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Finite-Size Scaling in Systems with Strong Anisotropy:
An Analytical Example

The difficulties arising in the investigation of finite-size scaling in d-dimensional
O(N) systems with strong anisotropy and/or long-range interactions, decaying with
the interparticle distance r as r~¢~7, are avoided using a technics of calculations
based on the analytical properties of the generalized Mittag—Leffler functions. In
the case under consideration strong anisotropy means a system with geometry L™ x
oo™;m +n = d and the value of the exponent ¢ depends on the direction.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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1. INTRODUCTION

In contrast to the theory of finite-size scaling in isotropic systems (see
e.g. [1-3]), the theory of finite-size scaling in anisotropic systems is still a
field under discussions (see e.g. [4,5] and Refs. therein). The problems that
arise are, not at least, related to the increasing mathematical difficulties due to
the lattice direction dependence of the interactions. Notice that, due to the choice
of parametrization that has to reduce the many-dimensional problem to an effec-
tive one-dimensional one, the pertinent mathematically ensuing integrals can be
evaluated only numerically.

Recently [6], a recipe based on some useful analytical properties of the
generalized Mittag—Leffler functions is suggested. It permits one to consider
isotropic and some anisotropic systems on an equal footing. The generalized
Mittag—Leffler functions are defined by the power series [7] (see also [8,9])

Y _ _\IJk =
E(y,ﬁ(’z) = kEZO Tlak +5) B a,B,7€C, Re(a)>0. (1.1)

Here
L(k+7)
T'(y)

These functions are named after Mittag—Leffler who first introduced the particular
case with § = v = 1. The interest in this type of functions has grown up because
of their applications to some finite-size scaling problems (see e.g. [1-3]). The
present study is an illustration of the possibilities to handle the final expressions
of the scaling equations for anisotropic systems analytically.

2. THE MODEL

In this paper we restrict our attention to the N-vector spin model defined at
the sites of the lattice. The Hamiltonian of the model reads

H=-N> J(z-y).0,, (2.1)
‘T7y

where o, is a classical N-component unit vector defined at site 2 of the lattice
and the spin—spin coupling decays with different power-laws in different lattice



directions. We assume a d-dimensional system with geometry L™ x oo™ under
periodic boundary conditions in the finite dimensions. The interaction between
spins enters the expressions of the theory only through its Fourier transform. We
will consider the following anisotropic small q expansion of the Fourier transform
of the spin—spin coupling:

J(q) ~ J(0) + aylqy [*7 + arlq.*, 2.2)

where the first n directions (called «parallel» and denoted by the subscript ||)
are extended to infinity and the remaining m directions (called «transverse» and
denoted by 1) are kept finite with m+n = d, and a, and a)| are metric factors and
p,o > 0. In finite directions the corresponding summations are over the vector
a1 = {qu11,...,kim} that takes values in A™ defined by ¢, = 2mn,/(aNp)
and —(Ng —1)/2 < n, < (No—1)/2,v = 1,...,m. In infinite directions

the sums are substituted with normalized integrals over the corresponding part
. . O
of the first Brillouin zone [— —,—| . For our further purposes let us recall

that the continuous limit and ﬁ?lite linear dimension L = Npa mean that the
lattice spacing a — 0 and simultaneously Ny — co. Such type of systems, with
a; = a) = —1/2, is considered in [5], where 0 < p,o0 < 1. In the large-N
limit, the theory is solved in terms of the gap equation for the parameter \y
related with the finite-volume correlation length of the system. The bulk system
is characterized by a vanishing A, so that the critical temperature

1 [7/a]® dq
Bo= / 4 23)
2m)4 i jape laL|? + |q|?

is finite whenever the effective dimensionality D = m/p+n/o is greater than 2.
For more details see Ref. [5]. For the system with layer geometry co™ x L™ the
gap equation has the following form:

8= / " A . (2.4)
27T m [ C1J_|2p+|CI|||2”+)\V

71'/(1]‘1 aL eAnL

Our analysis will be limited to a system between the upper critical dimension
D,, = 4 and lower critical one D; = 2.

3. THE GAP EQUATION FOR THE REFERENCE SYSTEM

Let us introduce the notation

[7/a]™

d"q

@2m)n Lm q;,”/ w/aln AL+ ]q27 + Ay

3.1



For n < 20 and Ay — 0, due to the convergence of the corresponding integral
in (3.1) over d”qH, one can extend the integration over all R", obtaining

1 1 1
N / g | — (32
@y Jp O U T q§m, la > + |y |*7 + Av

The n-dimensional integral in (3.2) can be presented as

pn—ldp
, 3.3
/ Z qL|? +p?7 + Av 33)

qL eA™

where S, = 2(7)"/2/T(n/2) is the surface of the n-dimensional unit sphere.
With the help of the identity

/ p*dp = Sk LA = 1>a>0
0 t+pT+ladL] U (t+lai])'
(3.4)
if we choose a« = n, 7 = 2p and nn = 20 we end up with the result
1 S, I(
222 (1- 2 ) 2:; Lm Z - - 20 > n.
(@m)" o B A»z+—|qL| Py
(3.5)
Now the gap equation (2.4) may be presented in the equivalent form
S, Tl—3)T(55 1 1
b= ; “L_m 3 —  20>n. (36)
i v oS O HlaLf) ™%

Let us emphasize that one can relate Eq. (3.6) with a fictitious fully finite isotropic
m-dimensional reference system, in which the memory of the anisotropy of the
system is retained only in the parameter

7::1—%, 0<n~y<1, (3.7)

and in the multiplier

A Se D=2

7= (2 % 38)

in front of the sum.
The m-dimensional sum in Eq. (3.6)

vv;n2 " (Av, L) : >
’ ”%MAw+mw>%

20 >n 3.9
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can be evaluated with the help of the identity [6]
1
= dte Vit —1EY Avt®), 3.10
(/\V + ya)'y A o a'y( |4 ) ( )
in terms of the generalized Mittag-Leffler function EJ _,(2). If one chooses

a=p y=1- % and y = |q, |?, the needed result is

w, 2 (Av, L / dxx P~ 1EV (=Avz”) Z exp(—¢*z)| , y>0.
qu1
(3.11)
Now let us define
No/2—1 219

1 4relcx
Qn, () : Z exp (—¢%x) A Z exp <_W> , (3.12)

qu1 0 I=—Nq/2 0

and using the approximating formula (5.5) of Ref. [11], we have the expression

ez ()] e 2
+—{Zexp (laNp) /4x]} (3.13)

valid in the large-Ny asymptotic regime. The first and the second terms in the
above equation are size-independent and are precisely the infinite volume limit
of Qn,(z). The remainder of the calculation involves the insertion of (3.13)
into (3.11). In order to simplify the further calculations, we will consider the
important case m = 1.

QNO ((L’) =

4. FINITE-SIZE SCALING FORM OF THE GAP EQUATION

We can represent the right-hand side of Eq. (3.11) as a sum of three terms.
The first term is given by

[e'e] 1 7.[.1/,1/2
dzz"P " EY . (=Aya” erf . 4.1
/ i ] v
Using the definition of erf-function
f(A 1A
erf (AVz) _ _/ exp (—zk?)dk 4.2)
4tz 2w J_a



and the identity (3.10), we get

1 [@ oo
o . dk‘/o dm;ﬂP*lEpvﬁp(_Avxp) exp (—ku) _

1 [a 1
= dk—————. (4.3)
2r Jo= Ay +k2) 20

a

The second term is

N 2 27 (a)Qp(erl)*l
/ dzz’E} . ,(=Ava”) exp {_ (_) x} -3 W

a
4.4)

The third one equals
/0 dxx’P~ 1EZW( )\pr Zexp (jL)*/4x] 3 . (4.5)

It is convenient to write Eq. (4.5) in terms of the function (particular case of the
Jacobi ©3 function)
= Z e (4.6)

n——oo

and the universal finite-size scaling function

o (y) = ﬁ/j dex?VEY <—$y> [Am(x)—l— (g)_]

4.7
This can be done with the help of the Poisson transformation formula
s w2
Ax) =4/—-A (—) (4.8)
x x
and the identity
/ dxxP~ 1E7 ( 2¥)y=1, p>0. (4.9)
After some algebra the result for the third term is
1
2yp—1 | v 2
L=P |:F172p(/\vL )+ m (4.10)

Collecting the above results for Eq. (3.11) if m = 1, we obtain



1 [ 1 2y (Z)2eOrHD—1
Wiy, (Av, L) = — dk — — ——2
LA, 1) =57 /_g Ow k)% 3 Dw + (0P

1
4121 [Fﬂg,)(AVLQP) + v} , y=1- % > 0. (4.11)

(Av L)

The first term is exactly the bulk limit Wf 25(Av, 00). The difference between
it and the sum Wf 2p(Av, L) results from the second and third terms. The second

. . . . 1
term in the considered regime Ay, — 0 and @ — 0 is of order O <7> and must
m/a
be omitted. In the third term apart from the factor L27~! the intrinsic scaling
combination

y = L* = (L/¢ 1)% (4.12)

emerges, where £ 1 is the finite-size transverse correlation length (see [5]). If
we introduce the notations

K := K(o,n,m) = A, ., (4.13)

then (3.6) can be rewritten as (m = 1)

K — K =W/,,(A\v, L) = W/,,(0,00), (4.14)

where
K¢ = K¢ =1)=W/, (0 —i gdk; 4.15
oo T oo(o'vpvnam* )* 1,2p( 700) T or . (kJQ/’)’Y (4.15)

is the inverse critical temperature (normalized with A,, ) of the «isotropic» bulk
system. By substitution of Eq. (4.11) into Eq. (4.14), taking into account the
small-argument expansion

a 1
dk——
jus ()\V + k2p)7

B P — (1 + xp)V
X /0 de 2P +1/2 (1 4 gr)” (4.16)

e

N 1 c 15—
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valid for a — 0 and Ay — O (the integral over x converges, provided 1 > 2yp >
1 — 2p), for the gap equation (2.4) we obtain the scaling form

1

x~ —a(y,p,0)y" P + F,,(y) + el (4.17)



where
x=LP2-0(K — K,) (4.18)

and (see also Eq. (3.8))

1 Ood P — (1 + zP)?
x

2r J, (1 + zP)vaPr+1/2’

a(%Pa J) = Dv,p/Al,aa D’y,p = 2> D/2 > 1.

(4.19)

5. FINITE-SIZE CORRECTIONS

Given the gap equation in scaling form, we are now in a position to explore
the various finite-size corrections. Here, we look at different regimes: crossover
to the thermodynamic critical behaviour defined by the condition y > 1 and
finite-size scaling regime y ~ 1.

Ay > 1.

The finite-size correction to the bulk critical behaviour can be extracted from
the asymptotic form of the functions FJ »(y) at large argument y >> 1 (see [6]).
The result is

142
R =~ [2ortant LR S e g
1,2p - 0 F(—p) — l1+2p : .

Further Eq. (5.1a) can be simplified using the definition of Rieman zeta function
and the relation

L+T2p)q(l +2p) = w/2T20¢(—2p) (5.1b)
L'(—=p) ' '
The final result is
o, (y) = =y~ + [29(2m)*¢(=2p)] y~ ). (5.2)

Using Eq. (5.2) for the gap equation (2.4), we obtain
z & —aly, p,o)y? P+ [29(2m)*¢(=20)] y T,y > 1 (53)

As one can see, the finite-size effects governed by the second term in the right-
hand side of Eq. (5.2) vary as an algebraic power of the variable y. Since
¢(—=2p) = 0 for p = k, k is a natural number, there are no power law dependent
finite-size corrections if p = k. The case 0 < p < 1 corresponds to the long-range
interaction. For p = 1 corresponding to the short-range interaction, the result for
the universal finite-size scaling function is

1 v
T ) oy e vi
Floy) = -y 7 + [2711(7)] y ze VY, 5.4



which corresponds to exponential fall of finite-size corrections in Eq. (5.3). And
as long as p > 1 is not an integer, the power law corrections take place in the
case of the so-called subleading LR interaction [11] but with strong anisotropy.
B.y ~ 1.
In order to consider the case of y ~ 1, we will derive a new representation
for Ff 2,(y) and rewrite Eq. (4.17) in a form suitable for obtaining the shift of
the bulk critical temperature. First, we represent the integral in Eq. (4.7) as a

sum of three terms. The first term is given by
(y~r w/ P B (—tP) — = a(20) g = S, (y7)
L(pv) yr S

(5.5)
the second term is
1 > a0 | 1 1 -
_ PY=3/2 | BV (4P _ = _
v, W B = | = D 69

and the third one equals the constant (provided 1 > 2vyp)

1 1 oo r %
) (2m)720 /0 dea??” Alw) =1 - (E) ] =0y, = F1’y72p(0)- (5.7)

X

Let us now calculate the function Spﬁ(y%) and the constants D, , and C., ,.
Making use of the identity (see Eq. (3.10))

> —zt 1 ay 1 _ a’y_(l—’—z)
/O dte= 47~ {ng( ) F(av)] e (5.8)

we represent Eq. (5.5) as

wh -2y S e 59)
— T [y + (4m212)r]y
To calculate D, ,, in Eq. (5.6), we first write
= / dez™e” (5.10)
then by using the identity (5.8) we take the integral over ¢, and then
D L R el Ch (5.11)

’Y;p:% o x(1+xp),yxp,y+1/27



i.e. D%p and D, , coincide. Collecting Eqs. (5.5), (5.6) and (5.7) for (4.7) we
get

212\pvy __ 2712\p
. g 1-24 (47=1%) [y + (4721%)P]"
F1,2p(y) = F172p(0)_y 2 —yp—l-ZZ 47T212 Py + @22y 1> 2vp.
(5.12)
Finally, substituting Eq. (5.12) in Eq. (4.11) we have

1 - — _
Wia,(Av, L) = o ﬂ%%m<H%M2MﬂDfmq

1
+ L72(P/2-1) {Fﬂgp(y) + 7] , 7>0, (5.13)
: y

and taking into account the expansion (4.16) we obtain the gap equation in the
form
o0
(4m212)P7 — 4221
E T y+ @) 1 (5.14)
(4m212)7 [y + (4m22)P]r -y

x ':Ff_Qp

Therefore, when K — K go, 51multaneously with . — oo, in the way prescribed

by the equation
x

with = O(1), the leading-order asymptotic form of Ay is given by
_yl=)
Ay T2 (5.16)

where y(x) is the positive solution of Eq. (5.14).

Let us remind that when the number of infinite dimensions is less than the
lower critical dimension, the singularities of the bulk thermodynamic functions
are rounded and no phase transition occurs in the finite-size system. Nevertheless,
one can define a pseudocritical temperature, corresponding to the position of the
smeared singularities of the finite-size thermodynamic functions, and study its
shift with respect to the bulk value of the critical temperature. In the case under
consideration the first term in the right-hand side of Eq. (5.14) is identified with
the shift of the finite-size pseudocritical temperature. Actually, for the sake of
convenience here we study the quantity K. The corresponding result for the
pseudocritical K7 is

Kj— K =L F,,(0), (5.17)
i.e. the shift critical exponent is A = 1/v ;v = 1/p(D — 2), in accordance
with standard finite-size scaling conjecture, see [1]. The coefficient F} n, -(0)
can be evaluated analytically as well as numerically for different values of the
free parameters d, p and ~y using the method developed in [10].



6. CONCLUSIONS

We show how the mathematical difficulties that arise in the considered
anisotropic model with mixed geometry can be avoided — using the identity
(3.4), the problem is effectively reduced to the corresponding isotropic one re-
lated to a fully finite reference system, Eq. (3.6). A further step is the recognition
that with the help of the identity (3.10) the appearance of v # 1 in the summand
of the gap equation (3.6) is not an obstacle for an analytical treatment. Knowl-
edge of the properties of the generalized Mittag—Leffler function allows one to
fulfil all calculations analytically. We show that though the system is strongly
anisotropic, the corresponding gap equation (4.17) for the intrinsic scaling vari-
able y = Ay L?” has a form similar to the isotropic case with geometry L (cf.
Eq. (4.115) in [1]). The subsequent calculations verified the finite-size scaling
hypothesis in its standard form. The conjecture that finite-size scaling in our
system with layer geometry L™ x oo™ was the naturally expected one was done
in [5]. We are much more interested in the explicit form of the scaling equation
in different regimes. As a result, we conclude that the finite-size contributions
to the thermodynamic behaviour decay algebraically as a function of L only if
0 < p # k, where k is a natural number. In the opposite case, the finite-size
contributions decay exponentially as a function of L. The phenomenon that the
so-called subleading terms (in our terminology the term with p > 1) lead to
dominant finite-size contributions, being unimportant in the bulk limit, was first
discussed in Ref. [11]. This characteristic feature of the long-range interactions
is also revealed in our consideration.
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