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We show that the Euler random walk on a Cayley tree exhibits two regimes
(dynamic phases): a condensed phase and a low-density phase. In the condensed
phase the self-organized area grows as a compact domain. In the low-density phase
the proportion of self-organized (visited) nodes decreases rapidly from one generation
of the tree to the next. We describe in detail returns of the Euler walk to the root and
growth of the self-organized domain in the condensed phase. We also investigate
the critical behaviour of the Euler walk at the point separating the two regimes.
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INTRODUCTION

The Euler random walk on a Cayley tree is deˇned as follows (see Fig. 1).
An arrow is attached to every site of the tree. Initially the arrows point at one
of the adjacent sites randomly and independently of each other. At time instants
l = 0, 1, 2, . . . the walker jumps from its current location x(l) (at one of the sites
of the tree) to the adjacent site in the direction of the arrow at x(l). At the time of
jump the arrow at x(l) is rotated clockwise, so that it points to another adjacent
node.
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Fig. 1. A Cayley tree with internal arrows arranged at random and independently of each
other. Boundary arrows always point inside the tree to prevent the walker from falling off
the tree. At site a the walker jumps in the direction of the arrow to site b, and the arrow
at a is rotated clockwise to point at site c. After that the walker jumps back to site a and
then jumps to site c. At the time of the last jump the arrow at a is again rotated clockwise
to point at site d

We assume that the generations of the tree are numbered from bottom to top.
Zero generation of the tree contains only the root. If k > l, then the generation
number k is above the generation number l in a picture of the tree, and we say
that the kth generation is higher than the generation number l.

The Euler random walks on graphs as models of self-organized criticality
were proposed by Priezzhev et al. [10] (see [9] for further investigations). In
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their version of the Euler walk the arrow at a site of a graph is rotated just as
the walker arrives there. The two versions are absolutely equivalent, but in the
version used in this paper it is easier to see in the picture of a graph where the
walker actually goes over the next few steps.

An attractive feature of the Euler walk on a ˇnite graph is that eventually it
settles into an Euler cycle, where it passes every edge of the graph twice (once in
every direction). There is exactly one Euler cycle for any tree, see Fig. 2. Thus,
as a result of the Euler walk, initially chaotically oriented arrows arrange into an
organized conˇguration.
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Fig. 2. The Euler cycle on a Cayley tree. The orientation of arrows corresponds to the
current position of the walker at the root of the tree

The Euler walk on a tree ends up in the same cycle irrespective of the
initial arrangement of the arrows, and irrespective of where the walk was started.
Therefore, one can classify the Euler walks as self-organizing systems, and even
phrases like ®order spontaneously appears from chaos¯ spring to our mind when
the Euler walks are observed.

Whether or not the Euler cycle on a tree is a critical state is not so clear.
It is not difˇcult to calculate correlation functions for orientations of the arrows
at two sites of a Cayley tree, assuming the uniform distribution of the current
location of the walker. For instance, let a1 and a2 be two arrows at sites in the
generations k and k + m of a ˇnite tree containing n generations in total. Then

Pr[a1 =↘, a2 =↘] − Pr[a1 =↘] Pr[a2 =↘] → −2−2k−m, as n → ∞.

Hence, we have an exponential decay of correlations with the distance between
the arrows measured in generations of the tree. The same asymptotic behaviour
we obtain for all other correlation functions, although some of those are positive.
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The above behaviour is in contrast to the behaviour of correlation functions
found by Dhar and Majumdar for the self-organized state of a sand pile on a
Cayley tree, see [4]. Dhar and Majumdar found that the correlation functions
decay as 4−m, where m is the distance between the two sites of the tree. They
concluded that the correlations are short-ranged, because even after multiplication
by the branching factor 2m one still has an exponential decay to 0. Thus, the
self-organized state of the sand pile on a Cayley tree should not be classiˇed as
critical.

In our case the correlations decay as 2−m, and do not vanish after multiplica-
tion by the branching factor. Therefore, one cannot rule out the criticality of the
Euler walk on a tree on the basis of decay of correlation functions. Nevertheless,
one feels that the self-organized state in this case is closer to the minimally stable
state of the 1D sand pile, described in the paper [2], than to a truly critical state.

The main goal of this paper is a description of the formation of a self-
organized structure on an inˇnite tree. We will show that, unlike what one
sees on ˇnite graphs, on an inˇnite tree a (substantial density of) self-organized
structure is not always formed. Of course, if a self-organized structure is not
formed on an inˇnite tree, it appears on a ˇnite tree only as a result of numerous
bounces of the walker against the boundary.

To set the scenery for the study of the Euler walk let us describe two possible
regimes of evolution: a condensed phase and a low-density phase. By (dynamic)
phases in this paper we mean not a particular distribution P [a] of arrows a, but
a particular type of evolution of those distributions Pt[a].

To describe the condensed phase let us arrange all the arrows (except the
one at the root of the tree) downwards, along the edges of the tree. In this case
the walker starting at the root at time T0 = 0 returns to the root at time instants
T1 = 2, T2 = 8, T3 = 22, . . .. In general, the f th return to the root takes place at
the time instant Tf = 2f+2 − 2f − 4.

There is a growing domain of self-organized (visited) sites which penetrates
the kth generation of the tree at the time instant tk ≡ 2k+1 − k − 2, k = 1, 2, . . ..
At the time instant sk ≡ 2k+2 − 3k − 3 the domain swallows the kth generation
completely, and the walker heads toward the root.

If we denote gmax(t) the highest generation visited by the walker by the time
t, then the formula for tk yields

log2(t) − 1 � gmax(t) � log2(t), for t � 4.

Analogously, if we denote gc(t) the number of completely self-organized gener-
ations by the time t, then the formula for sk yields

log2(t) − 2 � gc(t) � log2(t) − 1, for t � 3.

Thus, for the downward initial arrangement of the arrows, the growing self-
organized area is a ®compact¯ domain of the tree. The height of the domain
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(measured in generations) grows with time as log2 t. Below the highest visited
generation the density of self-organized sites is 1, above that generation the
density of self-organized (visited) sites is, of course, 0. This is the condensed
phase of the Euler walk.

Another regime Å the low-density phase Å is obtained if we begin with the
upward (left or right) initial orientation of the arrows. In this case the walker
goes straight toward the top of the tree. The density of self-organized (visited)
sites in the f th generation at time t is 2−f+1 (for f � t), which tends to 0 with f
justifying the name of the low-density phase. Of course, once the walker reaches
the top of the (ˇnite) tree it turns back and gradually stomps the whole graph.
Therefore (as it should be), a clear-cut distinction between the two phases exists
only on an inˇnite tree.

For a random initial arrangements of the arrows we obtain a phase which is
a perturbation of either the condensed or the low-density phase. As we will see
in the following sections, the transition between the two phases takes place when
2 Pr[↖] + Pr[↗] = 1.

The rest of the paper is organized as follows. In Sec. 1 we investigate the
properties of the condensed phase: the returns of the walker to the root, and the
growth of the self-organized domain when 2 Pr[↖] + Pr[↗] < 1. In Sec. 2 we
show the absence of a compact self-organized domain if 2 Pr[↖]+Pr[↗] > 1. In
Sec. 3 we repeat the program of Sec. 1 at the critical point 2 Pr[↖] + Pr[↗] = 1.
Traditionally, the last section is devoted to a discussion of the results obtained in
the previous sections.

1. THE CONDENSED PHASE

Let the internal arrows be initially arranged independently of one another,
and according to the distribution Pr[↖] = p, Pr[↗] = q, Pr[↓] = 1− p− q. One
can map every initial conˇguration of arrows into a realization of a discrete-time
branching process according to the following rules.

Place a particle at the root of the tree. This particle produces exactly one
descendant Å a particle which is placed at the node of the ˇrst generation of the
tree. From the ˇrst generation, a particle produces either 0, or 1, or 2 descendants
depending on the initial direction of the arrow at the node occupied by the particle.
If the arrow points downward, then the particle does not have descendants. If the
arrow points up and right (like the arrow at the ˇrst-generation node in Fig. 3),
then the particle has exactly one descendant placed at the adjacent node in the
direction of the arrow. Finally, if the arrow points up and left, then there are
exactly two descendants placed at the two adjacent sites above, see Fig. 3.

The relevance of the branching process to the Euler walk stems from the
following fact. If the branching process degenerates, then the Euler walk returns
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Fig. 3. An initial arrangement of the arrows, the corresponding ˇrst return to the root for
the Euler walk (solid lines), the ˇrst-return cluster of the associated branching process
(discs), and the buds (spades). At the next visit to a node with buds an independent
ˇrst-return cluster will grow from every bud

to the root at a ˇnite time-instant T1 equal twice the number of descendants in the
branching process (not counting the original particle at the root). The ˇrst-return
path encircles the particles in all generations of the branching process, which we
call below the ˇrst-return cluster.

The above correspondence between the Euler walks on a Cayley tree and
branching processes allows one to employ the elegant technique of generation
functions and the main results from the theory of branching processes [6, 5].
First of all, recall that if a particle produces k descendants with probability
pk, then the branching process degenerates with probability 1 if and only if∑∞

k=1 kpk � 1. Hence, the time of the ˇrst return is ˇnite with probability
1 if and only if q + 2p � 1. The critical case q + 2p = 1 requires a special
consideration, therefore, in this section we consider only the case q + 2p < 1.

Lemma 1. Let q + 2p < 1, then the Euler walk returns to the root for the
ˇrst time at an almost surely ˇnite even time-instant T1, such that

m1 ≡ ET1 =
2

1 − (q + 2p)
;

VarT1 =
4(1 − q)

(1 − (q + 2p))3
− 4

1 − (q + 2p)
;
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Pr[T1 = 2k] ∼

√
q
√

(1 − p − q)/p + 2(1 − p − q)
4πp

×

k−3/2
(
q + 2

√
p(1 − p − q)

)k

,

as k → ∞.
Proof. Denote X the number of descendants for a particle outside the root

of the tree. The probability generating function of X is given by

g(y) ≡ EyX = 1 − q − p + qy + py2. (1)

Denote Z the total number of descendants in the branching process associated
with the Euler walk. The probability generating function of Z, f(x) ≡ ExZ , is
a solution of the equation, see [6, 5],

f(x) = xg(f(x)).

Hence

f(x) =
1

2px

[
1 − qx −

√
(1 − qx)2 − 4p(1 − p − q)x2

]
.

Differentiating f(x) and taking into account T1 = 2Z, we obtain

m1 ≡ ET1 =
2

1 − (q + 2p)
, VarT1 =

4(1 − q)
(1 − (q + 2p))3

− 4
1 − (q + 2p)

.

The above generating function f(x) =
∑∞

k=0 pkxk often appears in the literature
on branching processes, see, e.g., the paper [7] by Otter. In particular, it is shown
in that paper that the large-k asymptotics for pk = P [Z = k] is given by

pk ∼

√
q
√

(1 − p − q)/p + 2(1 − p − q)
4πp

k−3/2
(
q + 2

√
p(1 − p − q)

)k

, (2)

which is the announced formula for P [T1 = 2k] in the statement of this lemma.

Remark 1. Denote Zk the number of particles of the associated branching
process in the kth generation of the tree. The random variable X is the number
of descendants produced by a single particle as in the proof of Lemma 1. Then
the distribution of the height of the ˇrst-return path, H1, is given by

Pr[H1 = k] = Pr[Zk+1 = 0] − Pr[Zk = 0].

It is shown in the book by Harris [6] that the large-k asymptotics of Pr[Zk = 0]
is given by

6



Pr[Zk = 0] ∼ 1 − c1(EX)k,

if EX < 1, where c1 is an unknown positive constant.
Hence in our case the distribution of H1 decays exponentially with k,

Pr[H1 = k] ∼ c(q + 2p)k.

Thus, during the ˇrst stage of evolution (0 � t � T1) the walker stomps a
ˇrst-return path with statistical properties described in Lemma 1. To visualize
the motion of the walker after the ˇrst return to the root one can imagine that,
whenever a node is visited for the ˇrst time and X descendants are produced in
the associated branching process, the walker attaches 2−X buds to the node, see
Fig. 3. During the second stage of evolution (after the ˇrst return but before the
second return to the root) the walker follows the ˇrst-return path, but, whenever
a bud is encountered, it wonders off the beaten track and appends to the existing
path a new circuit, which (unless hitting the boundary) is statistically equivalent
to the ˇrst-return path, see Fig. 4.
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Fig. 4. The initial arrangement of the arrows, the corresponding second return to the root
for the Euler walk (solid lines), and a new set of buds (spades)

Lemma 2. Let the Euler walk return to the root for the ˇrst time at time T1.

Then the ˇrst-return path has exactly 1 +
1
2
T1 attached buds.
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Proof. Recall the following standard representation for the number of de-
scendants, Zk, in generations k = 2, 3, . . . of the associated branching process:

Z2 = X
(1)
1 ,

Z3 = X
(2)
1 + X

(2)
2 + . . . + X

(2)
Z2

,

Z4 = X
(3)
1 + X

(3)
2 + . . . + X

(3)
Z3

,

and so on,

where X
(l)
k is the number of descendants produced by the kth particle from the

lth generation. All the random variables X
(l)
k are independent and have the same

distribution as the random variable X . Note also that Z1 = 1, and Zn+1 = 0
whenever Zn = 0.

Then we have the following formulae for the number of buds bk, in genera-
tions k = 1, 2, 3, . . .:

b1 = 2 − X
(1)
1 = 2 − Z2,

b2 = 2 − X
(2)
1 + 2 − X

(2)
2 + . . . + 2 − X

(2)
Z2

= 2Z2 − Z3,

b3 = 2 − X
(3)
1 + 2 − X

(3)
2 + . . . + 2 − X

(3)
Z3

= 2Z3 − Z4,

and so on.

Since for q + 2p < 1 only a ˇnite number of Zk have nonzero values, the total
number of buds on the ˇrst-return path is given by

B1 =
∞∑

k=1

bk =
∞∑

k=2

(2Zk−1 − Zk) = 1 +
∞∑

k=1

Zk.

The total number of descendants in all generations is
1
2
T1, hence B1 = 1 +

1
2
T1.

Theorem 1. Let q +2p < 1, then the Euler walk returns to the root inˇnitely
often at (almost surely ˇnite) time instants T1, T2, T3, . . .. Moreover, the sequence
of normalized differences

Yn =
Tn − Tn−1 + 2
(1 + 1

2ET1)n
, n = 1, 2, 3, . . .

is a positive and uniformly integrable martingale, E[Yn|Yn−1, . . . , Y1] = Yn−1.
Proof. In order to return to the root for the second time the walker has to

repeat the ˇrst-return path and to create new ˇrst-return circuits at each of the B1

buds. Hence for the time of the second return to the root we obtain

T2 − T1 = T1 − T0 + τ
(2)
1 + τ

(2)
2 + . . . + τ

(2)
B1

,

8



where T0 = 0, and τ
(2)
j are independent random variables with the same distri-

bution as the ˇrst-return time T1. A verbatim repetition of the argument from
the proof of Lemma 2 shows that on each of the new circuits attached to the

ˇrst-return path the walker creates 1 +
1
2
τ

(2)
j buds, j = 1, 2, . . . , B1. Hence the

total number of buds on the second-return path is given by

B2 = B1 +
1
2

B1∑
j=1

τ
(2)
j .

We have essentially the same scenario for any return to the root. For the
time of the nth return to the root we obtain

Tn − Tn−1 = Tn−1 − Tn−2 +
Bn−1∑
j=1

τ
(n)
j . (3)

The number of buds on the nth return path is given by

Bn = Bn−1 +
1
2

Bn−1∑
j=1

τ
(n)
j .

Since B1 = 1 +
1
2
T1, we can rewrite the last equation as

Bn =
Bn−1∑
j=1

b
(n)
j , (4)

where b
(n)
j = 1 +

1
2
τ

(n)
j are independent random variables with the same distrib-

ution as B1.
Induction and the obtained relationships for Tn and Bn yield

Bn = 1 +
1
2
(Tn − Tn−1), for any n � 1. (5)

Indeed, Lemma 2 says that in the case n = 1 this formula is correct. Suppose
that the formula is also correct for n = k. Then the relationships for Bn and Tn

yield

Bk+1 = Bk +
1
2

Bk∑
j=1

τ
(k)
j = 1 +

1
2
(Tk − Tk−1) +

1
2
(Tk+1 − Tk − Tk + Tk−1)

= 1 +
1
2
(Tk+1 − Tk).

9



Hence Bn = 1 +
1
2
(Tn − Tn−1) is also correct for n = k + 1, which completes

the induction.
Now one can calculate the following conditional expectation:

E [Tn+1 − Tn + 2|Tn − Tn−1 + 2] = Tn − Tn−1 + 2+

+ E

⎡
⎣ Bn∑

j=1

τ
(n+1)
j

∣∣∣∣∣∣Tn − Tn−1 + 2

⎤
⎦ =

(
1 +

1
2
ET1

)
(Tn − Tn−1 + 2).

Hence the sequence

Yn =
Tn − Tn−1 + 2(
1 +

1
2
ET1

)n , n = 1, 2, 3, . . .

is a positive martingale.
Since EYn = EY1 = 2, we have Pr[Yn < ∞] = 1, for any n, which implies

the almost sure ˇniteness of the return times Tn, n = 1, 2, . . ..
The relationship supn E(Y 2

n ) < ∞ is a well-known sufˇcient condition for
the uniform integrability of the sequence {Yn}∞n=1, see, e. g., the book by Shiryaev
[11]. In our case Eq. (3) yields

sn+1 ≡ E(Tn+1 − Tn + 2)2

= E(Tn − Tn−1 + 2)2 + 2E

⎡
⎣(Tn − Tn−1 + 2)

Bn∑
j=1

τ
(n+1)
j

⎤
⎦+

+E

⎛
⎝Bn∑

j=1

τ
(n+1)
j

⎞
⎠2

.

Calculating the expected values with the help of the tower property we obtain the
following simple recurrent relationship:

sn+1 = sn

(
1 +

1
2
ET1

)2

+ Var(T1)
(

1 +
1
2
ET1

)n

.

Solving the recurrent relationship we obtain

sn+1 = 2
(

2 +
ET 2

1

ET1

)(
1 +

1
2
ET1

)2n+1

− 2
Var(T1)

ET1

(
1 +

1
2
ET1

)n

. (6)

10



Hence

sup
n

sn(
1 +

1
2
ET1

)2n < ∞,

implying the uniform integrability of the martingale Yn, n = 1, 2, . . ..

Corollary 1. Let q + 2p < 1, then for almost all initial arrangements of the
arrows

lim
n→∞

Tn − Tn−1 + 2(
1 +

1
2
ET1

)n = Y,

where Y is a random variable with a proper distribution (Pr[Y < ∞] = 1). The
expected value and the variance of the random variable Y are given by

EY = 2, Var(Y ) =
4Var(T1)

ET1(2 + ET1)
.

Proof. Since the sequence {Yn}∞n=1 is a positive martingale, the Doob martin-
gale convergence theorem, see, e. g., the book by Shiryaev [11], tells us that
limn→∞ Yn = Y , where Y is a random variable with a proper distribution. Since
the sequence {Yn}∞n=1 is uniformly integrable EY = limn→∞ EYn = 2.

Equation (6) yields

lim
n→∞

EY 2
n = 4 +

4Var(T1)
ET1(2 + ET1)

.

To show that EY 2 = limn→∞ EY 2
n , we need the uniform integrability of the

sequence {Y 2
n }∞n=1. To that end one can use the sufˇcient condition supn EY 3

n =
supn E(Y 2

n )3/2 < ∞. One can check by a direct calculation similar to that used
in the proof of Theorem 1 that the sufˇcient condition is indeed satisˇed. Hence

Var(Y ) = EY 2 − (EY )2 =
4Var(T1)

ET1(2 + ET1)
.
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Corollary 2. Let q + 2p < 1, then

ETn = 2
2 + ET1

ET1

[(
1 +

1
2
ET1

)n

− 1
]
− 2n,

Var(Tn) ∼ Var(T1)(
1
2
ET1

)3

(
1 +

1
2
ET1

)2n+1

, (7)

lim
n→∞

Tn(
1 +

1
2
ET1

)n+1 =
2Y

ET1
, almost surely,

where the random variable Y is identical to the one from Corollary 1.
Proof. Recall that the martingale {Yk}∞k=1 is deˇned by

Yk =
Tk − Tk−1 + 2(
1 +

1
2
ET1

)k
.

Taking the denominator to the l.h.s. and summing over k from 1 to n one obtains

Tn =
n∑

k=1

(
1 +

1
2
ET1

)k

Yk − 2n, (8)

where we have used T0 = 0. Since EYl = 2, a summation of the geometric
series yields

ETn = 2
2 + ET1

ET1

[(
1 +

1
2
ET1

)n

− 1
]
− 2n.

Equation (8), the martingale property E(Yk|Yf ) = Yf , for f < k, and
straightforward calculations yield the main asymptotics of the variance Var(Tn),
Eq. (7).

Since limk→∞ Yk = Y (almost surely), an application of a standard technique
from analysis to Eq. (8) yields

lim
n→∞

Tn(
1 +

1
2
ET1

)n+1 = lim
n→∞

n∑
k=1

(
1 +

1
2
ET1

)k−n−1

Yk =
2Y

ET1
.
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The last Corollary describes in detail the large-n behaviour of the nth return
time Tn in the subcritical regime, where ET1 < ∞. The following crude bound
will be helpful at the critical point.

Corollary 3.
Tn − Tn−1 � Tn � 2(Tn − Tn−1). (9)

Proof. For the number of buds on the nth return (to the root) path we have
Bn � 2Bn−1, hence Bn−l � 2−lBn. Summing Eq. (5) we obtain

Tn = 2

(
n∑

l=1

Bl − n

)
.

Therefore Tn � 4Bn − 2n, and using Eq. (5) again we obtain

Tn − Tn−1 � Tn � 2(Tn − Tn−1).

Theorem 1 and its corollaries give a fairly comprehensive description of the
frequency of return to the root. Our next aim is a description of the height of
the domain of visited sites. Remark 1 describes the distribution of the highest
visited generation at time T1. Investigation of the height of the domain at later
times is a much more delicate problem. We will ˇnd the asymptotic behaviour of
the density of visited sites, vk(t), in the kth generation of the tree, deˇned as the
ratio of the number of sites visited by time t to the total number of sites, 2k−1,
in the kth generation.

In order to describe the growth of the domain of visited sites on the Cayley
tree, let us consider an arbitrary branch wn = (e1, e2, . . . , en) of the tree, where
el, l = 1, 2, . . . , n are the segments (edges) of the branch, see Fig. 5. With any
edge el one can associate an ®energy¯ εl as follows. The energy of a left edge el

(like ea in Fig. 5) is equal to 0, if the arrow at the bottom of the edge el points
along the edge, and εk = 1 otherwise. The energy of a right edge el (like eb

in Fig. 5) is equal to 1, if the arrow at the bottom of the edge el points down,
and εl = 0 otherwise. In other words, the energy of an edge el is equal to 1, if
the arrow at the bottom of the edge causes the walker to deviate from the Euler
cycle, and the energy is equal to 0 if the walker passes the edge ®effortlessly¯.
The energy of a branch wn is the sum of the energies of its edges.

The domain of visited sites consumes the edges of a path wn as follows.
During the time interval [0, T1] (before the ˇrst return to the root) the domain
swallows all the edges of the path wn till the ˇrst obstacle Å the ˇrst edge el

with εl = 1. During the time interval [T1, T2] (after the ˇrst return but before the
second return to the root) the domain of visited sites consumes the edge el and all

13
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Fig. 5. A branch w5 (path) of the Cayley tree, its edges (e1, e2, . . . , e5), and the associated
random ®energies¯ (ε1, ε2, . . . , ε5). The energies of edges growing from the same node
of the tree, like εa and εb, are not independent

zero-energy edges which follow el until the second obstacle Å the second edge
em with nonzero energy, and so on. During the time interval [Tj , Tj+1] (after the
jth return but before the j + 1th return to the root) the domain of visited sites
consumes all the edges between the jth and j + 1th edges with nonzero energy.
Thus, the number of visited sites in the kth generation at time Tm is equal to the
number of paths wk with less than m obstacles, or, equivalently, with the path
energies E(wk) =

∑
l:el∈wk

εl less than m.
Let us consider the following sum (partition function):

Θk =
∑
wk

exp[−βE(wk)],

where the summation runs over all branches wk of a tree with k generations. We
have

Θk =
k∑

n=0

#{wk : E(wk) = n} exp[−βn].

Hence, the large k limit of k−1 ln Θk is the Legendre transform of

ν(y) ≡ lim
k→∞

k−1 ln #{wk : E(wk) = [ky]},

where [ky] is the integer part of ky.
On the other hand, the sum Θn is almost identical to the partition function of

a directed polymer on the Cayley tree, see [3]. The difference between Θn and

14



the partition function in [3] is that not all the energies εl are independent. Indeed
if two edges ea and eb grow from the same site of the tree, see Fig. 5, then

Pr[εa = 1, εb = 1] = 1 − p − q, Pr[εa = 0, εb = 1] = 0,

Pr[εa = 1, εb = 0] = q, and Pr[εa = 0, εb = 0] = p.

Nevertheless, the large-k asymptotics of k−1 ln Θk can be found by virtually
verbatim repetition of the derivation from [3]. In particular, if we denote Ak the
σ-algebra generated by the random energies of the ˇrst k generations of the tree,
and deˇne

Mk =
Θk

[(2 − 2p − q)e−β + 2p + q]k−1
,

then the stochastic sequence {Mk,Ak}∞k=1 is a positive martingale, and
EMk = 1.

Using the martingale technique from [3] we obtain.

Proposition 1. If 0 � 2p + q < 1, then

f(β) ≡ lim
k→∞

k−1 ln Θk =

⎧⎨
⎩

ln
[
(2 − 2p − q)e−β + 2p + q

]
, if β � βc,

β

βc
ln
[
(2 − 2p − q)e−βc + 2p + q

]
, if β � βc,

(10)
where βc is the positive solution of

ln
[
(2 − 2p− q)e−β + 2p + q

]
=

β(2p + q)eβ

2 − 2p − q + (2p + q)eβ
.

While if 1 � 2p + q � 2, then

f(β) ≡ lim
k→∞

k−1 ln Θk = ln
[
(2 − 2p − q)e−β + 2p + q

]
. (11)

Lemma 3. The logarithmic asymptotics of the number of path wk with the
energy [ky], y ∈ (0, 1) is given by

ν(y) ≡ lim
k→∞

k−1 ln #{wk : E(wk) = [ky]}

=
[
y ln

2 − (2p + q)
y

+ (1 − y) ln
2p + q

1 − y

]+

, (12)

where [x]+ = max(x, 0) is the positive part of x.
Proof. The free energy f(β), given by Eqs. (10) and (11), is the Legendre

transform of the logarithmic asymptotics ν(y). Namely,

f(β) = max
y∈[0,1]

[−βy + ν(y)] .

15



Therefore,
ν(y) = min

β�0
[βy + f(β)] .

Solving the minimization problem we obtain Eq. (12).

An inspection of the function ν(y) shows that there are around [2−(2p+q)]k

branches wk containing k obstacles for the Euler walker to overcome. At the
same time, there are a few branches with only around [y∗k] obstacles, where
y∗ ∈ (0, 1) is a solution of the equation

y ln
2 − (2p + q)

y
+ (1 − y) ln

2p + q

1 − y
= 0.

Hence, there exists a growing with time gap, of the width m(1/y∗−1) generations
at time Tm, between the highest visited generation and the completely self-
organized generation of the Cayley tree. Therefore, neither generation is likely
to be a sensible measure of the height of the self-organized domain.

It is a common practice in situations like that to concentrate ones attention on
typical branches of the tree. Therefore, we deˇne the height of the self-organized
domain as a number (function) H(t) ∼ h ln t, such that the density of visited
sites in generation x ln t at time t, vx ln t(t), tends to zero with t if x > h, and
vx ln t(t) → 1, if x < h. We will see shortly that this deˇnition is a sensible
one for the problem under consideration. Of course, the choice of the asymptotic
form H(t) ∼ h ln t is speciˇc to Cayley trees, and was actually made after the
density of visited sites was calculated.

The logarithmic asymptotics ν(y) attains its maximum, ln 2, at y = p +
1
2
q.

Hence, the typical branches wk have the energy E(wk) ∼ k

(
p+

1
2
q

)
. Thus, the

domain of visited sites consumes a typical branch wk of the tree after k

(
p+

1
2
q

)
returns to the root.

Theorem 2. Let q + 2p < 1, then the height of the domain of self-organized
(visited) sites, H(t), grows as logarithm of time,

H(t) ∼ ln t(
p +

1
2
q

)
ln
(

1 +
1
2
ET1

) .

Proof. As follows from Corollary 2, the number of returns to the root by time t
for the Euler walker is given by

m ∼ ln t

ln
(

1 +
1
2
ET1

) ,
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as t → ∞. The asymptotic number of obstacles in a typical branch wk of the

Cayley tree is given by k

(
p +

1
2
q

)
, as k → ∞. Hence, the typical penetration

after m returns to the root is approximately m/

(
p +

1
2
q

)
generations, while the

typical penetration by time t is

H(t) ∼ ln t(
p +

1
2
q

)
ln
(

1 +
1
2
ET1

) generations.

Unfortunately, it is difˇcult to go beyond the logarithmic asymptotics ν(y)
of the number of paths wk with the energy E(wk) = [ky]. Nevertheless, one can

guess that the number of paths with the energy E(wk) ∼ k

(
p +

1
2
q

)
+

√
ku

is controlled entirely by the quadratic term in the Taylor expansion for ν(y) at

y = p+
1
2
q. If this is indeed the case then, in the spirit of the local limit theorem,

we obtain

#
{

wk : E(wk) = k

(
p +

1
2
q

)
+
√

ku

}
∼ c√

k
exp

[
kν

(
p +

1
2
q

)
+

+
1
2
ν′′(p +

1
2
q)u2

]
=

2kc√
k

exp

⎡
⎢⎢⎣− u2

2
(

p +
1
2
q

)(
1 − p − 1

2
q

)
⎤
⎥⎥⎦ . (13)

The density of visited sites in generation n at time Tm is given by

vn(Tm) =
1

2n−1

∑
f<m

# {wn : E(wn) = f} .

Approximating the sum by an integral (very much like in the normal approxima-
tion to the binomial distribution) and taking into account Eq. (13) one obtains

vn(Tm) ∼ 1√
2πσ2

∫ [m−n(p+q/2)]/
√

n

−∞
dx exp

(
− x2

2σ2

)
, (14)

where σ2 =
(

p +
1
2
q

)(
1 − p − 1

2
q

)
.

We summarize the above discussion by a hypothesis which might well be
true.
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Hypothesis 1. The width of the boundary of the self-organized domain of
size n generations grows with n as

√
n. The drop of the density of self-organized

sites on the boundary from 1 to 0 is described by the error function, see Eq. (14).

Note that at the critical point 2p+q = 1 the variance σ2 in Eq. (14) reaches its

maximal value,
1
4
, but remains ˇnite. Therefore the density proˇle of the domain

of visited sites does not disintegrate as we approach the critical point. Instead,
as 2p + q approaches 1, the Euler walker tends to spend more and more time
in long (low-density) excursions away from the compact domain of visited sites.
Those long excursions do not create compact self-organized domains, somewhat
like water poured into sand does not create puddles.

2. THE LOW-DENSITY PHASE

Let now q+2p > 1. In this case the associated branching process degenerates
with probability x∗ which is a solution of the equation x = g(x) less than 1, see
[6, 5], where the function g(x) is given by Eq. (1). That is, x∗ = (1 − q − p)/p.
A routine application of the BorelÄCantelli lemma shows that in this case, with
probability 1, the Euler walk visits the root (and any given generation of the tree)
only a ˇnite number of times.

Let k be large enough to guarantee that only one copy of the associated
branching process Å the copy which does not degenerate Å has survived until
the kth generation. Then the number of visited sites in the kth generation, Vk

(after the last visit of the kth generation) does not exceeds the number of particles
in a single copy of the associated branching process. Namely, Vk � W (q +2p)k,
where W is a random variable with a proper distribution (P [W < ∞] = 1). Since
q +2p < 2 unless p = 1, we have Vk/2k → 0 as k → ∞. That is, the Euler walk
is in the low-density phase when q + 2p > 1.

The bound Vk � W (q + 2p)k is a gross overestimation of the number of
visited sites. Most likely Vk does not grow faster than something like a constant
times ln k.

3. THE CRITICAL POINT

In this section we consider the critical case q+2p = 1. Like in the subcritical
case q + 2p < 1, the associated branching process degenerates with probability 1
if q +2p = 1. However the branching process becomes critical, and its properties
differ substantially from those in the subcritical regime. As we shall see shortly,
the ˇrst moments of all relevant random variables are inˇnite if q + 2p = 1.
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As a consequence, extraction of properties of the random variables from their
generating functions is no longer straightforward.

Lemma 4. Let q + 2p = 1, then the Euler walk returns to the root for the
ˇrst time at a ˇnite (almost surely) time-instant T1, such that

Pr[T1 = 2k] ∼ 1
2
√

πp
k−3/2, as k → ∞. (15)

Proof. Analogously to the subcritical case, the probability generating function of
the total number of descendants, Z, is given by

f(x) = 1 +
1

2px

[
1 − x −

√
(1 − x)[1 − (1 − 4p)x]

]
. (16)

Using Eq. (2) we obtain

Pr[T1 = 2k] = Pr[Z = k] ∼ 1
2
√

πp
k−3/2, as k → ∞.

Remark 2. The large-k asymptotics of Pr[T1 = 2k] makes it clear that
ET1 = ∞. It is still desirable to have a deterministic measure indicating likely
values of the ˇrst-return time T1. For that purpose one can use the quantiles
Q1(x) Å solutions of the equation Pr[T1 � Q1(x)] = x. The asymptotic formula
(15) yields the following equation for approximate values of Q1(x):

1
2
√

πp

∞∑
k>Q1(x)/2

k−3/2 = 1 − x.

Replacing the sum by an integral and solving the obtained equation for Q1(x)

one obtains Q1(x) ≈ 2
πp(1 − x)2

. For values of x close to 1, the precision of

the found approximation for Q1(x) is quite reasonable. For instance, in the case

p = 0.1 it gives Q1

(
3
4

)
≈ 102, while the exact value is Q1

(
3
4

)
= 98.

Remark 3. Like in the subcritical case, see Remark 1, asymptotic properties
of the distribution of the height of the ˇrst-return path, H1, follow from standard
results of the theory of branching processes. It is shown in the book by Harris [6]
that the large-k asymptotics of Pr[Zk = 0] in the case EX = 1 is given by

1 − Pr[Zk = 0] ∼ 1
pk

.
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Hence, the distribution of H1 displays a power-law decay,

Pr[H1 = k] = Pr[Zk+1 = 0] − Pr[Zk = 0] ∼ 1
pk2

.

In order to investigate the distribution of the return to the root instants
T2, T3, . . . let us ˇrst ˇnd the probability generating functions G2(x), G3(x), . . .
for the number of buds B2, B3, . . . on the corresponding paths. Using Eq. (4)
and the tower property one obtains

Gn(x) = ExBn = E(xf(x))Bn−1 = Gn−1(ϕ(x)),

where ϕ(x) ≡ xf(x) is the generating function of B1, and f(x) is given by
Eq. (16). It is clear now that Gn(x) is the nth iteration of ϕ(x), that is,

Gn(x) = ϕ(ϕ(. . . ϕ(x) . . .))︸ ︷︷ ︸
n times

.

Hence Gn(x) = ϕ(Gn−1(x)) as well.

Theorem 3. Let q +2p = 1, then the Euler walk returns to the root inˇnitely
often at (almost surely) ˇnite time instants T1, T2, T3, . . .. Moreover,

Pr[Tn − Tn−1 = 2k] ∼ 1
2nΓ(1 − 2−n)p1−2−nk1+2−n as k → ∞. (17)

Proof. The probability Pr[Tn − Tn−1 = 2k] is given by the integral

Pr[Tn − Tn−1 = 2k] =
1

2πi

∫
C

Gn(z)
zk+2

dz,

where C is a sufˇciently small closed contour encircling 0, and Gn(x) is the
probability generating function of Bn. To ˇnd the large-k asymptotics of this
integral we adapt the contour integration from [7]. For that purpose we have to
know analytical properties of the generating functions Gn(x).

By deˇnition

Gn(z) =
∞∑

l=0

Pr[Bn = l]zl,

hence the function Gn(z) is analytic inside the unit circle {z : |z| < 1}. Since
Gn−1(1) = 1, and Gn(z) = ϕ(Gn−1(z)), the point z = 1 is a branch point of
Gn(z). Since |Gn(eix)| < 1 for any real x ∈ (0, 2π), the point z = 1 is the only
singularity of the function Gn(z) on the boundary of the unit circle {z : |z| < 1}.
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From the explicit formula for the function ϕ(z) it is clear that the generating
function Gn(z) has only a ˇnite number of points of non-analyticity. Hence,
there exists a disc An = {z : |z| ≤ αn}, with αn > 1, such that z = 1 is the only
singularity of the functions Gk(z), k = 1, 2, . . . , n in An.

Denote Dn the boundary of the disc An with a radial cut running outwards
from x = 1. The generating function Gn(z) can be written as follows:

Gn(z) = 1 − an(1 − z)2
−n

+ (1 − z)2
−n+1

fn(z), (18)

where fn(z) is analytic and bounded inside Dn: |fn(z)| � b(p) < ∞. Indeed,
we already know that the function Gn(z) is analytic inside Dn. Since

fn(z) =
Gn(z) − 1 + an(1 − z)2

−n

(1 − z)2−n+1 ,

it must be analytic inside Dn as well.
To show that fn(z) is bounded inside Dn we can use induction. The function

f1(z) is obviously bounded in any circle with ˇnite radius. Assume now that
fn(z) is bounded in any circle with ˇnite radius for n = k, then for n = k + 1
we obtain

Gk+1(z) = ϕ(Gk(z)) = 1 −
√

ak

p
(1 − z)2

−k−1
+ (1 − z)2

−k

fk+1(z),

where

fk+1(z) =
(

1
2p

− 1
)[

ak − (1 − z)2
−k

fk(z)
]

−(1 − z)−2−k−1
[

1
2p

√[
ak − (1 − z)2−kfk(z)

]
[1 − (1 − 4p)Gk(z)] −

√
ak

p

]
.

Hence fk+1(z) is bounded in any circle with ˇnite radius as well, completing the
induction.

From the above equations we obtain the recurrent relationship ak+1 =√
akp−1, with the initial condition a1 =

√
p−1. The solution of this recur-

rent relationship is given by ak = p−1+2−k

.
On substitution of Eq. (18) in the integral representation for the probability

Pr[Tn − Tn−1 = 2k] we obtain

Pr[Tn−Tn−1 = 2k] = − an

2πi

∫
C

(1 − z)2
−n

zk+2
dz+

1
2πi

∫
C

(1 − z)2
−n+1

fn(z)
zk+2

dz =

= (−1)kan

(
2−n

k + 1

)
+

1
2πi

∫
Dn

(1 − z)2
−n+1

fn(z)
zk+2

dz.
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Since the function fn(z) is bounded inside Dn, the remaining integral is of the
same order as ∫ αn

1

(1 − x)2
−n+1

xk+2
dx = O

(
2−n+1

k + 1

)
.

Therefore,

Pr[Tn − Tn−1 = 2k] ∼ 1
2nΓ(1 − 2−n)p1−2−nk1+2−n as k → ∞.

Finally, note that Pr[Tn−Tn−1 < ∞] = 1, and according to Eq. (9) we have
Tn � 2(Tn − Tn−1). Hence, all return to the root instants Tn are almost surely
ˇnite.

Theorem 4. Let q + 2p = 1, then the median of the height of the do-
main of self-organized (visited) sites grows with time as the iterated logarithm
2 log2 log2 t.

Proof. If q + 2p = 1, then the number of obstacles in a typical branch wk

of a Cayley tree is ∼ k/2. Therefore, it takes ∼ k/2 returns to the root for the
domain of visited sites to reach the kth generation of the tree.

The median m(n) of the duration of nth return loop satisˇes

∞∑
k>m(n)/2

Pr[Tn − Tn−1 = 2k] ∼
∞∑

k>m(n)/2

1
2nΓ(1 − 2−n)p1−2−nk1+2−n =

1
2
.

Replacing the sum by an integral and solving the equation for m(n), we obtain

m(n) ∼ 22n

c,

as n → ∞. That is, with probability 1
2 , it takes over 22n

c time units for the
walker to complete the nth return path.

According to Corollary 3

Tn − Tn−1 � Tn � 2(Tn − Tn−1).

Hence the median of Tn is between 22n

c and 22n+1c once n is sufˇciently large.

The kth generation of the tree is reached with probability
1
2

at a time t ∼

c 22k/2
. Solving the equation t = c 22k/2

for k, we obtain

k ∼ 2 log2 log2 t,

as t → ∞.
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4. DISCUSSION AND CONCLUDING REMARKS

Of course the Euler walk on a Cayley tree is only a toy version of Euler
walks on 2D or 3D lattices. Nevertheless, we believe/hope that some of the
main features of the Euler walk described in this paper are also present in ˇnite-
dimensional cases. In particular, we believe that ˇnite-dimensional walks also
have the condensed and the low-density phases, and a transition between them.

Martingales might prove to be also useful for investigation of ˇnite-dimen-
sional Euler walks, but in what way and to what extent is yet to be discovered.
Some general properties of the growth of the domain of self-organized sites on 2D
lattices might be similar to those found in the present paper. In particular, the drop
of density from 1 to 0 in 2D case might still be described by the error function,
cf. Eq. (14). The relationship between the size of domain and 
uctuations of
its boundary might still be the same square-root law as in Hypothesis 1. It is
possible to state a few more similar hypothesis, however, the last one is already
sounds very bold, and it might be dangerous to continue any further. In any
case, analytical investigation of the growth of domain of self-organized sites for
ˇnite-dimensional lattices looks like a very tough problem indeed.

It was already known that branching processes are relevant to and, in fact,
provide a mean-ˇeld description for some model of self-organized criticality,
see, e. g. [1, 12]. Although branching processes are also relevant to the Euler
walks, the latter apparently belong to a somewhat different class of models, since
instead of ˇxed values for the standard set of critical exponents, we have a whole
spectrum of those. Indeed, instead of the mean-ˇeld exponent τ = 3/2, describing
the distribution of the size of avalanches, we have the sequence τn = 1 + 2−n,
n = 1, 2, . . ., beginning with 3/2.

Due to the inˇnite memory of the Euler walk it is difˇcult to calculate the
moments of the walker's location, Exk(t). It is a pity, since the second mo-
ment of the walker's location for the simple random walk on, say, 2D lattices,
Ex2(t) = ct, is one of the main characteristics of that random process. To
partially ˇll this gap we will extract some information on the behaviour of the
second moment from the results obtained in the previous sections. This infor-
mation might provide clues for explanation of a bizarre behaviour of Ex2(t) for
certain versions of the Euler walk on 2D lattices [8]. It is instructive to compare
at the same time the behaviour of the Euler walk on a Cayley tree and the simple
random walk on a 2D square lattice.

Both the Euler walk on a Cayley tree in the condensed phase and the 2D
simple random walk are recurrent. Here, however, similarities end. While the
expected return time (and even the variance) for the Euler walk is ˇnite, the
expected return time for 2D random walk is inˇnite. As a consequence we have
monotonically increasing variance of the walker's location for the 2D random
walk, Ex2(t) = ct. The Euler walk returns to the root at time instants Tn
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with ETn < ∞, n = 1, 2, . . ., see the explicit formulae in Corollary 2. If
VarT1 � (ET1)2, then the returns to the root in the logarithmic scale take place

almost periodically, ln Tn ∼ n ln
(

1+
1
2
ET1

)
, as n → ∞. On the other hand, if

VarT1 � (ET1)2, then the periodicity in the logarithmic scale turns into chaotic
behaviour without any visible pattern.

While in the latter case, one cannot rule out the monotonic increase of
Ex2(t), in the former case, one certainly has a nearly periodic vanishing of
Ex2(et). If the magnitudes of VarT1 and (ET1)2 are comparable one should
have an intermediate situation with visible deviations in the shape of Ex2(t) from
a monotonic behaviour. As we approach the critical point q+2p = 1, the variance

VarT1 ∼ 4(1 − q)
[1 − (q + 2p)]3

grows faster than

(ET1)2 =
4

[1 − (q + 2p)]2
,

and we lose completely traces of the log-periodic behaviour.
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