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1. INTRODUCTION

Over the last century various urn models were used to gain understanding
of convergence towards equilibrium in many-particle systems. One of the most
popular classes of urn models comprises various modiˇcations of the Ehrenfest
model [1]. For recent activity in the area see [2, 3, 6, 7]. The less popular
BernoulliÄLaplace model (see Ch. XV of the book [11]) is closely related to the
Ehrenfest model.

Within the Ehrenfest model we are looking at balls numbered 1, 2, . . . , N
that can occupy urn A and urn B. In the initial state all balls occupy urn A. At
regular time intervals, t1, t2, t3, . . ., a number from 1 to N is chosen at random
(from the uniform distribution), and the corresponding ball changes its urn. The
®macroscopic¯ state of the system of N balls at time t is identiˇed with the
number of balls, n(t), in urn A. The evolution of the distribution of the state
variable, Pk(tl) ≡ Pr[n(tl) = k], is described by the master equation

Pk(tl+1) =
k + 1

N
Pk+1(tl) +

N − k + 1
N

Pk−1(tl). (1)

Within the BernoulliÄLaplace model we have 2N balls of two colours (say,
N black balls numbered 1, 2, . . . , N and N red balls numbered N + 1, N +
2, . . . , 2N ). Urns A and B always contain exactly N balls of either color. In the
initial state, all black balls occupy urn A and all red balls Å urn B. At regular
time intervals, t1, t2, t3, . . ., two balls (one ball from urn A, another from urn B)
are chosen at random and permuted. The ®macroscopic¯ state of the system of
2N balls at time t is identiˇed with the number of black balls, n(t), in urn A. The
evolution of the distribution of this variable, Pk(tl) ≡ Pr[n(tl) = k], is described
by the master equation

Pk(tl+1) =
2k

N

(
1 − k

N

)
Pk(tl) +

(k + 1)2

N2
Pk+1(tl) +

(
1 − k − 1

N

)2

Pk−1(tl).

Generating functions are frequently used to ˇnd the equilibrium distribution of
the state variable in the Ehrenfest model, and the evolution of the expected values
E(n(t)), E(n2(t)), etc. [5]. In particular, for the initial condition n(t0) = N the
formulae derived by Kac [5] yield

E(n(tm)) =
N

2

[
1 +

(
1 − 2

N

)m]
(2)
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and

E(n2(tm)) =
N(N + 1)

4
+

N2

2

(
1 − 2

N

)m

+
N(N − 1)

4

(
1 − 4

N

)m

.

Despite the relative simplicity of the method, it is difˇcult to ˇnd a manage-
able expression for nonequilibrium distribution of the state variable n(t) using
generating functions.

The analytical structure of the Ehrenfest model is closely related to that of
a chain of noninteracting quantum spins [4]. It turns out that the analytical
structure of the BernoulliÄLaplace model is related to that of the mean-ˇeld hard-
core lattice gas [8, 9] and of the LiebÄMattis (anti)ferromagnet [10]. Therefore,
technically, the BernoulliÄLaplace models is signiˇcantly more complicated than
the Ehrenfest model, although, as we will see, the main features of the two models
are very similar.

Indeed, Figs. 1 and 2 show evolutions of the Ehrenfest and BernoulliÄLaplace
models generated by a computer using pseudo-random numbers, together with
the evolution of E(n(t)) given by Eq. (2). From the pictures one can guess
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Fig. 1. Evolution of the state variable n(t) (circles) in the discrete-time Ehrenfest model
for N = 1000. The dots show the evolution of the expected value En(t), see Eq. (2)

that expected values of n(t) within the Ehrenfest and BernoulliÄLaplace models
coincide. In Sec. 3 we will conˇrm the coincidence of the expected values by
a direct calculation. The only difference between the paths in Figs. 1 and 2 is
noticeably smaller 	uctuations around the expected value in the BernoulliÄLaplace
model.
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In this paper, we actually look at a continuous-time version of the Ehrenfest
model, where the balls are no longer restricted to jump at regular time intervals.
Note that setting �t ≡ tl+1 − tl = (λN)−1 and dividing master equation (1) by
(λN)−1 we obtain

Pk(tl+1) − Pk(tl)
�t

= λ(k + 1)Pk+1(tl) + λ(N − k + 1)Pk−1(tl) − λNPk(tl).

Therefore, it is reasonable to deˇne the master equation for the continuous-time
Ehrenfest model as follows:

1
λ

dPk(t)
dt

= (k + 1)Pk+1(t) + (N − k + 1)Pk−1(t) − NPk(t). (3)

The analytic solution of the last equation is well known in the theory of conti-
nuous-time Markov processes, see, e.g., Eq. (7.26) in Ch. XVII of the book [11].
Nevertheless, in Sec. 2 we rederive the solution of Eq. (3) by a probabilistic
argument.
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Fig. 2. Evolution of the state variable n(t) (discs) in the BernoulliÄLaplace model for
N = 1000. To isolate structural differences between the two models, the same sequence
of ®underlying¯ pseudo-random numbers as in Fig. 1 was used in the simulations. The
dots show the evolution of the expected value En(t), see Eq. (2)

To ˇnd a microscopic model which evolution is described by master Eq. (3),
we consider a system of N independent balls which jump from urn A to urn B
and back driven by a Poisson process with parameter λ. We stress that each of
the N balls is driven by an independent Poisson process. In the initial state all
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the balls occupy urn A. The ®macroscopic¯ state of the system of N balls at time
t is still the number of balls, n(t), in urn A.

A short calculation shows that the master equation for the distribution of the
state variable n(t) for the system of independent balls coincides with Eq. (3). On
the other hand, this system is simple enough to allow a direct calculation of the
distribution Pk(t) ≡ P [n(t) = k] of the state variable.

The rest of the paper is organized as follows. In Sec. 2 we derive and
analyze the nonequilibrium distribution for the state variable n(t) within the
continuous-time version of the Ehrenfest model. In Sec. 3 we derive and analyze
the distributions for the state variable n(t) within the BernoulliÄLaplace model.
In Sec. 4 we present numerical results and discuss the overall picture.

2. THE EHRENFEST MODEL

To ˇnd the distribution Pk(t) of the state variable n(t) within the continuous-
time Ehrenfest model, let us call ®Success¯ (®Success(t)¯ would be more precise
at the expense of being more cumbersome) the event ®A given ball is in urn A
at time t¯. Note that we can treat the N independent balls as a sequence of N
Bernoulli trials with success probability p = Pr[®Success¯]. Then the probability
of having exactly k balls at time t in urn A is given by the binomial distribution
(the probability of exactly k successes in N trials)

Pk(t) =
(

N
k

)
pk(1 − p)N−k.

To ˇnd the success probability p, recall that the number of jumps, J , made
by a single ball over the time interval [t0, t] is given by the Poisson distribution

Pr[J = m] =
[λ(t − t0)]m

m!
exp[−λ(t − t0)].

Since all balls are in urn A at time t0, a given ball is in urn A at time t if it
made an even number of jumps over the interval [t0, t]. Therefore the success
probability is given by

p =
∞∑

j=0

[λ(t − t0)]2j

(2j)!
exp[−λ(t − t0)] =

1 + exp[−2λ(t − t0)]
2

.

On substitution of the success probability in the binomial distribution, we obtain

Pk(t) =
(

N
k

) (
1 + exp[−2λ(t − t0)]

2

)k (
1 − exp[−2λ(t − t0)]

2

)N−k

. (4)
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Substitution in Eq. (3) shows that Pk(t) is a solution of the master equation for
the continuous-time Ehrenfest model.

The reason for simplicity of the distribution of the state variable n(t) is not
just the continuity of time, but rather the independence of the balls 1, 2, . . . , N .
Indeed, it is possible to obtain a similar result for a system of independent balls
restricted to jump at regular time intervals only (like in the original Ehrenfest
model).

Now we pass to our main task of ˇnding the asymptotic behaviour of the
distribution Pk(t) ≡ Pr[n(t) = k]. First of all, note that

lim
t→∞

Pk(t) =
1

2N

(
N
k

)
,

which is the stationary (binomial) distribution found by Kac [5].
If N is large (as it is usually assumed to be) a binomial distribution with

parameters N and p is virtually identical to a normal distribution. Therefore,
we can replace all our binomial random variables by, technically much more
convenient, normal random variables as follows:

n(t) ≈ E[n(t)] + Z(t)
√

Var[n(t)],

where Z(t) is a standard normal random variable. Note that the above formula
is asymptotically exact in the limit of large N . For the state variable in the
continuous-time Ehrenfest model we obtain

n(t) ≈ 1 + exp[−2λ(t − t0)]
2

N + Z(t)

√
1 − exp[−4λ(t − t0)]

4
N.

The asymptotically normal distribution of the state variable n(t) was obtained as
a solution of the FokkerÄPlanck equation in the recent paper [3].

From the above formula we see that the evolution of n(t) contains two
components: a deterministic evolution of the expected value and a stochastic
®jitter¯ of order

√
N . As usual, it is convenient to separate the kinetic (initial)

and diffusion (quasi-equilibrium) stages of evolution. In the kinetic stage, changes
in expected values dominate over stochastic ®jitter¯. In the diffusion stage,
the magnitude of change in expected values, over a unit time-interval, and the
magnitude of stochastic ®jitter¯ are of the same order,

√
N in our case.

In the kinetic stage of the Ehrenfest model both the mean value of the
state variable and the variance of stochastic ®jitter¯ race toward their equilibrium

values,
1
2
N and

1
4
N , respectively. To get to the diffusion stage of evolution, we

have to shift time from t0 (the beginning of evolution) by an amount T (N) such
that

e−2λT (N)N = c
√

N.
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The last equation makes sure that the rate of change in expected value is com-
parable with the magnitude of stochastic ®jitter¯. For instance, we can choose

T (N) =
1
4λ

log N .

Thus, to pass to the diffusion stage we have to introduce a new (diffusion)

time-zone τ , via t = t0 +
1
4λ

log N + τ . The evolution of the state variable in

the diffusion time-zone is given by

n(t0 +
1
4λ

log N + τ) ≈ 1
2
N + e−2λτ 1

2

√
N + Z(t)

1
2

√
N.

Note that, the mean value of the state variable still drifts towards the equi-
librium value in the diffusion time-zone, while the variance of stochastic ®jitter¯
has already reached its equilibrium value. The (nonequilibrium) distribution of
the deviation of state variable from its equilibrium value (rescaled, to obtain a
proper distribution in the large-N limit),

ν(τ) ≡
n(t0 +

1
4λ

log N + τ) − 1
2
N

√
N

,

is given by

fτ (x) =

√
2
π

exp

[
−2

(
x − 1

2
e−2λτ

)2
]

. (5)

The last formula shows explicitly how the distribution of the (rescaled) state
variable ν(τ) converges to equilibrium at the diffusion stage of evolution.

3. THE BERNOULLIÄLAPLACE MODEL

3.1. The Expected Value and the Variance of n(t). The simplest way to
ˇnd the moments of n(t) within the BernoulliÄLaplace model is to use the tower
property of conditional expected values. Of course, the same approach can be
used for calculation of moments within the Ehrenfest model. This way it is
possible to obtain exact expressions for f(t) ≡ En(t) and s(t) ≡ En2(t) (within
the Ehrenfest model) with less effort spent than even if we use the approach
proposed by Hess [4].

Within the BernoulliÄLaplace model with N black and N red balls we have
the following relationship for the state variable n(t) at two consecutive time
instants:

n(tl+1) = n(tl) + X(tl+1),

6



where the conditional distribution of X(tl+1) given n(tl) is given by

Pr[X(tl+1) = 1|n(tl)] =
(

1 − n(tl)
N

)2

,

Pr[X(tl+1) = 0|n(tl)] = 2
n(tl)
N

(
1 − n(tl)

N

)
,

and

Pr[X(tl+1) = −1|n(tl)] =
n2(tl)
N2

.

The tower property yields

f(tl+1) = E[n(tl)] + EE[X(tl+1)|n(tl)] = f(tl) + E

(
1 − 2n(tl)

N

)
.

Hence, for the expected value of n(tl), we have the recurrent relationship

f(tl+1) = 1 +
(

1 − 2
N

)
f(tl)

with the initial condition f(t0) = N . The solution of the recurrent relationship is
given by

f(tk) =
N

2

[
1 +

(
1 − 2

N

)k
]

. (6)

Therefore, the ˇrst moments of the state variables within the BernoulliÄLaplace
model and the Ehrenfest model (see Eq. (2)) coincide.

Calculation of the second moment is almost as simple as the calculation of
the ˇrst moment. We have

n2(tl+1) = n2(tl) + 2n(tl)X(tl+1) + X2(tl+1).

Application of the tower property yields the recurrent relationship

s(tl+1) =
(

1 − 4
N

+
2

N2

)
s(tl) + 1 + 2f(tl)

(
1 − 1

N

)
with the initial condition s(t0) = N2. The solution of the recurrent relationship
is given by

s(tk) =
N2(N − 1)
2(2N − 1)

(
1 − 4

N
+

2
N2

)k

+
N3

2(2N − 1)
+

N2

2

(
1 − 2

N

)k

.
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Therefore, the variance of the state variable n(t) is given by

Var[n(tk)] =

=
N2

4(2N − 1)
− N2

4

(
1 − 2

N

)2k

+
N2(N − 1)
2(2N − 1)

(
1 − 4

N
+

2
N2

)k

. (7)

The calculation of a few higher moments can be performed using the same
method, but the amount of labour it requires increases rapidly. We are not going
to do that, instead our aim now is to ˇnd a formula for the distribution of the
state variable n(t) similar to that found in the papers [4, 5] within the Ehrenfest
model.

3.2. The Spectral Properties of the Transition Operator. First, we reformu-
late the BernoulliÄLaplace model as follows. We do not switch the balls between
boxes A and B anymore, instead we place labels on the balls. If a label covers
a particular ball (red or black), then we assume that the ball occupies urn A. If
a ball is not covered by a label, then it occupies urn B. In the initial state (at
time t0) all labels cover black balls. At regular time-instants we pick a label at
random (each of the N labels can be picked with probability N−1), then we pick
an uncovered ball at random (again, each of the N uncovered balls can be picked
with probability N−1), and shift the label on the picked ball.

It is clear now that the BernoulliÄLaplace model is equivalent to a system of
N hard-core labels jumping randomly (one label at a time) on a complete graph
of 2N cites. The hard-core interaction prevents more than one label occupying
any particular cite of the graph. Since the graph is complete, any label can jump
to any unoccupied cite.

A deterministic state of the system of N labels is speciˇed by a vector |ϕ〉,
where ϕ ⊂ Λ ≡ {1, 2, . . . , 2N}. Recall that the black and red balls are numbered
1, 2, . . . , 2N . Hence, the set ϕ contains the numbers of all balls covered by the
labels. The initial state of the system (all black balls covered by the labels)
is |ψ0〉 ≡ |{1, 2, . . . , N}〉. Linear combinations like |a〉 = α|ϕ〉 + β|ψ〉, where
ϕ ⊂ Λ and ψ ⊂ Λ, are also ®possible¯ states of our labels. If α � 0, β � 0,
and α + β = 1, then the state |a〉 has the obvious probabilistic interpretation.
Otherwise, the mixture |a〉 should appear only in intermediate calculations. We
will make a reasonable effort to use Latin (as opposed to Greek) letters to denote
linear combinations of deterministic states.

Let us deˇne the scalar product for any two deterministic states |ϕ〉 and |ψ〉,
where ϕ ⊂ Λ and ψ ⊂ Λ, as follows:

〈ψ|ϕ〉 =
{

1, if ψ = ϕ,
0, if ψ 	= ϕ.

Then, the

(
2N
N

)
vectors |ϕ〉 containing exactly N labels, |ϕ| = N , make up an

8



orthonormal basis in the

(
2N
N

)
-dimensional space of their linear combinations.

To ˇnd the probability of n-step transition from the initial state to an arbitrary
state |ψ1〉, we adapt the method used by Penrose [9] for investigation of BoseÄ
Einstein condensation in a system of hard-core particles on a complete graph.

Consider a linear operator T̂ (the transition operator) deˇned by the relation-
ship

T̂ |ϕ〉 =
∑

x∈Λ\ϕ

∑
y∈ϕ

|(ϕ \ y) ∪ x〉.

In terms of the operator T̂ the probability of n-step transition from a state |ϕ〉 to
a state |ψ〉 is given by

〈ψ|(N−2T̂ )n|ϕ〉.

Hence, we can, in principle, ˇnd the transition probabilities once we know the
eigenstates and eigenvalues of the operator T̂ .

In order to ˇnd the eigenstates and eigenvalues, let us deˇne a linear operator
Â as follows:

Â|ϕ〉 =
∑
y∈ϕ

|ϕ \ y〉.

The linear operator Â† deˇned by

Â†|ϕ〉 =
∑

x∈Λ\ϕ

|ϕ ∪ x〉,

is adjoint to Â, that is, 〈ψ|Âϕ〉 = 〈Â†ψ|ϕ〉, for any two vectors |ψ〉 and |ϕ〉.
From the deˇnitions of the operators Â and Â† we obtain

Â†Â|ϕ〉 = Â†
∑
y∈ϕ

|ϕ \ y〉 =
∑
y∈ϕ

∑
x∈Λ\ϕ

|(ϕ \ y) ∪ x〉 +
∑
y∈ϕ

|ϕ〉.

Therefore Â†Â = T̂ + V̂ , where V̂ is the linear operator of the number of
labels, V̂ |ϕ〉 = |ϕ||ϕ〉. Analogously ÂÂ† = T̂ + 2NÊ − V̂ , where Ê is the
identity operator. Hence, the commutator of Â and Â† is given by ÂÂ†− Â†Â ≡
[Â, Â†] = 2(NÊ−V̂ ). The commutators of Â† with V̂ and T̂ are also not difˇcult
to ˇnd, they are given by [V̂ , Â†] = Â† and [T̂ , Â†] = (2N − 1)Â† − 2Â†V̂ .

The key to the ®diagonalization¯ of the operator T̂ is the existence of an
operator L̂ = T̂ + aV̂ + bV̂ 2 commuting with Â†, see [9]. We have

L̂Â† − Â†L̂ = (2N − 1)Â† − 2Â†V̂ + aÂ† + b
(
2Â†V̂ + Â†

)
.

Therefore, if we set a = −2N and b = 1 we obtain L̂Â† − Â†L̂ = 0.

9



Let us now consider n-label subspaces

Sn ≡ {|a〉 : V̂ |a〉 = n|a〉, Â|a〉 = 0}.

For instance, the subspace S0 contains only one normalized vector: |∅〉. This
vector describes 2N balls not covered by labels. The subspace S1 contains linear
combinations of one-label deterministic states

|a〉 =
∑
x∈Λ

αx|{x}〉, such that Â
∑
x∈Λ

αx|{x}〉 =
∑
x∈Λ

αx|∅〉 = 0. (8)

Solutions of the equation
∑

x∈Λ αx = 0 are all vectors {αx}x∈Λ orthogonal to
the 2N -component vector (1, 1, . . . , 1). Hence, there are exactly 2N − 1 linearly
independent solutions of that equation. Thus, S1 is a (2N−1)-dimensional space.
In general, see [9], the dimension of the subspace Sn is(

2N
n

)
−

(
2N

n − 1

)
, n = 1, 2, . . . , N.

The importance of the subspaces Sn is due to the following lemma, which
can be proven by almost verbatim repetition of the corresponding proof from [9].

Lemma. Let |a〉 ∈ Sl, where l = 0, 1, 2, . . . , N . Then (Â†)N−l|a〉 is an
eigenstate of the operator T̂ with the eigenvalue λl = N2 − (2N + 1)l + l2.

It is not difˇcult to count the total number of linearly independent eigenstates
corresponding to the eigenvalues λ0, λ1, . . . , λN described in the Lemma. It is
given by

dimS0 +dimS1 + . . .+dimSN = 1+
N∑

n=1

[(
2N
n

)
−

(
2N

n − 1

)]
=

(
2N
N

)
.

Therefore, the eigenstates described in the Lemma make up a complete set of
N -label eigenstates of the transition operator T̂ .

It is always easier to deal with normalized eigenstates, such that 〈b|b〉 = 1.
It is shown in Appendix A that the states

|al〉 ≡
1√

[2(N − l)]!
(Â†)N−l|a〉, (9)

are normalized, if |a〉 is a normalized vector from Sl.
3.3. The n-Step Transition Probabilities. The core of the previous paragraph

is a mere adaptation to the problem under consideration of the technique used
by Penrose in [9]. However, to ˇnd manageable expressions for the transition
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probabilities, we have to go beyond the scope of that paper and investigate the
structure of the eigenstates of the transition operator.

The distribution of the state variable n(tm) is given by

Pr[n(tm) = k] =
∑

ϕ:|ϕ∩{1,2,...,N}|=k

〈ϕ|(N−2T̂ )m|ψ0〉. (10)

In terms of the normalized eigenstates, |a(j)
l 〉, and the eigenvalues of the operator

T̂ the m-step transition probabilities are given by

〈ψ1|(N−2T̂ )m|ψ0〉 =

=
N∑

l=0

(
1 − (2N + 1)l

N2
+

l2

N2

)m D(l,N)∑
j=1

〈ψ1|a(j)
l 〉〈a(j)

l |ψ0〉, (11)

where D(l, N) is the degeneracy of the lth eigenvalue. The difˇculty of calcu-

lating the scalar products 〈ψ1|a(j)
l 〉 and 〈a(j)

l |ψ0〉 increases rapidly with l.
The eigenstate |a0〉 corresponding to the maximal (nondegenerate) eigenvalue

λ0 = N2 has a simple structure. We have

(Â†)N |∅〉 = (Â†)N−1
∑
x∈Λ

|{x}〉 = (Â†)N−2
∑
x∈Λ

∑
y∈(Λ\x)

|{x, y}〉 =

= 2(Â†)N−2
∑

{x,y}⊂Λ

|{x, y}〉 = . . . = N !
∑

ϕ⊂Λ:|ϕ|=N

|ϕ〉.

Using Eq. (9) we obtain the normalized eigenstate corresponding to the maximal
eigenvalue

|a0〉 =
N !√
(2N)!

∑
ϕ⊂Λ:|ϕ|=N

|ϕ〉.

Therefore, if ψ1 and ψ0 are arbitrary deterministic N -label states, then

〈ψ1|a0〉 = 〈a0|ψ0〉 =
N !√
(2N)!

.

Taking the limit m → ∞, we obtain the equilibrium distribution

lim
m→∞

〈ψ1|(N−2T̂ )m|ψ0〉 = 〈ψ1|a0〉〈a0|ψ1〉 =
N !N !
(2N)!

.

That is, in equilibrium all (deterministic) N -label states are equally likely.

There are

(
N
k

)
ways of placing k labels over N black balls, and

(
N

N − k

)
ways of placing the remaining N − k labels over N red balls. Hence, there are

11



(
N
k

) (
N

N − k

)
subsets ϕ such that |ϕ ∩ {1, 2, . . . , N}| = k. Therefore, cf.

Eq. (10), the (equilibrium) probability of having exactly k black balls in urn A is
given by the hypergeometric distribution (this well-known result can be found in
the book by Feller [11])

Pr[n(t∞) = k] = Pr[®Exactly k black balls in urn A¯] =

(
N
k

)2

(
2N
N

) .

The structure of the eigenstates |a(l)
1 〉, l = 1, 2, . . . , 2N − 1, corresponding

to the (2N − 1)-times degenerate eigenvalue λ1 = N2 − 2N is slightly more
complicated.

(A†)N−1|a〉 ≡ (A†)N−1
∑
x∈Λ

αx|{x}〉 = (A†)N−2
∑
x∈Λ

αx

∑
y∈(Λ\x)

|{x, y}〉 =

= (A†)N−3
∑
x∈Λ

αx

∑
y∈(Λ\x)

∑
z∈(Λ\{x,y})

|{x, y, z}〉 =

= 2(A†)N−3
∑
x∈Λ

αx

∑
{y,z}⊂(Λ\x)

|{x, y, z}〉 = . . . =

= (N − 1)!
∑
x∈Λ

αx

∑
φ⊂Λ:x∈φ,|φ|=N

|φ〉. (12)

Therefore, the orthonormal eigenstates |a(l)
1 〉 are given by

|a(l)
1 〉 =

(N − 1)!√
(2N − 2)!

∑
x∈Λ

α(l)
x

∑
φ⊂Λ:x∈φ,|φ|=N

|φ〉,

where {α(l)
x }x∈Λ, l = 1, 2, . . . , 2N − 1 are orthonormal vectors orthogonal to

(1, 1, . . . , 1).
If |ψ0〉 is an arbitrary N -label state, then

〈a(l)
1 |ψ0〉 =

(N − 1)!√
(2N − 2)!

∑
x∈ψ0

α(l)
x .

To calculate the remaining sum over x, let us choose the vectors {α(l)
x }x∈Λ as fol-

lows. There are N − 1 orthonormal vectors {α(l)
x }x∈Λ orthogonal to (1, 1, . . . , 1)

such that α
(l)
x = 0, if x ∈ ψ0. There are N − 1 orthonormal vectors {α(l)

x }x∈Λ

orthogonal to (1, 1, . . . , 1) such that α
(l)
x = 0, if x 	∈ ψ0. The last required

12



orthonormal vector {α(1)
x }x∈Λ is such that α

(1)
x = (2N)−1/2 if x ∈ ψ0, and

α
(1)
x = −(2N)−1/2 if x 	∈ ψ0. For this choice of the orthonormal vectors

{α(l)
x }x∈Λ we obtain

∑
x∈ψ

α(l)
x =

⎧⎨⎩
√

N

2
, if l = 1;

0, if l = 2, 3, . . . , 2N − 1.

The total contribution to the m-step transition probability (11) from the 2N−1
eigenstates corresponding to the eigenvalue λ1 = N2 − 2N is given by

Λ1 ≡
(

λ1

N2

)m 2N−1∑
j=1

〈ψ1|a(j)
1 〉〈a(j)

1 |ψ0〉 =

=
(

1 − 2
N

)m (N − 1)!√
(2N − 2)!

√
N

2
〈ψ1|a(1)

1 〉.

If |ψ1 ∩ ψ0| = k, then

〈ψ1|a(1)
1 〉 =

(N − 1)!√
(2N − 2)!

∑
x∈ψ1

α(1)
x =

=
(N − 1)!√
(2N − 2)!

⎛⎝ ∑
x∈ψ1∩ψ0

α(1)
x +

∑
x∈ψ1\ψ0

α(1)
x

⎞⎠
=

(N − 1)!√
(2N − 2)!

(
k√
2N

− N − k√
2N

)
.

Hence

Λ1 =
(

1 − 2
N

)m (N − 1)!(N − 1)!
(2N − 2)!

(
k − N

2

)
,

where k is the number of labels covering black balls in the state 〈ψ1|.
Let us now ˇnd the contribution to the m-step transition probability (11)

from the eigenstates corresponding to the eigenvalue λ2 = N2 − 4N + 2. The
eigenstates are given by

(Â†)N−2
∑

{x,y}⊂Λ

α{x,y}|{x, y}〉,

where the vector α ≡ {α{x,y}} is a solution of the equation

Â
∑

{x,y}⊂Λ

α{x,y}|{x, y}〉 = 0.
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The last equation is equivalent to the following system of 2N equations:∑
y∈(Λ\x)

α{x,y} = 0, for all x ∈ Λ. (13)

The dimension (the number of components) of the vector α is

(
2N
2

)
. In

Eq. (13) we are looking for vectors α orthogonal to 2N vectors

v(z) ≡ {v(z)
{x,y}}, z ∈ Λ, such that v

(z)
{x,y} =

{
1, if z ∈ {x, y},
0, if z 	∈ {x, y}.

The 2N vectors v(z), z ∈ Λ, are linearly independent, hence there are exactly(
2N
2

)
− 2N linearly independent solutions of the system (13).

Analogously to Eq. (12) we obtain

(Â†)N−2
∑

{x,y}⊂Λ

α{x,y}|{x, y}〉 = (N − 2)!
∑

{x,y}⊂Λ

α{x,y}
∑

φ⊂Λ:{x,y}⊂φ,|φ|=N

|φ〉.

Hence, the orthonormal eigenstates |a(l)
2 〉 are given by

|a(l)
2 〉 =

(N − 2)!√
(2N − 4)!

∑
{x,y}⊂Λ

α
(l)
{x,y}

∑
φ⊂Λ:{x,y}⊂φ,|φ|=N

|φ〉,

where α(l) ≡ {α(l)
{x,y}}, l = 1, 2, . . . ,

(
2N
2

)
− 2N are orthonormal solutions of

the system (13).

The scalar products of an N -label state |ψ〉 with the eigenstates 〈a(l)
2 | are

given by

〈a(l)
2 |ψ〉 =

(N − 2)!√
(2N − 4)!

∑
{x,y}⊂ψ

α
(l)
{x,y}. (14)

To calculate the remaining sum, note that it is the scalar product of the vector
α(l) with the vector

τ ≡ {τ{x,y}} such that τ{x,y} =

{
1, if {x, y} ⊂ ψ,

0, otherwise.

Note also, that the system (13) has a solution α(1) such that

α
(1)
{x,y} =

⎧⎪⎪⎨⎪⎪⎩
1√

(2N − 1)(N − 1)
, if {x, y} ⊂ ψ, or if {x, y} ⊂ Λ \ ψ,

− 1
N

√
N − 1
2N − 1

, otherwise.
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The solutions α(k), with k > 1 are orthogonal to α(1). The normalized ®constant¯
vector

u ≡ {u{x,y}}, such that u{x,y} =
1√

N(2N − 1)
for all {x, y} ⊂ Λ,

can be written as follows:

u =
1

2
√

N(2N − 1)

∑
z∈Λ

v(z).

Hence, the ®constant¯ vector u is orthogonal to all vectors α(k).
Finally, let us consider the vector w ≡ {w{x,y}} such that

w{x,y} =
1√

N(N − 1)
×

⎧⎨⎩
1, if {x, y} ⊂ ψ,

−1, if {x, y} ⊂ Λ \ ψ,
0, otherwise.

The vector w can also be written as a linear combination of the vectors v(z),
z ∈ Λ. Namely

w =
1

2
√

N(N − 1)

⎛⎝∑
z∈ψ

v(z) −
∑

z∈(Λ\ψ)

v(z)

⎞⎠ .

Hence, the vector w is also orthogonal to all vectors α(k).
We can write down the vector τ as a linear combination of α(1), u, and w.

Namely

τ =
N

2

√
N − 1
2N − 1

α(1) +
N − 1

2

√
N

2N − 1
u +

1
2

√
N(N − 1)w.

Therefore, for our choice of the orthonormal vectors α(k) we obtain

∑
{x,y}⊂ψ

α
(k)
{x,y} = τ · α(k) =

⎧⎨⎩
N

2

√
N − 1
2N − 1

, if k = 1;

0, otherwise.

The total contribution to the m-step transition probability (11) from the

eigenstates |a(j)
2 〉 corresponding to the eigenvalue λ2 = N2 − 4N + 2 is given by

Λ2 ≡
(

λ2

N2

)m N(2N−3)∑
j=1

〈ψ1|a(j)
2 〉〈a(j)

2 |ψ0〉 =

=
(

λ2

N2

)m (N − 2)!√
(2N − 4)!

N

2

√
N − 1
2N − 1

〈ψ1|a(1)
2 〉.
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If exactly k black balls are covered by the labels in the state |ψ1〉, then there are
k(k − 1)/2 pairs {x, y} in the set ψ1 ∩ψ0. For any pair {x, y} like that we have

α
(1)
{x,y} = [(2N − 1)(N − 1)]−1/2. There are (N − k)(N − k − 1)/2 pairs {x, y}

in the set ψ1 \ ψ0. For any pair {x, y} from ψ1 \ ψ0 we have the same value

α
(1)
{x,y} = [(2N − 1)(N − 1)]−1/2. Finally, there are k(N − k) pairs of integers

{x, y} such that one of the integers belongs to ψ1 ∩ ψ0, and the other belongs to
ψ1 \ ψ0. For any pair {x, y} like that we have

α
(1)
{x,y} = − 1

N

√
N − 1
2N − 1

.

Hence Eq. (14) yields

〈ψ1|a(1)
2 〉 =

(N − 2)!√
(2N − 4)!

∑
{x,y}⊂ψ1

α
(1)
{x,y} =

k(k − 1)
2
√

(2N − 1)(N − 1)
+

+
(N − k)(N − k − 1)
2
√

(2N − 1)(N − 1)
− k(N − k)

N

√
N − 1
2N − 1

,

and after some algebra we obtain

Λ2 =
(

1 − 4
N

+
2

N2

)n (N − 2)!(N − 2)!
(2N − 4)!

1
2

[(
k − N

2

)2

− N2

4
1

2N − 1

]
.

It is possible to ˇnd the contributions to the n-step transition probability
from the eigenstates corresponding to the eigenvalues λ3, λ4, . . . in a similar
way. For instance, the total contribution from all eigenstates corresponding to the
eigenvalue λ3 is given by

Λ3 ≡
(

λ3

N2

)n D(3,N)∑
j=1

〈ψ1|a(j)
3 〉〈a(j)

3 |ψ0〉 =
(

1 − 6
N

+
6

N2

)n

×

× (N − 3)!(N − 3)!
(2N − 6)!

1
6

(
k − N

2

)[(
k − N

2

)2

− N

4
3N − 4
2N − 3

]
.

The total contribution from all eigenstates corresponding to the eigenvalue λ4 is
given by
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Λ4 ≡
(

λ4

N2

)n D(4,N)∑
j=1

〈ψ1|a(j)
4 〉〈a(j)

4 |ψ0〉 =

=
(

1 − 8
N

+
12
N2

)n (N − 4)!(N − 4)!
(2N − 8)!

×

× 1
24

[(
k − N

2

)4

− 3N2 − 8N + 2
2(2N − 5)

(
k − N

2

)2

+
3
16

N2(N − 2)2

(2N − 3)(2N − 5)

]
.

The probability of having exactly k black balls in urn A at time tn is given
by

Pr[®Exactly k black balls in urn A¯] =
(

N
k

)2 N∑
j=0

Λj ,

where Λj is the total contribution from all eigenstates corresponding to the eigen-
value λj .

In the limit N → ∞, setting m =
1
4
N ln N + τN (the diffusion time-zone)

and k =
1
2
N + x

√
N , we obtain using the formulae for Λ1, . . . , Λ4

Pr[®Exactly k black balls in urn A at time tm¯] ∼ 2√
πN

e−4x2×

×
(

1 + 4x e−2τ + (8x2 − 1) e−4τ +
4x

3
(8x2 − 3) e−6τ+

+
1
6
(64x4 − 48x2 + 3) e−8τ + . . .

)
.

The last formula corresponds to the ˇrst ˇve terms of the Taylor expansion of the

normal distribution density with the expected value
1
2

e−2τ and the variance
1
8
,

fτ (x) =
2√
π

exp

[
−4

(
x − 1

2
e−2τ

)2
]

. (15)

Therefore, it seems reasonable to conclude that at the diffusion stage of evolution
the distribution of the rescaled state variable,

ν(τ) ≡
n(tm) − 1

2N√
N

,

within the BernoulliÄLaplace model is asymptotically normal (as N → ∞) with

the expected value
1
2

e−2τ and the variance
1
8
.
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4. DISCUSSION AND NUMERICAL RESULTS

The main results of this paper are explicit formulae for the distribution of
the state variable at the diffusion stage of evolution, see Eqs. (5) and (15).
Both, within the Ehrenfest model and within the BernoulliÄLaplace model, the
distributions are asymptotically normal. To double check this conclusion for the
case of the BernoulliÄLaplace model, we ran Monte-Carlo simulations for a model
containing 1000 black and 1000 red balls. To get to the diffusion time-zone we

made 1700 ≈ 1
4
1000 ln1000 dynamic time-steps. That yields one possible value

of the state variable n(t1700). To obtain enough data for a histogram we repeated
that procedure 100, 000 times. The histogram is shown in Fig. 3, together with
theoretical occupation numbers corresponding to the normal distribution with
mean and variance given by Eqs. (6) and (7).

The histogram is very close to the theoretical occupation numbers Å the size
of the sample times the probability of a sample point falling into a particular bin.
Of course, there is a discrepancy between the actual and theoretical occupation
numbers. To check if the discrepancy statistically signiˇcant or not, we compute
the χ2 statistics

χ2 =
31∑

j=1

(Aj − Ej)2

Ej
,

where Aj and Ej are the actual and theoretical occupation numbers, respectively,
for the bin number j. The value of the χ2 statistics for the histogram in Fig. 3
is 29.6 which is comfortably below 43.77 Å the 95% critical level for the χ2

distribution with 30 degrees of freedom. Hence, the χ2 test does not give us any
ground for suspecting a deviation from the normal distribution (15).

Of course, using Monte-Carlo simulations it is possible to investigate the
distribution of the state variable n(t) at the kinetic stage of the evolution. For
m = 346 we have En(t346) ≈ 750, which is the half-way between the initial
and equilibrium values of the state variable. We repeated the above Monte-Carlo
simulations for 346 dynamic time-steps (instead of 1700). The χ2 statistics in this
case is slightly (but systematically) above the 95% critical level. Hence, in this
case the χ2 test detects a deviation from the normal distribution. The detected
deviation, however, is only due to a ˇnite-size correction. When we increased the
number of balls to 3000 black and 3000 red balls (and the number of time-steps
to 1039), we obtained an agreement between the actual and theoretical occupation
numbers similar to that in Fig. 3. More precisely, we obtained the value 26.4
for the χ2 statistics, which is again comfortably below the 95% critical level.
Therefore (apparently), the distribution of the state variable n(t) is asymptotically
normal already during the kinetic stage of the evolution.

An interesting feature of the Ehrenfest and BernoulliÄLaplace models is the
constant variance of the rescaled state variable ν(τ) at the diffusion stage of
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Fig. 3. A histogram for the state variable n(t1700) within the BernoulliÄLaplace model
with 1000 black and 1000 red balls. A sample of 100,000 values was used to build the
histogram. The horizontal lines of T -shape symbols indicate the theoretical occupation
numbers for the normal distribution with mean 516.63 and standard deviation 11.135, cf.
Eqs. (6) and (7)

evolution. It is possible to interpret this feature as the quasi-stationarity of the
corresponding random processes at the diffusion stage. More precisely, if we
take the system of N Ehrenfest balls in equilibrium, and remove O(

√
N) balls

from, say, urn A, we would push the system out of equilibrium. As a result,
the mean value of the rescaled state variable ν(τ) would begin changing with
time. However, the type of distribution and the value of the second parameter
(the variance) would stay the same as they were in equilibrium. Therefore,
apparently, one can use the Ehrenfest and BernoulliÄLaplace models not only for
investigation of convergence towards equilibrium, but also as microscopic models
of quasi-stationary thermodynamic processes.

Finally, we would like to discuss the relationship between the continuous-
time (easy to solve) and the discrete-time (not-so-easy to solve) Ehrenfest models.
This relationship is similar to the relationship between the canonical and micro-
canonical ensembles. Indeed, typically, in a microcanonical ensemble we have a
macroscopic observable, E, which value is ˇxed, E = ε. In the corresponding
canonical ensemble the observable E is a random variable with only the expected
value equal to ε, which often leads to a simpliˇcation of the model. If the two
ensembles are equivalent, then the (harder to calculate) expected values within the
microcanonical ensemble coincide with the corresponding (easier to calculate) ex-
pected values in the canonical ensemble. Likewise, in the discrete-time Ehrenfest
model exactly one ball changes its urn at any of the time instances t1, t2, t3, . . .
In the corresponding continuous-time Ehrenfest model only the expected number
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of balls which change their urns over a time interval (tl, tl + 1] is equal to 1, and
the N -particle process ®factorizes¯ into N independent one-particle processes.

The expected values of the state variable in the continuous-time and the
discrete time versions of the Ehrenfest model, see Eqs. (2) and (4), coincide in
the limit N → ∞. Undoubtedly, the asymptotic distribution of the rescaled state
variable ν(τ) in the discrete-time Ehrenfest model is also normal. However, if
we set m = N(t − t0), then the variance in the discrete-time model,

Vard[n(tm)] =
N

4

[
1 −

(
1 − 4

N

)m]
− N2

4

[(
1 − 2

N

)2m

−
(

1 − 4
N

)m
]

,

has the following large-N asymptotics

Vard[n(tm)] ∼ N

4
[1 − (1 + 4(t − t0)) exp[−4(t − t0)]] .

The last asymptotics is smaller than the variance of the state variable in the
continuous-time model

Varc[n(t)] = N
1 − exp[−4(t − t0)]

4
.

The reason for the greater variance in the continuous-time model is, of course,
the extra disorder due to uncertainty in the number of jumps over a time-interval
(tl, tl+1].

APPENDIX
NORMALIZED EIGENSTATES OF THE OPERATOR T̂

The eigenstates of the operator T̂ are given by

|Φk〉 =
(
Â†

)N−k ∑
{x,y,...,w}⊂Λ

α{x,y,...,w}|{x, y, . . . , w}〉 ≡
(
Â†

)N−k

|χk〉,

where the summation runs over all subsets of Λ containing exactly k elements,
the (real) coefˇcients α{x,y,...,w} satisfy the system of equations

Â
∑

{x,y,...,w}⊂Λ

α{x,y,...,w}|{x, y, . . . , w}〉 = 0,

and the normalization condition∑
{x,y,...,w}⊂Λ

α2
{x,y,...,w} = 1.
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The square of the norm of the states |Φk〉 is given by

〈Φk|Φk〉 = 〈χk|ÂN−k
(
Â†

)N−k

|χk〉.

Our strategy is to ˇnd a relationship between Ql ≡ 〈χk|Âl
(
Â†

)l

|χk〉 and

Ql−1. Then 〈Φk|Φk〉 can be found using the obtained relationship and the initial
condition Q0 = 1. We have

Ql = 〈χk|Âl−1ÂÂ†
(
Â†

)l−1

|χk〉 =

= 〈χk|Âl−1
(
L̂ + (2N − 1)V̂ − V̂ 2 + 2NÊ

) (
Â†

)l−1

|χk〉.

Using the commutation relationships we obtain(
L̂ + (2N − 1)V̂ − V̂ 2 + 2NÊ

)(
Â†

)l−1

=

=
(
Â†

)l−1 (
L̂ + (2N − 1)V̂ + (2N − 1)(l − 1)Ê−

−V̂ 2 − 2(l − 1)V̂ − (l − 1)2Ê + 2NÊ
)

.

The identities L̂ = Â†Â − (2N + 1)V̂ + V̂ 2, Â|χk〉 = 0, and V̂ |χk〉 = k|χk〉,
yield

Ql = Ql−1(2(N − k) + 1 − l)l.

Hence

〈Φk|Φk〉 = QN−k = Q0

N−k∏
l=1

(2(N − k) + 1 − l)l = [2(N − k)]!.

Thus, the normalized eigenvectors of the operator T̂ are given by

1√
[2(N − k)]!

(
Â†

)N−k ∑
{x,y,...,w}⊂Λ

α{x,y,...,w}|{x, y, . . . , w}〉.
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