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Application of the Structure Function Method to Polarized and Unpolarized
ElectronÄProton Scattering

The cross section for polarized and unpolarized electronÄproton scattering is
calculated taking into account radiative corrections in leading and next-to-leading
logarithmic approximations. The expression of the cross section is formally similar
to the cross section of the DrellÄYan process, where the structure functions of the
electron play the role of DrellÄYan probability distributions. The main contribution
to the K-factor arises from the interference of the Born amplitude with box-type
terms, describing the exchange of two virtual photons between the electron and the
proton. Proton form factors are assumed to decrease rapidly with the momentum
transfer squared. The calculation of the box amplitude is done with the proton and
the Δ-resonance in the intermediate state. Previous calculations are discussed and
results of numerical estimations are given and discussed in the light of con	icting
experimental results on proton electromagnetic form factors.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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1. INTRODUCTION

Radiative corrections (RC) to elastic (inelastic) electronÄproton (ep) scattering
cross sections can be classiˇed in two types, according to the reaction mechanism
which is assumed: one, where a virtual photon is exchanged between electron and
proton (class I), and the second one taking into account the two virtual photon
exchange amplitude, arising from box-type Feynman diagrams in the lowest order
of perturbation theory (PT) (class II). Both kinds of contributions to RC were
considered in detail in the literature, at the lowest order of PT for polarized and
unpolarized cases.

The most elaborated consideration at the lowest order of PT was done in [1],
where the approaches of the previous papers (cf. the reference list in [1]) were
considerably improved. The role of higher orders of PT was ˇrst considered for
the unpolarized case in Ref. [2] and later for polarized case in Refs. [3] and [4].

The size of RC essentially depends on how the experiment was performed.
In experiments where only the angle (laboratory frame implied) of the scattered
electron is measured, the initial electron emission can induce an enhancement of
RC due to decreasing of the value of the momentum transfer squared, Q2 = −q2,
between electron and proton.

This mechanism can be taken into account by writing the cross section in
form of cross section of DrellÄYan process, where the structure functions of the
electron (SFs) play the role of probability distributions [2]. The set of SFs obeys
the renormalization group equations (Lipatov's equations). Their solutions are
well known [5]. The formalism of SFs allows one to obtain the cross section in the
so-called ®leading logarithmic approximation¯ (LLA), i. e., taking correctly into
account the terms of the order [(α/π) ln(Q2/m2

e)]n. It corresponds to collinear
kinematics, where the photon is emitted in a direction close to the direction of
the electron. Knowing the value of RC in the lowest order of PT, the non-leading
contribution (α/π)[(α/π)[ln(Q2/m2

e)]n can be calculated.
A different source of enhancement of cross section is related to the so-called

WeizsackerÄWilliams kinematics, where photons are emitted in noncollinear kine-
matics, and provide almost zero momentum Q2 < m2

e. This is not discussed in
the present work.

A possible enhancement of the elastic cross section can be associated with
box-type Feynman diagram, due to the rapid decreasing of proton form factors
(RDFF) in the case of proton intermediate state. A similar effect takes place
when the Δ(33) resonance is present in the intermediate state of the box diagram,
because the transition in the vertices γ∗pΔ shows also a rapid decreasing with Q2.
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The relative contribution of two-photon exchange, from simple counting in

α, would be of the order of the ˇne structure constant, α =
e2

4π
� 1

137
: any

contribution of two-photon exchange through its interference with the one-photon
mechanism would not exceed 1%. On the other hand, more than 25 years ago,
it was observed [6] that the simple rule of α-counting for the estimation of the
relative role of two-photon contribution to the amplitude of elastic electron hadron
scattering does not hold at large momentum transfer. Using a Glauber approach
for the calculation of multiple scattering contributions [7], it appeared that the
relative role of two-photon exchange can increase signiˇcantly in the region of
high momentum transfer, when the momentum squared is equally shared between
the two photons.

Taking a simple model for nucleon form factors, based on the dipole para-
metrization

GE(q) =
GM (q)

μ
=

M4
0

(Q2 + M2
0 )2

, M2
0 = 0.71 GeV2, μ = 2.79, (1)

an enhancement factor appears: N (z) = (z + 1)2/[(z/4) + 1]4, where z =
Q2/M2

0 . The corresponding contribution arises in the loop calculation, when
both exchanged photons have momenta close to q/2. This kinematical region
differs from the ®one soft photon¯ approach used in Ref. [1], when considering
the box diagram.

Large interest in the 2γ contribution has arisen as a possible explanation
of the discrepancy among electromagnetic proton form factors, when measured
with two different methods: the polarization transfer method [8], which allows a
precise measurement of the ratio of the electric to magnetic proton form factors
[9], and the Rosenbluth separation, from unpolarized elastic ep cross section [10].

In Ref. [11] it was noted that the reason of the discrepancy lies in the slope
of the reduced cross section as a function of ε, the virtual photon polarization.
At the kinematics of the present experiments, radiative corrections can reach up
to 40% on the cross section, and affect very strongly the slope, changing even its
sign.

In Ref. [12] it was shown that the contribution of the sum of the nucleon
and the Δ to the two-photon exchange correction has an angular dependence
compatible with both the polarization transfer and the Rosenbluth methods, for
the measurement of the nucleon electromagnetic form factors. Unfortunately, the
kinematics of RDFF was not investigated in detail.

On the other hand, Ref. [3] is very detailed. The SFs method was applied
to transferred polarization experiments. The size of this effect was an order
of magnitude too small to bring the polarization data in agreement with the
unpolarized ones. Therefore, the conclusion of that paper was that one could
not solve the discrepancy among the existing data. The SF method was also
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applied to polarization observables in Ref. [4], where it was shown that the
corrections can become very large, if one takes into account the initial state photon
emission. However, the corresponding kinematical region is usually rejected in the
experimental analysis, by appropriate selection on the scattered electron energy.

The motivation of the present paper is the compellent need for a precise
expression of the radiative corrected cross section for ep elastic scattering, in
both polarized and nonpolarized cases, which has a sufˇcient accuracy and is
easy to handle for experimentalists.

The paper is organized as follows. In Sec. 2 we give the DrellÄYan formulae
for cross sections in polarized and unpolarized cases. Section 3 is devoted to the
calculation of the contribution to the K-factor for the unpolarized cross section
and of the degree of transversal and longitudinal polarizations of recoil proton.
Numerical results are presented and discussed in Sec. 4. Conclusion summarizes
the main points of this work. Details of the methods used for the necessary
integrations are presented in Appendices A and B.

2. DRELLÄYAN EXPRESSION OF THE ep CROSS SECTIONS
IN UNPOLARIZED AND POLARIZED CASES

In an experiment, the selection of elastic events requires a cut in the energy
spectrum of the scattered electron, and one integrates over the events where the
energy of the ˇnal electron, E′, exceeds a threshold value E′ > Ey = Ec/ρ,
ρ = 1 + (E/M)(1 − cos θ), c < 1 (E is the initial electron energy). The
cross section in the case of unpolarized particles in the framework of DrellÄYan
approach is

dσ

dΩ
= σM

1∫
z1

dzD(z, β)
Φ(z)

1 − Π(Q2
z)

2 1 +
α

π
Kunp, (2)

where σM = α2 cos2(θ/2)/(4E2 sin4(θ/2)) is the Mott's cross section; z1 =
c/[ρ − c(ρ − 1)], and the non-singlet SF is

D(z, β) =
β

2
1 +

3
8
β(1 − z)

β
2 −1 − 1

2
(1 + z)1 + O(β), (3)

β =
2α

π
ln

Q2

m2
e

− 1, Q2 =
2E2(1 − cos θ)

ρ
. (4)

The other quantities entering in Eq. (2) are deˇned as

Φ(z) =
1

z2εzρz
σred(z), σred(z) = τzG

2
M (Q2

z) + εzG
2
E(Q2

z); (5)
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and

τ =
Q2

4M2
p

,
1
ε

= 1 + 2(1 + τ) tan2(θ/2). (6)

The quantities εz, Q2
z, ρz , τz can be obtained from ε, Q2, ρ, τ by replacing the

initial electron energy E by zE. The operator of vacuum polarization is taken as

Π(Q2) =
α

3π

(
ln

Q2

m2
e

− 5
3

)
. (7)

The dependence of the differential cross section on the angle and the energy
fraction of the scattered electron y = 1/ρ can be written as

dσ

dΩdy
=

α2 cos2(θ/2)
4E2 sin4(θ/2)

∫ 1

z1

dzρz

z
D(z)D

(yρz

z

) φ(z)
[1 − Π(Q2

z)]2
. (8)

The y dependence at ˇxed momentum transfer and electron scattering angle show
a steep rise, at small y due to initial state emission, and a rise in the vicinity of
the elastic value, y = 1/ρ. As an example, such a dependence is shown in Fig. 1,
for θ = 32.4◦ and Q2 = 3 GeV2. The dashed lines show the kinematical cuts
corresponding to c = 0.95, 0.97 and 0.99, from left to right.

Fig. 1. The y dependence of the elastic differential cross section, at θ = 32.4◦ and Q2 =
3 GeV2

In Ref. [4] the components of the recoil proton polarization (transversal Pt

and longitudinal P�) were calculated in the framework of the DrellÄYan approach:
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Pt
dσ

dΩ corr
=

= −λ

1∫
z1

dzD(z, β)
α2

Q2
z

1
ρz

2√ τz

tan2(θ/2)(1 + τz)
GE(Q2

z)GM (Q2
z)1 +

α

π
Kt;

(9)

P�
dσ

dΩ corr
=

= −λ

1∫
z1

dzD(z, β)
α2

2M2

1
ρz

2
√

1 +
1

tan2(θ/2)(1 + τz)
G2

M (Q2
z)1 +

α

π
K�, (10)

where λ = ±1 is the chirality of the initial electron.
The factors Kunp and Kt,� contain the contribution of the 2γ exchange

diagrams, and they are calculated in the next section.

3. CALCULATION OF THE K-FACTOR CONTRIBUTION
FROM THE 2γ EXCHANGE

3.1. Proton Intermediate State. We parameterize the loop momentum of
the box-type Feynman amplitude in such a way, that the denominators of Green
function are (±κ + q/2)2 + λ2 for the photon, whereas for the electron (e), and

for the proton (p) they have a form (e) = ±κ + Δ2 − m2
e, Δ =

1
2
(p1 + p′1),

(p) = κ +
1
2
(p + p′)

2

− M2, where the sign ®Ä¯ for the electron corresponds

to the Feynman diagram for the two-photon box (Fig. 2, a) and the sign ®+¯
corresponds to the crossed box diagram (Fig. 2, b).

Fig. 2. Feynman diagrams for two-photon exchange in elastic ep scattering: box diagram
(a) and crossed box diagram (b)

The assumption of a rapid decreasing of form factors implies that we can
neglect the dependence on the loop momentum κ in the denominators of the
photon Green function, as well as in the arguments of the form factors, which
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results in ultraviolet divergences of the loop momentum integrals. Therefore,
they should be understood as convergent integrals with the cut-off restriction
|κ2| < M2τ :∫

d4κ

iπ2

N±(Δ, Q)
±κ + Δ2 − m2

eκ + Q2 − M2
θM2τ − |κ2| = I± · N±(Δ, Q), (11)

where Δ =
1
2
p1 + p′1, Q =

1
2
p + p′. The explicit form of I± is given in

Appendix A. N±(Δ, Q) is the Feynman diagram numerator deˇned below.
Then the expressions for K-factors can be written as

Ki = −2NQ2/M2
0

U i(Δ, Q)
Zi

, i = unp, x, z, (12)

where N is the enhancement factor deˇned above. Zi, i = unp, x, z are the
modulo squared of the Born amplitude which are singled out in the deˇnition of
the K-factor

Zunp = 1 − Q2M2 + s

s2

g2
e + τg2

m

1 + τ
+ 2τg2

m tan2 θ/2, (13)

Zt = −1
ρ
gegm

√
τ

1 + τ
sin θ, (14)

Z� =
Q2

2E2
g2

m

√
τ

1 + τ

E

M
− τ , (15)

with ge = 1, gm = μ (the form factor dipole dependence is extracted as the
enhancement factor N (z) in (12)). In the unpolarized case the expression for
Uunp(Δ, Q) is

Uunp(Δ, Q) =
1

s2M2τ
· 1
4
Trp̂′ + MΓλQ̂Γηp̂ + M Γ̄μ×

×
{

I+ · 1
4
Trp̂′1γλΔ̂γηp̂1γμ + I− · 1

4
Trp̂′1γηΔ̂γλp̂1γμ

}
, (16)

where Γα = γα − μ

4M
γαq̂, Γ̄α = γα +

μ

2M
γαq̂. The quantities U t,�(Δ, Q) for

polarized case can be obtained from (16) by the following replacements:

γμ → γμγ5 (17)

in the lepton traces and

p̂′ + M → p̂′ + Mât,�γ5 (18)
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in the proton traces. Here at,� is the ˇnal proton polarization vector (i. e.,
(at,�p

′) = 0) and corresponds to different orientations of the proton polariza-
tion. If the ˇnal proton is polarized along the x axis, one ˇnds

atp = 0, atp1 = − E2

2Mρ

sin θ√
τ(1 + τ)

, (19)

whereas in case of polarization along the z axis

a�p = 2M
√

τ(1 + τ), a�p1 = M

√
τ

1 + τ

E

M
− 1 − 2τ. (20)

3.2. The Δ Resonance Contribution. Let us write the structure of the vertex
for the transition Δ(p) → γ(q) + P (p′), following the formalism of Ref. [13]
(and references therein):

M(Δ → γP ) = egΔN

√
3/2 ū(p′, η)γμ − 1

MΔ
p′μuν(p, λ)Fμν(q), (21)

where Fμν(q) = eμ(q)qν −eν(q)qμ is the Maxwell tensor; e(q) is the polarization
vector of virtual photon; η and λ are the chiral states of the nucleon and of the
Δ resonance, and

√
3/2gΔp ≈ 1.56μ (μ is the anomalous magnetic moment of

the proton).
The Green function of the Δ resonance, neglecting its width, is

Dμν(p)
p2 − M2

Δ + i0
(22)

with

Dμν(p) =
∑

λ

uμ(p, λ)ūν(p, λ) =

= p̂ + M−gμν +
1
3
γμγν +

1
3M

γμpν − γνpμ +
2

3M2
pμpν . (23)

The transition vertices associated with form factors are of the same form as
the dipole ones for the nucleons. The part of the virtual Compton scattering of
the proton amplitude which enters in the box amplitude is

ū(p′)[p′]μDρσ(p2)[p]νu(p)Fμρ(k1)F ∗
σν (k2),

k1,2 = ±κ +
q

2
, p2 = κ + Q, [p]μ = γμ − 1

M
pμ.

Thus, in unpolarized case, the contribution of the Δ resonance to the K-factor
can be written in the form of simple box-type diagram (12) with∗

∗Here we use the approximation MΔ − M/M � 1, therefore, we can use the same I± as in
case of proton intermediate state.
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Uunp
Δ =

1
s2M2τ

· 1
4
Trp̂′ + M [p′]μDρσ(Q)[p]ν p̂ + M Γ̄η×

×
{

I+ · 1
4
Trp̂′1P

μνρσ p̂1γ
η + I− · 1

4
Trp̂′1R

μνρσ p̂1γ
η

}
, (24)

where

Pμνρσ =
1
4
γρqν − γνqρΔ̂γσqμ − γμqσ,

Rμνρσ =
1
4
γσqμ − γμqσΔ̂γρqν − γνqρ.

The contributions in the polarized cases can be obtained from (24) via the
same replacement rules (17), (18).

4. RESULTS AND DISCUSSION

The numerical results strongly depend on the inelasticity cut, in the scattered
electron-energy spectrum. The results shown here correspond to c = 0.97. This
value has been chosen because it corresponds to the energy resolution of modern
experiments. The unpolarized cross section has been calculated assuming the
dependence of form factors on Q2 given by Eq. (1). In Fig. 3 the results are

Fig. 3. The ε dependence of the elastic differential cross section, for Q2 = 1, 3, and
5 GeV2, from top to bottom: Born cross section (solid line), DrellÄYan cross section
(dashed line), full calculation (dash-dotted line)
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Fig. 4. The Q2-dependence of the elastic differential cross section, at θ = 85, 60, and 20◦.
Notations as in Fig. 3

shown as a function of ε, for Q2 = 1, 3, and 5 GeV2, from top to bottom. The
calculation based on the structure function method, from Eq. (2), is shown as
dashed lines. The full calculation, including the two-photon exchange contribution
is shown as dash-dotted lines. For comparison, the results corresponding to the
Born reduced cross section are shown as solid lines. One can see that the main
effect of the present calculation is to modify and lower the slope of the reduced
cross section. This effect gets larger with Q2. Non-linearity effects are small.
Including two-photon exchange modiˇes very little the results, in the kinematical
range presented here.

The Q2-dependence of the unpolarized cross section is shown in Fig. 4, for
electron scattering angles equal to θ = 85, 60, and 20◦, from top to bottom.
The G2

D(Q2)-dependence has been removed, in order to enhance the differences
among the calculations.

The results for the polarized case are shown in Figs. 5 and 6, respectively,
for the longitudinal and the transversal components of the proton polarization.
The relative effect on the polarization is much smaller than on the unpolarized
cross section but the ε dependence is different for the longitudinal and for the
transversal components. Again, the effect of the two-photon contribution is
negligible in both cases.
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Fig. 5. The ε dependence of the longitudinal proton polarization, Q2 = 1, 3, and 5 GeV2,
from top to bottom. Notations as in Fig. 3

Fig. 6. The same as in Fig. 5, for the transversal proton polarization
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Fig. 7. The Q2-dependence of the longitudinal to transversal components of the proton
polarization, at θ = 85, 60, and 20◦. Notations as in Fig. 3

It is particularly interesting to look at the ratio of the longitudinal to trans-
verse components of the proton polarization, which is the object of experimental
measurements and which is directly related to the form factor ratio (Fig. 7). The
calculation based on Born approximation would give a constant value equal to
one, due to the ansatz used for the form factors from (1). The results from
the present calculation differ very little, within 1%. However, the two-photon
contribution depends on Q2 and becomes larger as Q2 increases. The present
results suggest that an appropriate treatment of radiative corrections constitutes
the solution of the discrepancy between form factors extracted by the Rosenbluth
or by the recoil polarization method.

5. CONCLUSION

We have considered radiative corrections in case of quasielastic kinematics,
when the scattered electron has energy close to the elastic value. We considered
two types of corrections: the real photon emission related to the electron vertex,
that we calculated in the framework of the structure function approach and the
two-photon exchange box diagram. We did not consider the photon emission
from the proton, which is expected to be small. The enhancement due to RC
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has been explicitly calculated in QED, taking into account the fast decreasing of
nucleon FFs.

The two-photon contribution is parameterized in terms of a K-factor in the
structure function approach. The K-factor can contribute for less than few percent
to the unpolarized cross section. Its contribution is different for the polarized cross
section, and very small on the ratio of the longitudinal to transversal components.

The main effect of the present calculation of RC is visible on the unpolarized
cross section: it changes noticeably the slope of the ε dependence of the reduced
cross section, in comparison with the Born approximation. This slope is directly
related to the electric form factor, therefore applying RC as suggested here to
the unpolarized cross section, would solve the discrepancy between form factors
extracted from the Rosenbluth method and from the recoil polarization method.

We considered both Δ and nucleon intermediate states. Their contributions,
of opposite sign, partially compensate, but the nucleon contribution is larger.

In [4] it was shown that the corrections on the polarization observables can
be very large, if the cut parameter is small, see Fig. 1. This is due to the initial
state photon emission, which is normally excluded in the experimental analysis.
In this paper we considered the region near the elastic peak where the contribution
to polarized cross section becomes small (of the order of 1 %, see Fig. 7).

Extracting form factors from ˇts of radiative corrected unpolarized cross
section we can plot the Q2-dependence of the ratio μGE/GM (see Fig. 8).

Fig. 8. The Q2-dependence of form factors GE and GM extracted from radiative corrected
cross section ˇt in unpolarized case (c = 0.99)

In conclusion, the SF method is a very powerful tool to calculate RC to
elastic ep scattering. In particular, it takes precisely into account collinear photon
emission. The two-photon contribution is negligible in the considered kinematical
range. The correction to the ratio of longitudinal to transverse proton polarization
is small. But the correction on the unpolarized cross section has the effect and
the size required to solve the discrepancy among proton form factors.
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APPENDIX A
CALCULATION OF I±

In this Appendix we perform the following integration:

I± = Re

∫
d4κ

iπ2

θM2τ − |κ2|
Δ±Q

, (A1)

Δ± = ±κ + Δ2 − m2
e,

Q = κ + Q2 − M2,

where Δ =
1
2
p1 + p′1, Q = 1

2p + p′. First, we perform Wick-rotation (κ0 → iκ0)

and imply the cut-off provided by θ function using that parameterizing

Re

∫
d4κ

iπ2

θM2τ − |κ2|
Δ±Q

=
2
π

M
√

τ∫
−M

√
τ

dκ0

M
√

τ−k2
0/M2∫

0

dk k2

1∫
−1

d(cos θκ)Re
1

Δ±Q
, (A2)

where k = |�κ|. We also performed the integration over the azimuthal angle
φκ. Now let us consider the integral in the Breit-system where q0 = 0 and
�p1 = −�p′1. Thus �Δ = 0, p0 = p′0 = E′, |�p1| = M

√
τ , �Q2 = M2 cot2 θe/2,

E′ = M
√

τ + 1/ sin2 θe/2, where θe is the electron scattering angle in the
laboratory frame.

Before integrating over angle θκ, let us write the explicit expression for real
part of integrand:

Re
1

Δ±Q
=

aa + b cos θκ ∓ δ1δ2

a2 + δ2
1a + b cos θκ

2 + δ2
2

,

where a = −κ2
0 − k2 + M2τ , b = −2k| �Q|, δ1 = 2κ0M

√
τ . δ2 = 2κ0E

′. The
integration over θκ is straightforward and results in

13



I± = − 1

π| �Q|

M
√

τ∫
−M

√
τ

dκ0

M
√

τ−k2
0/M2∫

0

dk k
1

a2 + δ2
1

×

×
{

a

2
ln

a + b2 + δ2
2

a − b2 + δ2
2

∓ δ1 arctan
2bδ2

a2 − b2 + δ2
2

}
. (A3)

APPENDIX B
METHOD FOR THE INTEGRATION OF THE D FUNCTION

Let us consider the integral

I =
∫ 1

x0

D(x)φ(x)dx. (B1)

The partition function D(x) has a discontinuity for x = 1 and has the following
properties:

I =
∫ 1

0

D(x)dx = 1; D(x)|x �=0 =
β

4
1 + x2

1 − x
. (B2)

Using (B2) one can write
∫ 1

0
D(x)dx =

∫ 1−ε

0
D(x)dx+

∫ 1

1−ε
D(x)dx = 1. There-

fore Eq. (B2) becomes

I =
∫ 1−ε

x0

dxD(x)φ(x) +
∫ 1

1−ε

dxD(x)φ(1)

=
β

4

∫ 1−ε

x0

dx
1 + x2

1 − x
φ(x) +

(
1 −

∫ 1−ε

0

dx
β

4
1 + x2

1 − x

)
φ(1). (B3)

After elementary integration, Eq. (B3) becomes

I =
β

4

∫ 1−ε

x0

dx
1 + x2

1 − x
[φ(x) − φ(1) + φ(1)] +

φ(1)
[
1 − β

4

∫ 1−ε

0

dx
1 + x2

1 − x

]
(B4)

= φ(1)
[
1 − β

4

(
2 ln

1
1 − x0

− x0 −
x2

0

2

)]
+

β

4

∫ 1

x0

dx
1 + x2

1 − x
[φ(x) − φ(1)] + O(β2), (B5)

removing therefore the singularity.
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