
E2-2006-57

A. I. Ahmadov1, Yu.M. Bystritskiy, E. A.Kuraev,
E. Zemljanaja, T. V. Shishkina2

MEASURING CHARGE-ODD CORRELATIONS
AT LEPTONÄPROTON AND PHOTONÄPROTON
COLLISIONS

Submitted to ®Journal of Physics G¯

1 Institute of Physics of Azerbaijan National Academy of Sciences, Baku,
Azerbaijan
2 Belarus State University, Minsk, Belarus



�Ì³¥¤μ¢ �.ˆ. ¨ ¤·. E2-2006-57
ˆ§³¥·¥´¨¥ § ·Ö¤μ¢μ-´¥Î¥É´ÒÌ ±μ··¥²ÖÍ¨° ¢ ²¥¶Éμ´-¶·μÉμ´´ÒÌ ¨ ËμÉμ´-¶·μÉμ´´ÒÌ

¸Éμ²±´μ¢¥´¨ÖÌ

� ¸¸³μÉ·¥´Ò § ·Ö¤μ¢μ-´¥Î¥É´Ò¥ ±μ··¥²ÖÍ¨¨ ¢ ¸¥Î¥´¨ÖÌ ¶·μÍ¥¸¸μ¢ ¸ ·μ¦¤¥´¨¥³ § ·Ö¦¥´´ÒÌ
Î ¸É¨Í. ‚ Î ¸É´μ¸É¨, · ¸¸³μÉ·¥´Ò ¸²ÊÎ ¨ ·μ¦¤¥´¨Ö ³Õμ´´μ° ¨ ¶¨μ´´μ° ¶ ·,   É ±¦¥ ¸¨¸É¥³Ò É·¥Ì
¶¨μ´μ¢ π+π−π0, ¢ Ô²¥±É·μ´-¶·μÉμ´´ÒÌ ¨ ËμÉμ´-¶·μÉμ´´ÒÌ ¸Éμ²±´μ¢¥´¨ÖÌ ¢ μ¡² ¸É¨ Ë· £³¥´-
É Í¨¨ ¶·μÉμ´ . ‡ ·Ö¤μ¢μ-´¥Î¥É´Ò¥ ±μ··¥²ÖÍ¨¨ ¢μ§´¨± ÕÉ ± ± ¨´É¥·Ë¥·¥´Í¨Ö  ³¶²¨ÉÊ¤ · §²¨Î´ÒÌ
³¥Ì ´¨§³μ¢ ·μ¦¤¥´¨Ö § ·Ö¦¥´´ÒÌ ²¥¶Éμ´μ¢ (¶¨μ´μ¢). �¤¨´ ¨§ ´¨Ì ¸μμÉ¢¥É¸É¢Ê¥É ·μ¦¤¥´¨Õ ¸¨¸É¥³Ò
§ ·Ö¦¥´´ÒÌ Î ¸É¨Í ¢ § ·Ö¤μ¢μ-´¥Î¥É´μ³ ¸μ¸ÉμÖ´¨¨ (· ¸¶ ¤ μ¤´μ£μ ¢¨·ÉÊ ²Ó´μ£μ ËμÉμ´  ¨²¨ ¢¥±Éμ·-
´μ£μ ³¥§μ´  ¢ ÔÉÊ ¸¨¸É¥³Ê Î ¸É¨Í),   ¤·Ê£μ° Ä ¢ § ·Ö¤μ¢μ-Î¥É´μ³ ¸μ¸ÉμÖ´¨¨ (·μ¦¤¥´¨¥ ¸¨¸É¥³Ò
Î ¸É¨Í ¤¢Ê³Ö ËμÉμ´ ³¨). ‡ ·Ö¤μ¢μ-´¥Î¥É´Ò° ³¥Ì ´¨§³ ·μ¦¤¥´¨Ö ³Õμ´´μ° ¶ ·Ò ¶·¥¤¸É ¢²Ö¥É ¸μ¡μ°
Î¨¸Éμ Ô²¥±É·μ¤¨´ ³¨Î¥¸±¨° ¶·μÍ¥¸¸ ¨ ³μ¦¥É ¡ÒÉÓ ¨¸¶μ²Ó§μ¢ ´ ¤²Ö ± ²¨¡·μ¢μÎ´ÒÌ Í¥²¥°. �·μÍ¥¸¸Ò
¸ ·μ¦¤¥´¨¥³ ¶¨μ´μ¢ ÎÊ¢¸É¢¨É¥²Ó´Ò ± ¶ · ³¥É· ³ ¢μ²´μ¢μ° ËÊ´±Í¨¨ ¶¨μ´  ¨, ±·μ³¥ Éμ£μ, ³μ£ÊÉ ¡ÒÉÓ
¨¸¶μ²Ó§μ¢ ´Ò ¤²Ö ¨§³¥·¥´¨Ö  ´μ³ ²Ó´μ° ¨ ¶·μ¸Éμ° Î ¸É¥° ÔËË¥±É¨¢´μ£μ ¶¨μ´´μ£μ ² £· ´¦¨ ´ .

‚ ¶·μÍ¥¸¸¥ ·μ¦¤¥´¨Ö ²¥¶Éμ´´ÒÌ ¶ · ¢ ËμÉμ´-¶·μÉμ´´ÒÌ ¸Éμ²±´μ¢¥´¨ÖÌ ³μ¦¥É ¡ÒÉÓ ¨§³¥·¥´ ³ -
É·¨Î´Ò° Ô²¥³¥´É É·¥Ì Ô²¥±É·μ³ £´¨É´ÒÌ Éμ±μ¢. „²Ö ÔÉμ£μ § ·Ö¤μ¢μ-´¥Î¥É´μ¥ ¸¥Î¥´¨¥ γ−p-· ¸¸¥Ö´¨Ö
¶·¥¤¸É ¢²¥´μ ¢ ¢¨¤¥ ¸¢¥·É±¨ ²¥¶Éμ´´μ£μ É¥´§μ·  É·¥ÉÓ¥£μ · ´£  ¸ ¸μμÉ¢¥É¸É¢ÊÕÐ¨³  ¤·μ´´Ò³ É¥´-
§μ·μ³. �ÉμÉ Ô±¸¶¥·¨³¥´É ³μ¦¥É · ¸¸³ É·¨¢ ÉÓ¸Ö ± ±  ²ÓÉ¥·´ É¨¢  ± £²Ê¡μ±μ´¥Ê¶·Ê£μ³Ê ±μ³¶Éμ´μ¢-
¸±μ³Ê · ¸¸¥Ö´¨Õ.
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Ahmadov A. I. et al. E2-2006-57
Measuring Charge-Odd Correlations at LeptonÄProton and PhotonÄProton Collisions

We consider the charge-odd correlations (COC) in cross sections of processes of charged particle
production. The cases of muonic pair and pion systems π+π−, π+π−π0 are considered in detail for
electronÄproton or photonÄproton collisions in the proton fragmentation region kinematics. COC arise
from interference of amplitudes which describe the different mechanisms of charged lepton (pion) creation.
One of them corresponds to production of particles in the charge-odd state (one virtual photon or vector
meson annihilation to this system of particles) and the other corresponds to the charge-even state of
produced particles (creation by two photons). COC for muonÄantimuon pair creation have a pure QED
nature and can be considered as a normalization process. The processes with pion production are sensitive
to some characteristics of proton wave functions and, besides, can be used for checking the anomalous
and normal parts of the effective pionic Lagrangian.

Three electromagnetic currents operator matrix element can be measured in photonÄproton interactions
with lepton pair production. For this aim a charge-odd combination of cross sections can be constructed
as a conversion of leptonic 3-rank tensor with hadronic ones. These experiments can be considered as an
alternative to deep virtual Compton scattering.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics, JINR.
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1. INTRODUCTION

The charge-odd contribution to cross section of processes

e−(p1) + p(p) → e−(p′1) + p(p′) + μ−(q−) + μ+(q+),

e−(p1) + p(p) → e−(p′1) + p(p′) + π−(q−) + π+(q+), (1)

e−(p1) + p(p) → e−(p′1) + p(p′) + π−(q−) + π+(q+) + π0(q0)

is caused by interference of amplitudes describing the two-photon mechanism and
one-photon mechanism of meson set production (see Fig. 1, a, b). The similar

Fig. 1. The mechanisms of production of muons (pions) pair and three pions state

quantity can be constructed for inelastic collisions of photon with hadron by
production of lepton pairs. The properties of effective meson Lagrangian as
well as three-current correlator matrix elements, averaged on hadron states can
be measured in relevant experiments, which is a motivation of our paper. We
consider below the experimental set-up corresponding to the kinematical region
of proton fragmentation, which means that the recoil proton and mesons created
move in directions close to the initial proton motion in the center-of-mass system
of initial particles, with invariant mass square of this jet s1 much smaller than
the center-of-mass square of the total energy of initial particles s + M2 (M is a
proton mass, we put below the electron mass as well as μ- and π-meson masses
m to be small and neglect the terms of the order of m2/s1, s1/s).

For laboratory system (initial proton in rest) the angles of emission of the
produced particles can be of the order of unity (see discussion below).

This quantity can be measured using the combination of the double differen-
tial cross sections

dσodd

dΓ
=

1
2
[F (q+, q−, X) − F (q−, q+, X)],

dσ

dΓ
= F (q+, q−, X), (2)
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where X is the characteristics of other particles, dΓ is the phase volume of ˇnal
particles.

The paper is organized as follows. In Sec. 2 we calculate charge-odd cross
section for processes (1). In Sec. 3 the charge-odd inelastic photonÄhadron (pro-
ton) scattering is discussed. In Conclusion we estimate the order of charge-odd
contribution, give spectral distribution and discuss the background effects.

2. MESON PRODUCTION

The remarkable feature of such a kinematics Å the relevant contribution to
the cross section does not depend on s in the high-energy limit. The corresponding
matrix elements are proportional to s. This fact can be explicitly seen using the
Gribov's representation of nominator of the virtual photon Green function in
Feynman gauge:

gμν = g⊥μν +
2
s
[p1μp̃ν + p1ν p̃μ], (3)

with light-like vectors p1, p̃ = p − M2

s
p1, p2

1 = p̃2 = 0.

Matrix element corresponding to one-photon mechanism of μ+μ−-meson pair
production (®bremsstrahlung¯ ones) has the form

M1 =
(4πα)2

q2
1q

2
2

2
s
sN1sū(p′)V p

μ u(p)Jm
μ , (4)

with q = p1 − p′1, q1 = q+ + q−, Jm
μ = ū(q−)γμv(q+) Å the conversion of

virtual photon to muon pair current, and

N1 =
1
s
ū(p′1)p̃νγνu(p1),

V p
μ = p̂1

p̂′ − q̂ + M

d1
γμ + γμ

p̂ + q̂ + M

d
p̂1,

d = (p + q)2 − M2, d1 = (p′ − q)2 − M2.

When summing over spin states of electron (initial and scattered) we have∑
|N1|2 = 2. As well the averaged on waves of initial and recoil proton functions

the quantity Vμ will be ˇnite in the high-energy limit.
The two-photon mechanism matrix element has the form

M2 =
(4πα)2

q2q2
2

2
s
sN1ū(p′)γλu(p)sIλ, q2 = p − p′, (5)
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with Iλ = ū(q−)V m
λ v(q+) Å two-photon conversion to muon pair current

V m
λ = p̂1

q̂− − q̂

d−
γλ + γλ

−q̂+ + q̂

d+
p̂1, d± = (q± − q)2 − m2. (6)

The similar expression is valid for creation of pion pair bremsstrahlung matrix
element. It can be obtained from the muon pair by replacing Jm

μ by Jπ
μ =

(q− − q+)μ. For pion pair creation by two-photon mechanism the replacement
Im
λ → Iπ

λ must be done in the relevant matrix element for muons

Iπ
λ =

1
s
pν
1

[
(2q− − q)ν(−2q+ + q2)λ

d−
+

(−2q+ + q)ν(2q− − q2)λ

d+
− 2gνλ

]
. (7)

For the case of three-pion production we must replace the one-photon con-

version to two pions current Jμ by J3π
μ =

1
4π2f3

π

(μq+q−q0), with (μq+q−q0) =

εμαβγqα
+qβ

−qγ
0 .

For two-photon conversion to three pions we use (see [1] for details)

Πν =
pν
1

s

[
ρ(μνqq2) + (μν(q2 − q)q0)−

−
qν
+

q+q2
(μqq−q0) −

qν
−

q−q2
(μqq+q0) −

qμ
+

q+q
(νq2q−q0) −

qμ
−

q−q
(νq2q+q0)

]
, (8)

with ρ =
5
3
− 6(q+q−)/(q+ + q− + q0)2. Here fπ = 94 MeV is the pion decay

constant.
Due to gauge invariance the replacement p1 → q in expressions V p

μ , V m
λ , Iπ

λ ,
Πν turns them to zero. Keeping in mind the approximate kinematical relation

q =
s1

s
p1 + q⊥, q⊥p1 = q⊥p = 0, with q⊥ Å transversal component of the

transfer momentum q, one can be convinced that all these currents turn to zero at
q⊥ → 0 limit.

At this stage, we use the Sudakov's parametrization of 4-momenta of the
problem (see Appendix A). Accepting it, we perform the phase volume of the
process of type 2 → 4 and 2 → 5 deˇned as

dΓ4 =
(2π)4

(2π)12
d3p′1
2E′

1

d3q+

2E+

d3q−
2E−

d3p′

2E′ δ
4(p1 + p − p′1 − p′ − q+ − q−);

dΓ5 =
(2π)4

(2π)15
d3p′1
2E′

1

d3q+

2E+

d3q−
2E−

d3q0

2E0

d3p′

2E′ δ
4(p1 + p − p′1 − p′ − q+ − q− − q0),
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to the form

dΓ4 =
1

(2π)8
d2q⊥ d2q⊥+ d2q⊥− dx+ dx−

8sx+x−(1 − x+ − x−)
;

dΓ5 =
1

(2π)11
d2q⊥ d2q⊥+ d2q⊥− d2q⊥0 dx+ dx− dx0

16sx+x−x0(1 − x+ − x− − x0)
.

Deriving these expressions we had introduced an auxiliary integration
∫

d4qδ4(p1−

p′1 − q) = 1, using the relation d3qi/(2Ei) = d4qiδ(q2
i − m2

i ) =
dxid

2qi⊥
2xi

with

xi Å the energy fraction of ith particle in the center of mass of colliding beams.
Further we denote q⊥i ≡ (0, 
qi), where i = ±, 0 and 
qi is the two-dimensional
vector lying in the plane orthogonal to beam line.

The standard procedure leads to the charge-odd contribution to the cross
sections:

dσodd
μμ =

16α4(d2
q/π)(d2
q+/(2π))(d2
q−/(2π))dx+dx−
π(q2)2q2

1q
2
2x+x−(1 − x+ − x−)

R(μ),

dσodd
ππ =

4α4(d2
q/π)(d2
q+/(2π))(d2
q−/(2π))dx+dx−
π(q2)2q2

1q2
2x+x−(1 − x+ − x−)

R(π),

dσodd
3π =

4α4(d2
q/π)(d2
q+/(2π))(d2
q−/(2π))(d2
q0/(2π))dx+dx−dx0

π(q2)2q2
1q2

2x+x−x0(1 − x+ − x− − x0)
×

×
(

M3

4πf3
π

)2

R(3π),

with

R(μ) =
1
4
Tr(p̂′ + M)V p

μ (p̂ + M)γλ ∗ 1
4
Trq̂−V m

λ q̂+γμ,

R(π) =
1
4
Tr(p̂′ + M)V p

μ (p̂ + M)γλ(q− − q+)μIπ
λ ,

R(3π) =
1

M4

1
4
Tr(p̂′ + M)V p

μ (p̂ + M)γλ(μq+q−q0)Πλ.

Explicit forms of V p
μ , V m

λ , Iπ
λ , Πλ in terms of the Sudakov's variables are given

above; the ones for the case 
q 2 < s1 are given in Appendix A. For general case,
the expressions Ri are complicated. For the realistic case −q2 = 
q 2 < s1, they
can be considerably simpliˇed. Really, one can perform the angular averaging
on transfer momentum 
q and can omit the terms of higher order of 
q 2 in the
nominators.

Performing the integration on transversal momenta of mesons we obtain

dσodd
μμ

dx+dx−d
q2
=

α4

πM2
q 2
F (2μ)x+, x−, (9)

4



F (2μ)(x+, x−) =
(x+ − x−Δ)(3 − 14Δ + 16Δ2)

6(1 − Δ)3
. (10)

Note that in the paper of one of us [2] the similar quantity was considered for
process e+e− → e+e−μ+μ−.

The similar manipulations for π+π−-pair production lead to

dσodd
ππ

dx+dx−d
q 2
=

α4

πM2
q 2
F (2π)x+, x−, (11)

F (2π)x+, x− =
(x+ − x−)Δ(1 + Δ)

3(1 − Δ)4
. (12)

For the case of three-pion production we have

dσ3π
odd

dx+dx−d
q 2
=

α4M4

16π5f6
π
q 2

F (3π)x+, x−, (13)

F (3π)x+, x− =
1

x+x−
q 2

∫
dx0d

2q+d2q−d2q0

π3x0(1 − x+ − x− − x0)q2
1q

2
2

R̄3π, (14)

where integration is performed with additional condition 0.2 < Δ = 1 − x+ −
x− − x0 < 1, and R̄3π is averaged by azimuthal angle of transfer momentum 
q

R̄3π =

2π∫
0

dφ

2π
R3π, (15)

where φ is the azimuthal angle between vector 
q and the vector of problem. The
results of numerical integration for F (3π)(x+, x−), as well as F (2μ) and F (2π),
are given in Tables 1, 2, 3.

Table 1. The results of integration for odd part of spectrum of 2μ production
100 · F (2μ)x+, x− (see (10)) for the case �q 2 < s1

x−/x+ 0.15 0.25 0.35 0.45 0.55 0.65 0.75
0.15 0.000 5.625 0.000 Ä0.370 1.399 2.734 2.414
0.25 Ä5.625 0.000 Ä0.123 0.700 1.641 1.610
0.35 0.000 0.123 0.000 0.547 0.805
0.45 0.370 Ä0.700 Ä0.547 0.000
0.55 Ä1.399 Ä1.641 Ä0.805
0.65 Ä2.734 Ä1.610
0.75 Ä2.414
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Table 2. The results of integration for odd part of spectrum of 2π production
F (2π)x+, x− (see (12)) for the case �q 2 < s1

x−/x+ 0.15 0.25 0.35 0.45 0.55 0.65 0.75
0.15 0.000 1.250 0.800 0.432 0.217 0.098 0.034
0.25 Ä1.250 0.000 0.144 0.108 0.059 0.022
0.35 Ä0.800 Ä0.144 0.000 0.020 0.011
0.45 Ä0.432 Ä0.108 Ä0.020 0.000
0.55 Ä0.217 Ä0.059 Ä0.011
0.65 Ä0.098 Ä0.022
0.75 Ä0.034

Table 3. The results of numerical integration for odd part of spectrum of 3π production
100 · F (3π)x+, x− (see (14)) for the case �q 2 < s1

x−/x+ 0.15 0.25 0.35 0.45 0.55
0.15 0.00 1.71 5.74 11.38 10.76
0.25 Ä1.72 0.00 3.52 4.86
0.35 Ä5.74 Ä3.52 0.00
0.45 Ä11.36 Ä4.88
0.55 Ä10.74

3. PROBING THREE-CURRENT CORRELATOR IN CHARGE-ODD
EXPERIMENTAL SET-UP OF PHOTONÄPROTON COLLISIONS

In photonÄproton collisions with production of lepton pair

γ(k) + p(p) → e+(q+) + e−(q−) + X(qh) (16)

with charge-odd experimental set-up

dσodd

dΓ
=

1
2

[
F (q+, q−, qh) − F (q−, q+, qh)

]
,

dσ

dΓ
= F (q+, q−, qh), (17)

where dΓ is the phase volume of ˇnal particles including leptons, we can to
measure the three electromagnetic currents correlator

Hμνλ =< p|Jμ(k)Jν(q)Jλ(q1)|p > . (18)

Really, in such a kind of experiment the interference of amplitudes of
two mechanisms of lepton pair creation can be measured. One of them (two-
photon mechanism) corresponds to charge-even state of lepton pair, another one

6



(bremsstrahlung mechanism) describes the creation of a pair by the single virtual
photon (see Fig. 2, a, b).

Fig. 2. The two mechanisms of lepton pair creation: a) production of lepton pair in
charge-even state; b) the bremsstrahlung mechanism

Charge-odd cross section can be written in the form

dσ

dΓ+dΓ−
∼ α3

q2q2
1

L
(e)
μνλHμνλdΓh, (19)

with dΓh Å the phase volume of the ˇnal hadron system. Leptonic tensor L
(e)
μνλ

(we neglect lepton mass)

L
(e)
μνλ =

1
4
Tr [q̂−Oμν q̂+γλ] (20)

with

Oμν =
1

κ−
γμ(q̂− − k̂)γν +

1
κ+

γν(−q̂+ + k̂)γμ, κ± = 2kq± (21)

obeys the gauge conditions L
(e)
μνλkμ = L

(e)
μνλqν = L

(e)
μνλqλ

1 = 0 with

k2 = q2
± = 0, k + q = q1 = q+ + q−. (22)

Leptonic tensor can be written in explicitly gauge-invariant form:

L
(e)
μνλ = QλT Q

μν + PνT P
μλ + RμT R

νλ,

Qλ =
1
2

1
κ+

− 1
κ−

[κ+q̃−λ + s1k̃λ],

Pν =
s1

2
1

κ−
− 1

κ+
k̃ν +

κ− + κ+

2κ−
q̃−ν ,

Rμ =
s1

2
1

κ−
− 1

κ+
k̃μ − 2s1 + κ+ + κ−

2κ−
q̃−μ,

7



q̃−μ = q−μ − q−k

q+k
q+μ, k̃μ = kμ,

q̃−ν = q−ν − q−q

q+q
q+ν , k̃ν = kν − kq

q+q
q+ν ,

q̃−λ = q−λ − q−q1

q+q1
q+λ, k̃λ = kλ − kq1

q+q1
q+λ,

besides,

T Q
μν = g̃μν+

k̃ν q̃−μ

kq
; T P

μλ = g̃μλ+
k̃λq̃−μ

kq1
; T R

νλ = g̃νλ+
q̃−ν(q̃− − k̃)λ

qq1
; (23)

and, ˇnally,

g̃μν = gμν − kνqμ

kq
; g̃μλ = gμλ − kλq1μ

kq1
; g̃λν = gλν − qλq1μ

qq1
. (24)

The form of hadronic 3-rank tensor depends on experimental conditions of detec-
tion of hadron jet particles. It won't be touched here.

4. CONCLUSION

The processes with meson production mentioned above can be studied at such
facilities as HERA, HERMES and RHIC. PhotonÄhadron interaction processes
(the analog of DIS experiments) can be realized at the facilities with the high-
energy photon beams. The effective meson Lagrangian predictions can be exam-
ined for two- and three-pion productions for the experiments of the ˇrst class. In
particular, the anomaly 2γ → 3π can be measured.

For experiments with photonÄhadron production the three electromagnetic
current correlations can be studied. Unfortunately, these correlations are very
poorly investigated in experiments as well, as theoretically [3].

Our results were obtained in the framework of QED with point-like mesons.
In real applications we must include form factors of pion J2π

μ → Fπ(q2
1)(q+ −

q−)μ. Another modiˇcation is replacement of QED coupling constant used for
protonÄphoton interaction by that ones for protonÄρ-meson interaction: α4 →
α2(g2

ρnn/(4π))2. Besides, we must take into account the resonance character of
vector meson propagators

1
q2
1

→ Re
1

q2
1 − M2

ρ + iMρΓρ
=

q2
1 − M2

ρ

q2
1 − M2

ρ
2 + M2

ρΓρ

(25)

for γ∗ → ρ → 2π and the similar expression with replacement Mρ, Γρ → Mω, Γω

for γ∗ → ω → 3π case. All these factors were not included in calculations of
spectra given above.
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Charge-odd effects in two-pion production in proton fragmentation region
provide besides the possibility to measure the deviation from point-pion approx-
imation used above. Really, the subprocess of two charged pions production at
two-photon collisions for the case when one of them is real and another is virtual

γ(q) + γ∗(q2) → π(q−) + π(q+) (26)

can be described in terms of three kinematical singularities free amplitudes [4]:

T π−π+
ρσ = a1L

(1)
ρσ + a2L

(2)
ρσ + a3L

(3)
ρσ , (27)

L(1)
ρσ = (qq2)gρσ − q2σqρ,

L(2)
ρσ = −(qq2)QρQσ + (qQ)(q2σQρ − qρQσ) + (qQ)2gρσ,

L(3)
ρσ = (qQ)(q2

2gρσ − q2ρq2σ) + Qσ((qq2)q2ρ − q2
2qρ),

with Q = (q+ − q−)/2. All three tensor structures are gauge-invariant

L(i)
ρσqσ = L(i)

ρσqρ
2 = 0. (28)

The case of point-like pions corresponds to the choice

a
(1)
0 =

−1
χ+ + χ−

χ+

χ−
+

χ−
χ+

, a
(2)
0 =

4
χ+χ−

, a
(3)
0 = 0, (29)

where 2qQ = χ+ −χ−, qq2 = χ+ + χ−, χ± = qq±. We note that in charge-odd
experimental set-up differential cross section contains the linear combination of
amplitudes.

PhotonÄproton deep inelastic interaction (see Sec. 3) can be considered as an
alternative to deep inelastic Compton scattering (see Fig. 3, a, b) where as well
three-current correlator Hμνλ can be measured [6].

Fig. 3. DVCS alternative to γp DIS from Fig. 2
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APPENDIX A

SUDAKOV'S PARAMETRIZATION

For light leptonÄproton scattering e(p1) + p(p) → e(p′1) + q(q−) + q̄(q+) +
· · · + p(p′) in high-energy limit (keeping in mind the experimental requirement
of detecting the ˇnal state particles, i. e., we must imply the polar angles between
their 3-momenta and the beam axes to be sufˇciently large) we can consider the
leptons (e±, μ±) as well as pions π+,−,0 to be massless. Errors caused by this
assumptions is of the order

O

((
mπ

M

)2

,
m2

π

s1
,
s1

s

)
, (A1)

with mπ, M Å masses of pion and proton; s1 Å invariant mass square of
produced particles (excluding the scattered electron), s = 2pp1 � s1 ∼ M2.

Introducing the light-like 4-vector p̃ = p − p1(M2/s) we use the standard
Sudakov parametrization of 4-momenta of problem

qi = xip̃ + βip1 + qi⊥, a⊥p1 = a⊥p = 0, p̃2 = p2
1 = 0,

p′ = Δp̃ + βpp1 + p′⊥, q2 = q2
⊥ = −
q 2, p = p̃ +

M2

s
p1,

q = p1 − p′1 = αq p̃ + βqp1 + q⊥. (A2)

We imply 
qi to be two-dimensional vectors situated in the plane transversal to
the initial electron direction of motion (chosen as z-axis direction).

Putting on the mass-shell conditions q2
i = 0, (p′)2 = M2, permits to exclude

the ®small¯ coefˇcients βi:

βi =

q 2
i

sxi
, βp =

(
p′i)
2 + M2

sΔ
. (A3)

Both light-cone components of transfer momentum q (αq , βq) are small (of the
order of s1/s), so we have q2 ≈ −
q 2. The conservation law reads as

q + p = q+ + q− + . . . + p′,

1 = x+ + x− + . . . + Δ,


q = 
q+ + 
q− + . . . + 
p′,

βq +
M2

s
= β+ + β− + . . . + βp.

In the center of mass of initial particles the quantities xi are the fractions of
energy of the initial proton. Scattering angles of the set of particles, moving

along initial proton direction of motion θi, are small quantities θi =
2|
qi|
xi
√

s
.
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Special attention must be paid for describing the processes in the laboratory
frame with resting proton. In this frame the light-like 4-vectors are

p̃ =
M

2
(1,−1, 0, 0), p1 = E(1, 1, 0, 0), s = 2ME. (A4)

Energies of pions are Ei =
xiM

2
+


q 2
i

2xiM
and the energy of the scattered proton

is E′ =
ΔM

2
+

(
p′)2 + M2

2MΔ
. The scattering angles of the pions and recoil proton

are the quantities of the order of unity∗:

sin θi =
2xiM |
qi|

M2x2
i + 
q 2

i

,

tan θ =
2MΔ|
p′|

(
p′)2 + M2(1 − Δ2)
.

We put here the expressions of kinematical invariants entering Ri in terms
of the Sudakov's variables:

d± = q± − q2 − m2 = −
q 2 + 2
q±
q − s1x±,

2q±q2 = 2
q±
p′ +

q 2
± Δ̄
x±

− x±
Δ

[(
p′)2 + Δ̄M2],

2q±q = −2
q
q± + s1x±,

2q+q− =
(
q−x+ − 
q+x−)2

x−x+
,

2q±q0 =
(
q±x0 − 
q0x±)2

x±x0
,

q2
2 = − 1

Δ
[(
p′)2 + Δ̄2M2], Δ̄ = 1 − Δ,

q2
1 = (q + q2)2 = −
q 2 + q2

2 + 2
q
p′ + s1Δ̄. (A5)

The quantity s1 for π+, π−p′ jet has the form

s1 = −M2 +

q 2
+

x+
+


q 2
−

x−
+


p′2 + M2

Δ
, 
q = 
q+ + 
q− + 
p′; (A6)

and for π+, π−, π0p
′ jet is

s1 = −M2 +

q 2
+

x+
+


q 2
−

x−
+


q 2
0

x0
+


p′2 + M2

Δ
, 
q = 
q+ + 
q− + 
q0 + 
p′. (A7)

∗The relations of that type were ˇrst obtained by Benaksas and Morrison (see [5] and references
therein).
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The simpliˇed expressions for vertex functions V p
μ , V m

λ , Iπ
λ , Πλ (the lowest

order of |
q| expression) are

V p
μ =

2
p
q

s2
10Δ

γμ +
γμq̂⊥p̂1

ss10
+

p̂1q̂⊥γμ

ss10Δ
, 
p = 
q+ + 
q−,

V m
λ =

2
q
r

s2
10x+x−

γλ +
p̂1q̂⊥γλ

s1x−
− γλq̂⊥p̂1

s1x+
, 
r = x−
q+ − x+
q−,

Iπ
ν =

1
s10

(
2
q−
q

s10x−
2q+ − q2ν +

2
q+
q

s10x+
2q− − q2ν + 2q⊥ν

)
,

Πν =
1
s

[
ρp1νq⊥q2 − p1νq⊥q0 −

qν
+

q+q2
p1q⊥q−q0 −

qν
−

q−q2
p1q⊥q+q0

]
−

− 1
s10

[

q+
q

q+q
νq2q−q0 +


q−
q

q−q
νq2q+q0

]
,

with s10 = s1(
q = 0).
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