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The difˇculties arising in the investigation of ˇnite-size scaling in d-dimensional
O(N) systems with strong anisotropy and/or long-range interactions, decaying with
the interparticle distance r as r−d−σ , are avoided using a technics of calculations
based on the analytical properties of the generalized MittagÄLef	er functions. In
the case under consideration strong anisotropy means a system with geometry Lm ×
∞n; m + n = d and the value of the exponent σ depends on the direction.
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1. INTRODUCTION

In contrast to the theory of ˇnite-size scaling in isotropic systems (see
e. g. [1Ä3]), the theory of ˇnite-size scaling in anisotropic systems is still a
ˇeld under discussions (see e. g. [4, 5] and Refs. therein). The problems that
arise are, not at least, related to the increasing mathematical difˇculties due to
the lattice direction dependence of the interactions. Notice that, due to the choice
of parametrization that has to reduce the many-dimensional problem to an effec-
tive one-dimensional one, the pertinent mathematically ensuing integrals can be
evaluated only numerically.

Recently [6], a recipe based on some useful analytical properties of the
generalized MittagÄLef	er functions is suggested. It permits one to consider
isotropic and some anisotropic systems on an equal footing. The generalized
MittagÄLef	er functions are deˇned by the power series [7] (see also [8, 9])

Eγ
α,β(z) =

∞∑
k=0

(γ)k

Γ(αk + β)
zk

k!
, α, β, γ ∈ C, Re(α) > 0. (1.1)

Here

(γ)0 = 1, (γ)k = γ(γ +1)(γ +2) . . . (γ +k−1) =
Γ(k + γ)

Γ(γ)
, k = 1, 2, . . . (1.2)

These functions are named after MittagÄLef	er who ˇrst introduced the particular
case with β = γ = 1. The interest in this type of functions has grown up because
of their applications to some ˇnite-size scaling problems (see e. g. [1Ä3]). The
present study is an illustration of the possibilities to handle the ˇnal expressions
of the scaling equations for anisotropic systems analytically.

2. THE MODEL

In this paper we restrict our attention to the N -vector spin model deˇned at
the sites of the lattice. The Hamiltonian of the model reads

H = −N
∑
x,y

J(x − y)−→σx
−→σy, (2.1)

where −→σx is a classical N -component unit vector deˇned at site x of the lattice
and the spinÄspin coupling decays with different power-laws in different lattice
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directions. We assume a d-dimensional system with geometry Lm ×∞n under
periodic boundary conditions in the ˇnite dimensions. The interaction between
spins enters the expressions of the theory only through its Fourier transform. We
will consider the following anisotropic small q expansion of the Fourier transform
of the spinÄspin coupling:

J(q) � J(0) + a|||q|||2σ + a⊥|q⊥|2ρ, (2.2)

where the ˇrst n directions (called ®parallel¯ and denoted by the subscript ||)
are extended to inˇnity and the remaining m directions (called ®transverse¯ and
denoted by ⊥) are kept ˇnite with m+n = d, and a⊥ and a|| are metric factors and
ρ, σ > 0. In ˇnite directions the corresponding summations are over the vector
q⊥ = {q⊥1, . . . , k⊥m} that takes values in Λm deˇned by q⊥ν = 2πnν/(aN0)
and −(N0 − 1)/2 ≤ nν ≤ (N0 − 1)/2, ν = 1, . . . , m. In inˇnite directions
the sums are substituted with normalized integrals over the corresponding part

of the ˇrst Brillouin zone
[
− π

a
,
π

a

]n
. For our further purposes let us recall

that the continuous limit and ˇnite linear dimension L = N0a mean that the
lattice spacing a → 0 and simultaneously N0 → ∞. Such type of systems, with
a⊥ = a|| = −1/2, is considered in [5], where 0 < ρ, σ < 1. In the large-N
limit, the theory is solved in terms of the gap equation for the parameter λV

related with the ˇnite-volume correlation length of the system. The bulk system
is characterized by a vanishing λ∞ so that the critical temperature

βc =
1

(2π)d

∫ [π/a]d

[−π/a]d

dq
|q⊥|2ρ + |q|||2σ

(2.3)

is ˇnite whenever the effective dimensionality D = m/ρ+ n/σ is greater than 2.
For more details see Ref. [5]. For the system with layer geometry ∞n × Lm the
gap equation has the following form:

β =
1

(2π)n

1
Lm

∫ [π/a]d

[−π/a]d

∑
q⊥εΛm

dnq||
|q⊥|2ρ + |q|||2σ + λV

. (2.4)

Our analysis will be limited to a system between the upper critical dimension
Du = 4 and lower critical one Dl = 2.

3. THE GAP EQUATION FOR THE REFERENCE SYSTEM

Let us introduce the notation

Σ :=
1

(2π)n

1
Lm

∑
q⊥εΛm

∫ [π/a]n

[−π/a]n

dnq||
|q⊥|2ρ + |q|||2σ + λV

. (3.1)
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For n < 2σ and λV → 0, due to the convergence of the corresponding integral
in (3.1) over dnq||, one can extend the integration over all Rn, obtaining

Σ =
1

(2π)n

∫
Rn

dnq||

⎡
⎣ 1

Lm

∑
q⊥εΛm

1
|q⊥|2ρ + |q|||2σ + λV

⎤
⎦ . (3.2)

The n-dimensional integral in (3.2) can be presented as

1
(2π)n

Sn

Lm

∫ ∞

0

∑
q⊥εΛm

pn−1dp

|q⊥|2ρ + p2σ + λV
, (3.3)

where Sn = 2(π)n/2/Γ(n/2) is the surface of the n-dimensional unit sphere.
With the help of the identity∫ ∞

0

pα−1dp
1

t + pη + |q⊥|τ
=

Γ(1 − α
η )Γ(α

η )

η

1

(t + |q⊥|τ )1−
α
η

, η > α > 0,

(3.4)
if we choose α = n, τ = 2ρ and η = 2σ we end up with the result

Σ =
1

(2π)n

SnΓ(1 − n
2σ )Γ( n

2σ )
2σ

1
Lm

∑
q⊥εΛm

1

(λV + |q⊥|2ρ)1−
n
2σ

, 2σ > n.

(3.5)
Now the gap equation (2.4) may be presented in the equivalent form

β =
Sn

(2π)n

Γ(1 − n
2σ )Γ( n

2σ)

2σ

1
Lm

∑
q⊥εΛm

1

(λV + |q⊥|2ρ)1−
n
2σ

, 2σ > n. (3.6)

Let us emphasize that one can relate Eq. (3.6) with a ˇctitious fully ˇnite isotropic
m-dimensional reference system, in which the memory of the anisotropy of the
system is retained only in the parameter

γ := 1 − n

2σ
, 0 < γ < 1, (3.7)

and in the multiplier

An,σ =
Sn

(2π)n

Γ(1 − n
2σ )Γ( n

2σ )
2σ

(3.8)

in front of the sum.
The m-dimensional sum in Eq. (3.6)

W
1− n

2σ
m,2ρ (λV , L) :=

1
Lm

∑
q⊥εΛm

1

(λV + |q⊥|2ρ)1−
n
2σ

, 2σ > n (3.9)
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can be evaluated with the help of the identity [6]

1
(λV + yα)γ

=
∫ ∞

0

dte−yttαγ−1Eγ
α,αγ(−λV tα), (3.10)

in terms of the generalized MittagÄLef	er function Eγ
α,γα(z). If one chooses

α = ρ, γ = 1 − n

2σ
and y = |q⊥|2, the needed result is

W γ
m,2ρ(λV , L) =

∫ ∞

0

dxxγρ−1Eγ
ρ,γρ(−λV xρ)

⎡
⎣ 1

L

∑
qεΛ1

exp (−q2x)

⎤
⎦

m

, γ > 0.

(3.11)
Now let us deˇne

QN0(x) :=
1
L

∑
qεΛ1

exp (−q2x) =
1

aN0

N0/2−1∑
l=−N0/2

exp
(
−4π2l2x

a2N2
0

)
, (3.12)

and using the approximating formula (5.5) of Ref. [11], we have the expression

QN0(x) ∼=
1√
4πx

[
erf

(
πx1/2

a

)]
− 2π2x

3
1
a

exp
[
−
(π

a

)2

x

]
+

+
1√
πx

{ ∞∑
l=1

exp [−(laN0)2/4x]

}
(3.13)

valid in the large-N0 asymptotic regime. The ˇrst and the second terms in the
above equation are size-independent and are precisely the inˇnite volume limit
of QN0(x). The remainder of the calculation involves the insertion of (3.13)
into (3.11). In order to simplify the further calculations, we will consider the
important case m = 1.

4. FINITE-SIZE SCALING FORM OF THE GAP EQUATION

We can represent the right-hand side of Eq. (3.11) as a sum of three terms.
The ˇrst term is given by∫ ∞

0

dxxγρ−1Eγ
ρ,γρ(−λV xρ)

1√
4πx

[
erf

(
πx1/2

a

)]
. (4.1)

Using the deˇnition of erf-function

erf (Λ
√

x)√
4πx

=
1
2π

∫ Λ

−Λ

exp (−xk2)dk (4.2)
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and the identity (3.10), we get

1
2π

∫ π
a

−π
a

dk

∫ ∞

0

dxxγρ−1Eγ
ρ,γρ(−λV xρ) exp (−xk2) =

=
1
2π

∫ π
a

−π
a

dk
1

(λV + k2ρ)1−
n
2σ

. (4.3)

The second term is

−2π2

3a

∫ ∞

0

dxxγρEγ
ρ,γρ(−λV xρ) exp

[
−
(π

a

)2

x

]
= −2γ

3
(π

a )2ρ(γ+1)−1

[λV + (π
a )2ρ]γ+1

.

(4.4)
The third one equals

∫ ∞

0

dxxγρ−1Eγ
ρ,γρ(−λV xρ)

1√
πx

⎧⎨
⎩

∞∑
j=1

exp [−(jL)2/4x]

⎫⎬
⎭ . (4.5)

It is convenient to write Eq. (4.5) in terms of the function (particular case of the
Jacobi Θ3 function)

A(x) ≡
+∞∑

n=−∞
e−xn2

(4.6)

and the universal ˇnite-size scaling function

F γ
m,2ρ(y) =

1
(2π)γ2ρ

∫ ∞

0

dxxγρ−1Eγ
ρ,γρ

(
− xρ

(2π)2ρ
y

)[
Am(x) − 1 −

(π

x

)m
2
]

.

(4.7)
This can be done with the help of the Poisson transformation formula

A(x) =
√

π

x
A

(
π2

x

)
(4.8)

and the identity ∫ ∞

0

dxxγρ−1Eγ
ρ,γρ (−xρ) = 1, ρ > 0. (4.9)

After some algebra the result for the third term is

L2γρ−1

[
F γ

1,2ρ(λV L2ρ) +
1

(λV L2ρ)γ

]
. (4.10)

Collecting the above results for Eq. (3.11) if m = 1, we obtain
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W γ
1,2ρ(λV , L) =

1
2π

∫ π
a

−π
a

dk
1

(λV + k2ρ)1−
n
2σ

− 2γ

3
(π

a )2ρ(γ+1)−1

[λV + (π
a )2ρ]γ+1

+

+L2γρ−1

[
F γ

1,2ρ(λV L2ρ) +
1

(λV L2ρ)γ

]
, γ ≡ 1 − n

2σ
> 0. (4.11)

The ˇrst term is exactly the bulk limit W γ
1,2ρ(λV ,∞). The difference between

it and the sum W γ
1,2ρ(λV , L) results from the second and third terms. The second

term in the considered regime λV → 0 and a → 0 is of order O

(
1

π/a

)
and must

be omitted. In the third term apart from the factor L2γρ−1 the intrinsic scaling
combination

y = λV L2ρ = (L/ξ⊥,L)2ρ (4.12)

emerges, where ξ⊥,L is the ˇnite-size transverse correlation length (see [5]). If
we introduce the notations

K := K(σ, n, m) ≡ A−1
n,σβ, (4.13)

then (3.6) can be rewritten as (m = 1)

K − Kc
∞ = W γ

1,2ρ(λV , L) − W γ
1,2ρ(0,∞), (4.14)

where

Kc
∞ := Kc

∞(σ, ρ, n, m = 1) ≡ W γ
1,2ρ(0,∞) =

1
2π

∫ π
a

−π
a

dk
1

(k2ρ)γ (4.15)

is the inverse critical temperature (normalized with An,σ) of the ®isotropic¯ bulk
system. By substitution of Eq. (4.11) into Eq. (4.14), taking into account the
small-argument expansion

W γ
1,2ρ(λV ,∞) =

1
2π

∫ π
a

−π
a

dk
1

(λV + k2ρ)γ � Kc
∞ +

1
2π

λ
1
2ρ −γ

V ×

×
∫ ∞

0

dx
xγρ − (1 + xρ)γ

xγρ+1/2 (1 + xρ)γ (4.16)

valid for a → 0 and λV → 0 (the integral over x converges, provided 1 > 2γρ >
1 − 2ρ), for the gap equation (2.4) we obtain the scaling form

x ≈ −a(γ, ρ, σ)yD/2−1 + F γ
1,2ρ(y) +

1
yγ

, (4.17)
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where
x = L2ρ(D/2−1)(K − Kc) (4.18)

and (see also Eq. (3.8))

a(γ, ρ, σ) = Dγ,ρ/A1,σ, Dγ,ρ =
1
2π

∫ ∞

0

dx
xργ − (1 + xρ)γ

(1 + xρ)γxργ+1/2
, 2 > D/2 > 1.

(4.19)

5. FINITE-SIZE CORRECTIONS

Given the gap equation in scaling form, we are now in a position to explore
the various ˇnite-size corrections. Here, we look at different regimes: crossover
to the thermodynamic critical behaviour deˇned by the condition y � 1 and
ˇnite-size scaling regime y ∼ 1.

A. y � 1.
The ˇnite-size correction to the bulk critical behaviour can be extracted from

the asymptotic form of the functions F γ
d,σ(y) at large argument y � 1 (see [6]).

The result is

F γ
1,2ρ(y) � −y−γ +

[
22ρ+1γπ− 1

2
Γ
(

1+2ρ
2

)
Γ (−ρ)

∞∑
l=1

1
l1+2ρ

]
y−(1+γ). (5.1a)

Further Eq. (5.1a) can be simpliˇed using the deˇnition of Rieman zeta function
and the relation

Γ(1+2ρ
2 )

Γ(−ρ)
ζ(1 + 2ρ) = π1/2+2ρζ(−2ρ). (5.1b)

The ˇnal result is

F γ
1,2ρ(y) � −y−γ +

[
2γ(2π)2ρζ(−2ρ)

]
y−(1+γ). (5.2)

Using Eq. (5.2) for the gap equation (2.4), we obtain

x ≈ −a(γ, ρ, σ)yD/2−1 +
[
2γ(2π)2ρζ(−2ρ)

]
y−(1+γ), y � 1. (5.3)

As one can see, the ˇnite-size effects governed by the second term in the right-
hand side of Eq. (5.2) vary as an algebraic power of the variable y. Since
ζ(−2ρ) = 0 for ρ = k, k is a natural number, there are no power law dependent
ˇnite-size corrections if ρ = k. The case 0 < ρ < 1 corresponds to the long-range
interaction. For ρ = 1 corresponding to the short-range interaction, the result for
the universal ˇnite-size scaling function is

F γ
1,2(y) � −y−γ +

[
1

2γΓ(γ)

]
y−γ

2 e−
√

y, (5.4)
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which corresponds to exponential fall of ˇnite-size corrections in Eq. (5.3). And
as long as ρ > 1 is not an integer, the power law corrections take place in the
case of the so-called subleading LR interaction [11] but with strong anisotropy.

B. y ∼ 1.
In order to consider the case of y ∼ 1, we will derive a new representation

for F γ
1,2ρ(y) and rewrite Eq. (4.17) in a form suitable for obtaining the shift of

the bulk critical temperature. First, we represent the integral in Eq. (4.7) as a
sum of three terms. The ˇrst term is given by

(y− 1
ρ )γρ

∫ ∞

0

dttργ−1

[
Eγ

ρ,ργ(−tρ) − 1
Γ(ργ)

][
A

(
4π2t

y
1
ρ

)
− 1

]
≡ Sρ,γ(y

1
ρ ),

(5.5)
the second term is

− 1
2
√

πyγ−1/2ρ

∫ ∞

0

dttργ−3/2

[
Eγ

ρ,ργ(−tρ) − 1
Γ(ργ)

]
≡ − 1

yγ−1/2ρ
D̃γ,ρ, (5.6)

and the third one equals the constant (provided 1 > 2γρ)

1
Γ(ργ)

1
(2π)γ2ρ

∫ ∞

0

dxxγρ−1

[
A(x) − 1 −

(π

x

) 1
2
]
≡ Cγ,ρ = F γ

1,2ρ(0). (5.7)

Let us now calculate the function Sρ,γ(y
1
ρ ) and the constants D̃γ,ρ and Cγ,ρ.

Making use of the identity (see Eq. (3.10))

∫ ∞

0

dte−zttαγ−1

[
Eγ

α,αγ(−tα) − 1
Γ(αγ)

]
=

zαγ − (1 + zα)γ

(1 + zα)γzαγ
, (5.8)

we represent Eq. (5.5) as

Sρ,γ(y
1
ρ ) = 2

∞∑
l=1

(4π2l2)ργ − [y + (4π2l2)ρ]γ

(4π2l2)ργ [y + (4π2l2)ρ]γ
. (5.9)

To calculate D̃γ,ρ, in Eq. (5.6), we ˇrst write

t−1/2 =
1

π1/2

∫ ∞

0

dxx−1/2e−tx, (5.10)

then by using the identity (5.8) we take the integral over t, and then

D̃γ,ρ =
1
2π

∫ ∞

0

dx
xργ − (1 + xρ)γ

(1 + xρ)γxργ+1/2
, (5.11)
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i. e. D̃γ,ρ and Dγ,ρ coincide. Collecting Eqs. (5.5), (5.6) and (5.7) for (4.7) we
get

F γ
1,2ρ(y) = F γ

1,2ρ(0)−y
1−2γρ

2ρ Dγ,ρ+2
∞∑

l=1

(4π2l2)ργ − [y + (4π2l2)ρ]γ

(4π2l2)ργ [y + (4π2l2)ρ]γ
, 1 > 2γρ.

(5.12)
Finally, substituting Eq. (5.12) in Eq. (4.11) we have

W γ
1,2ρ(λV , L) � 1

2π

∫ π
a

−π
a

dk
1

(k2ρ)γ + Dγ,ρL
−2ρ(D/2−1)yD/2−1+

+ L−2ρ(D/2−1)

[
F γ

1,2ρ(y) +
1
yγ

]
, γ > 0, (5.13)

and taking into account the expansion (4.16) we obtain the gap equation in the
form

x � F γ
1,2ρ(0) + 2

∞∑
l=1

(4π2l2)ργ − [y + (4π2l2)ρ]γ

(4π2l2)ργ [y + (4π2l2)ρ]γ
+

1
yγ

. (5.14)

Therefore, when K → Kc
∞, simultaneously with L → ∞, in the way prescribed

by the equation

K = Kc
∞ +

x

L2ρ(D/2−1)
(5.15)

with x = O(1), the leading-order asymptotic form of λV is given by

λV � y(x)
L2ρ

, (5.16)

where y(x) is the positive solution of Eq. (5.14).
Let us remind that when the number of inˇnite dimensions is less than the

lower critical dimension, the singularities of the bulk thermodynamic functions
are rounded and no phase transition occurs in the ˇnite-size system. Nevertheless,
one can deˇne a pseudocritical temperature, corresponding to the position of the
smeared singularities of the ˇnite-size thermodynamic functions, and study its
shift with respect to the bulk value of the critical temperature. In the case under
consideration the ˇrst term in the right-hand side of Eq. (5.14) is identiˇed with
the shift of the ˇnite-size pseudocritical temperature. Actually, for the sake of
convenience here we study the quantity K . The corresponding result for the
pseudocritical Kc

L is
Kc

L − Kc
∞ = L−λF γ

1,2ρ (0) , (5.17)

i. e. the shift critical exponent is λ = 1/ν⊥; ν⊥ = 1/ρ(D − 2), in accordance
with standard ˇnite-size scaling conjecture, see [1]. The coefˇcient F γ

d−n,σ(0)
can be evaluated analytically as well as numerically for different values of the
free parameters d, ρ and γ using the method developed in [10].
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6. CONCLUSIONS

We show how the mathematical difˇculties that arise in the considered
anisotropic model with mixed geometry can be avoided Å using the identity
(3.4), the problem is effectively reduced to the corresponding isotropic one re-
lated to a fully ˇnite reference system, Eq. (3.6). A further step is the recognition
that with the help of the identity (3.10) the appearance of γ = 1 in the summand
of the gap equation (3.6) is not an obstacle for an analytical treatment. Knowl-
edge of the properties of the generalized MittagÄLef	er function allows one to
fulˇl all calculations analytically. We show that though the system is strongly
anisotropic, the corresponding gap equation (4.17) for the intrinsic scaling vari-
able y = λV L2ρ has a form similar to the isotropic case with geometry LD(cf.
Eq. (4.115) in [1]). The subsequent calculations veriˇed the ˇnite-size scaling
hypothesis in its standard form. The conjecture that ˇnite-size scaling in our
system with layer geometry Lm ×∞n was the naturally expected one was done
in [5]. We are much more interested in the explicit form of the scaling equation
in different regimes. As a result, we conclude that the ˇnite-size contributions
to the thermodynamic behaviour decay algebraically as a function of L only if
0 < ρ = k, where k is a natural number. In the opposite case, the ˇnite-size
contributions decay exponentially as a function of L. The phenomenon that the
so-called subleading terms (in our terminology the term with ρ > 1) lead to
dominant ˇnite-size contributions, being unimportant in the bulk limit, was ˇrst
discussed in Ref. [11]. This characteristic feature of the long-range interactions
is also revealed in our consideration.
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