)Ä(31):

d̃3 → ˜̃
d3 = b2

0 · 0 + b1 · 0 + b0 · (d3[1] − 2d2[0]d2[1]) + d3[0] ≈ −77, (49)

A(t) → A(t1); t−t1 = Δ1 = d2[1]+A(t1)·
(
d3[2] + d3[0, 1]c1 − d2

2[1] − d2[1]c1

)
,

(50)
Δ1 ≈ 0.69 + A(t1) · 1.13. (51)

Here in Eq. (51) one can put t1 ≈ t − d2[1] for the A argument rather than

solve Eq. (50) with respect to t1. The new value of d3, d3 → ˜̃
d3 ≈ −77, is

noticeably larger in absolute value than the value of this coefˇcient at the ˇrst
step d̃3 ≈ 14.7. At the same time, the ˇrst perturbation correction to Δ1 in
Eq. (51) looks rather moderate and admissible. The contents of d4 in Eq. (19)
also transforms by following Eq. (32). Based on the results in [24], which lead
to d4[3] ≈ 2.18, one can predict the modiˇcation of the ®bubble part¯ d4[3] of
the d4,

d4[3] ≈ 2.18 → d4[3] − d3[2]d2[1] − 2d2[1](d3[2] − d2[1]2) ≈ −3.3
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that is not also improved in itself. One can conclude that though the next step
of sBLM is admissible due to the moderate size of correction to Δ1, it does not
improve the convergence of the perturbation series.

Let us consider the second stage of the sBLM procedure
1) t2 goes out beoynd the pQCD domain because t1−t2 = Δ2,0 = d3[1]/d2[0]

−2d2[1] ≈ 166(!);

2) it does not lead to the decrease in the ˜̃
d3 term ˜̃

d3 →
˜̃̃
d3 = d3[0] ≈ −574

due to the large value of the genuine term (compare the contributions of the
different terms in Eq. (44)).

Here we meet the case when the sBLM procedure does not improve the
convergence of the perturbation series or even cannot be applied (at the second
stage) because this procedure ignores peculiar properties of certain series. This
possibility, typical of this formal procedure, has been mentioned in Sec. 4.

5.2. How to Improve the sBLM Procedure. It would be better not to perform
the second stage at all and try another way to optimize the value of d̃3 after the
ˇrst step. It is tempting not to remove the contribution y31 = d3[2] + c1d3[0, 1]
completely, as we did in Eq. (49) at the second step above, but rearrange a part
of it into the coupling renormalization and keep the other positive part in the
rest to compensate the large and negative d3[0] contribution. It is convenient to
introduce an x-part of y31, xy31, to absorb this into the partial scale, see Eq. (53),
while its (1− x)-part, (1 − x)y31, is kept to cancel d3[0] in (52). This trick leads
to the x-dependent BLM, (xBLM),

d̃3 → ˜̃d3 = b2
0 ·(1 − x)(d3[2]+c1d3[0, 1])+b0 ·(d3[1]−2d2[0]d2[1])+d3[0], (52)

t − t1 = Δ1 = d2[1] + A(t1) ·
(
x(d3[2] + d3[0, 1]c1) − d2

2[1] − d2[1c1

)
. (53)

Let us set an ®optimization¯ condition, say FAC, ˜̃
d3 = 0, to ˇx a certain value of

x. One has make sure that the perturbation corrections are improved for both ˜̃d3

and Δ̃1 (see the 5Ä6th columns in Table 2) in comparison with that in Eqs. (49),
(51). The ˇnal result for D is reduced to

D = 3
∑

f

Q2
f

{
1 + 3CF

[
a(t̃1) +

1
3
· a2(t̃1) + 0 · a3(t̃1)

]}
, (54)

where t − t̃1 = Δ̃1 are presented in Table 2.
It is instructive to apply a similar procedure also to the observable quantity

R(s) = σ(e+e− → h)/σ(e+e− → μ+μ−) associated with D

R(s) = D(s) − d1
π2

3
· b2

0ā
3 = 3

∑
f

Q2
f

{
1 + 3CF

[
ā + r2ā

2 + r3ā
3
]}

,
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where r1 = d1, r2 = d2, r3 = d3 − π2

3
· b2

0 (see, e. g., [22]). The large and

negative π2 term arising due to an analytic continuation makes r3 also negative
(compare with Eq. (43)). As a result of the xBLM procedure d̃2 → r2, r̃3 → r3,
and x-dependent term in r̃3 transforms to b2

0 · (1 − x)(d3[2] + c1d3[0, 1]− π2/3).
To obtain a positive compensative term to cancel d3[0] at the next step of the
transformation (that leads to ˜̃r3 = 0), one should take x > 1, see two right
columns in Table 2.

6. GENERALIZED BLM PROCEDURE TO IMPROVE
THE PERTURBATION SERIES

To generalize the sBLM procedure in the way mentioned in Sec. 5 as the
xBLM procedure, let us introduce a lower triangular matrix X = ||xij ||, xii ≡ 0
associated with the matrix Y . The element xij is the part of the contribution
yij , yij xij , that should be absorbed into the coupling renormalization, while
the remainder of the contribution yij x̄ij , where x̄ij ≡ 1 − xij , is kept in PE
coefˇcient Di. The choice X = 0 returns us to the initial series before trans-
formations, while X = {x21 = 1, others xi>j = 0} corresponds to the standard
BLM. The matrix X = {xi>j = 1} corresponds to the sBLM; the ˇrst column
xi1 = 1 leads to the ˇrst stage of sBLM, compare second column in Table 3 with
Eq. (33). For the discussed xBLM procedure the ˇrst column transforms into
{1, A1y21x̄i1, A2

1y31x̄31, . . .} instead of {1, 0, 0, . . .} in sBLM. The formulae
for the Δ1 proper scale, (30), (31), ... remain valid in this case with the obvious
changes yi1 → yi1xi1, see Eqs. (56), (57). These additional free parameters xij ,
altogether n(n − 1)/2 parameters in NnLO of PE, allow one to perform a ®ˇne
tuning¯ of the coefˇcients of the series. A more complicated structure of the ˇnal
PE series is the price one should pay for such an improvement of the convergence
of the series. The schematic sketch of the ˇrst stage of xBLM is demonstrated
in Table 3 and Eqs. (55)Ä(57).

Ā(t) → Ā(t1) ≡ A1, t − t1 ≡ Δ1 = Δ1,0(X) + A1 · Δ1,1(X) + . . . (55)

Δ1,0(X) = y21x21, (56)

Δ1,1(X) = y31x31 − 2(y21x21)y21 + (y21x21)2 − (y21x21)c1. (57)

Following the xBLM we keep yi2x̄i2 parts in the second column at the second
stage. All other parts of this column should be absorbed into the new coupling
A2. The result of this stage is illustrated in Table 4 and in Eq. (58) for the proper
scale Δ2(X). Further stages of xBLM are similar to the ˇrst ones and to that in
sBLM, but the ˇnal result differs from the later case. We lose the clear diagonal
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Table 3. The ˇrst stage of the xBLM procedure

Ā1D1 → Ā1· 1 + 0

Ā2D2 → Ā1· Ā1
1y21x̄21 +Ā1

1
y22

b0

Ā3D3 → Ā1· Ā2
1y31x̄31 + Ā2

1
y22

b0

(
y32

y22
− 2y21 x21

)
+Ā2

1
y33

b2
0

. . . . . . + . . .
ĀnDn → Ā1· Ān−1

1 yn1x̄n1 + . . .

form like Eq. (38), but obtain more 
exibility to ˇx the values of the AiDi terms
in expansion.

Table 4. The second stage of the xBLM procedure

Ā1D1 → Ā1· 1 + 0

Ā2D2 → Ā1· Ā1
1y21x̄21 +Ā1

2
y22

b0

Ā3D3 → Ā1· Ā2
1y31x̄31 +Ā2

2
y22

b0

(
y32 x̄32

y22

)
+Ā2

2
y33

b2
0

. . . . . . + . . . + . . .

ĀnDn → Ā1· Ān−1
1 yn1x̄n1 +Ān−1

2

y22

b0

(
yn2x̄n2

y22

)
+ . . .

Ā(t1) → Ā(t2) ≡ A2; t1 − t2 ≡ Δ2 = Δ2,0(X) + A1 · Δ2,1(X) + . . .

Δ2,0(X) =
y32

y22
x32 − 2y21 x21. (58)

It is instructive to consider a few partial cases: i) The FAC setting in N2LO

corresponds to the condition (Ā1)2(y21x̄21 +
y22

b0
) = 0 which has been considered

in Eq. (14); ii) If we restrict ourselves, say, to the N3LO (see Table 4) then we
have 3 parameters, x21, x31, x32 to optimize the contributions of A2D2 and A3D3,
respectively,
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A2D2 → C2 = Ā1

[
Ā1y21x̄21 + Ā2

y22

b0

]
, (59)

A3D3 → C3 = Ā1

[
Ā2

1y31x̄31 + Ā2
2

y22

b0

(
y32x̄32

y22

)
+ Ā2

2

y33

b2
0

]
,

(60)

where
Ā1 = Ā(t − Δ1), Ā2 = Ā(t − Δ1 − Δ2). (61)

The case discussed in Sec. 5 in Table 2 corresponds to the partial solution of
the above equations at C3 = 0, A1 = A2 with x21 = 1, x31 = x, x32 = 0. A
complete set of solutions to Eqs. (59)Ä(61) at C2 = C3 = 0 with respect to xij

can be obtained and analyzed numerically.

CONCLUSION

The hierarchy of the contributions to every order of the perturbation ex-
pansion is obtained using peculiarities of the β-function coefˇcients in QCD.
Following this hierarchy we construct a sequential generalization of the well-
known BLM procedure [1] to any ˇxed order of the perturbation expansion for
the case of two-point functions. This sBLM procedure leads to new expansion
series in the new couplings, Eq. (38), that can also be rewritten in the form a'la
continued fraction, see Eq. (39).

The advantages and disadvantages of this sBLM are exempliˇed in four-loop
Adler D-function. One has to be sure that the sBLM procedure fails to improve
perturbation expansion for the D-function at its second stage. To improve the
convergence of this series the sBLM is generalized in the spirit of the Fast Appar-
ent Convergence procedure [16] by the introducing of the number of additional
free parameters, see Eq. (54) and Table 2 in the second part of Sec. 5. This next
generalization of the BLM, xBLM procedure parameterized by a matrix X , is
brie
y discussed in Sec. 6. The xBLM procedure looks like the most complete
generalization of the initial BLM one.

APPENDIX A
PROOF OF THE CONVOLUTION REPRESENTATION

Let Ā ≡ Ā(N) be a solution to the RG equation with the N -loop B-function.

Let us introduce the operator D̂t =
Ā2

B(Ā)
d

dt
, then D̂tĀ = Ā2 and

1
n!

(
D̂t

)n

Ā =
(
Ā

)n+1
. (A.1)
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Substituting this Eq. (A.1) and Eq. (2) into Eq. (1) and collecting correspond-
ing terms in the exponent,

∑
n=1

DnĀn =
∫ ∞

0

P(α)

⎛
⎝∑

m=0

(
αD̂t

)m

m!

⎞
⎠ Ā(t)dα = (A.2)

∫ ∞

0

P(α)
[
exp

(
αD̂t

)
Ā(t)

]
dα =

∫ ∞

0

P(α) Ā

(
t + α · Ā2

B(Ā)

)
dα, (A.3)

one arrives at the representation, Eq. (9). In the same way one can obtain this
representation for the nonpower expansion series that appears in the analytic
perturbation theory (APT) [20, 21]. The one-loop APT coupling constant is a

bounded function of t, AAPT
1 (t) =

1
t
− 1

et − 1
� 1. The next order one-loop

constants AAPT
n are not the powers of AAPT

1 , they can be obtained from AAPT
1

by means of the same relation Eq. (6), see [21],

AAPT
n+1 (t) =

1
n!

(
− d

dt

)n

AAPT
1 (t) �= (AAPT

1 (t))n+1. (A.4)

The APT expansion for S(A) in (1) can be written as S(A) → d0 +
d1

b0
·∑

n=1

DnAAPT
n . This leads to the same convolution Eq. (7) with AAPT

1 (t) in the

integrand. The ˇniteness of AAPT
1 (t) guarantees the convergence of this integral

representation.
The required β-function coefˇcients with the MSSM light gluinos [25] are

the following:

b0 (Nf , Ng) =
11
3

CA − 4
3

(
TRNf +

NgCA

2

)
, (A.5)

b1 (Nf , Ng) =
34
3

C2
A − 20

3
CA

(
TRNf +

NgCA

2

)
−4

(
TRNfCF +

NgCA

2
CA

)
,

(A.6)

b2 (Nf , Ng) =
2857
54

C3
A − NfTR

(
1415
27

C2
A +

205
9

CACF − 2C2
F

)
+

+ (NfTR)2
(

44
9

CF +
158
27

CA

)
− 988

27
NgCA(C2

A)+

+ NgCANfTR

(
22
9

CACF +
224
27

C2
A

)
+ (NgCA)2

145
54

CA. (A.7)
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APPENDIX B
EXPLICIT FORMULAE FOR THE COEFFICIENTS Δi,k

Δ1,0 = y21 = d2[1], (B.1)

Δ1,1 = y31 − (y21)2 − c1y21 = d3[2] − d2
2[1] + c1 (d3[0, 1]− d2[1]) , (B.2)

Δ1,2 = y41 − 3y31y21 − 2(y21)3 − c1y31 +
3
2
c1(y21)2 + (c2

1 − c2)y21 =

= d4[3] − 3d2[1]d3[2] + 2(d2[1])3+

c1

(
d4[1, 1] − 3d3[0, 1]d2[1] +

3
2
(d2[1])2 − d3[2]

)
+

c2
1 (d2[1] − d3[0, 1]) + c2(d4[0, 0, 1]− d2[1]), (B.3)

Δ2,0 =
y32

y22
− 2y21 =

d3[1]
d2[0]

− 2d2[1],

Δ2,1 =
y42

y22
− 3y21

y32

y22
+ 5y2

21 − 2y31 − Δ2
2,0 − c1Δ2,0 (B.4)

. . .

APPENDIX C
REPRESENTATION FOR THE D FUNCTION

The Adler D function is known [23] for the MSSM with Ng light gluinos,
D(a, Nf , Ng). On the other hand, one can obtain the explicit functions Nf =
Nf (b0, b1) and Ng = Ng(b0, b1) solving the set of equations (A.5), (A.6) with
respect to Nf , Ng. Substituting this solution into D(a, Nf , Ng), one arrives at
the expansions Eqs. (C.1), (C.2) and Eqs. (C.4)Ä(C.8)

D(a) = 3
∑

f

Q2
f

{
d0 + d1

(
a + d2a

2 + d3a
3 + . . .

)}
, d0 = 1; d1 = 3CF ,

d2 = b0d2[1] + d2[0], (C.1)

d3 = b2
0d3[2] + b1 · d3[0, 1] + b0d3[1] + d3[0], (C.2)

d4 = b3
0d4[3] + b2 · d4[0, 0, 1] + b0b1d4[1, 1] + b2

0d4[2] + b1d4[1]+b0d4[1] + d4[0].
(C.3)

The N2
f Äterms of d4 have recently been calculated in [24], but this cannot

be used in our approach. It is impossible to separate the terms b2d4[0, 0, 1] and
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b0b1d4[1, 1] that are of an order of O(b3
0) from the b2

0-term, b2
0d4[2] that also

contributes to the ®N2
f projection¯.

d2[1] =
11
2

− 4ζ3 ≈ 0.691772, d2[0] =
CA

3
− CF

2
=

1
3
, (C.4)

d3[2] =
302
9

− 76
3

ζ3 ≈ 3.10345, d3[0, 1] =
101
12

− 8ζ3 ≈ −1.19979, (C.5)

d3[1] = CA

(
3
4

+
80
3

ζ3 −
40
3

ζ5

)
− CF (18 + 52ζ3 − 80ζ5) ≈ 55.7005, (C.6)

d3[0] =
1
36

(523C2
A + 852CACF − 414C2

F ) − 72C2
Aζ3+

+
5
24

(
176
3

− 128ζ3)
(
∑

f Qf )2

3(
∑

f Q2
f )

(C.7)

≈ −573.9607− 19.8326
(
∑

f Qf)2

3(
∑

f Q2
f )

. (C.8)
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