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The mathematical structure of the BornÄInfeld ˇeld equations was analyzed from
the point of view of the symmetries. To this end, the ˇeld equations were written
in the most compact form by means of quaternionic operators constructed according
to all the symmetries of the theory, including the extension to a non-commutative
structure. The quaternionic structure of the phase space was explicitly derived and
described from the Hamiltonian point of view, and the analogy and similarities
between the BI theory and the Maxwell (linear) electrodynamics in a curved spaceÄ
time was explicitly shown. Our results agree with the observation of Gibbons and
Rasheed that there exists a discrete symmetry in the structure of the ˇeld equations
that is unique in the case of the BornÄInfeld nonlinear electrodynamics.
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INTRODUCTION

The most signiˇcative nonlinear theory of electrodynamics is, by excellence,
the BornÄInfeld (BI) theory. The Lagrangian density describing BI theory (in
arbitrary spaceÄtime dimensions) is

LBI =
√
−gLBI =

b2

4π

{√
−g −

√
|det(gμν + b−1Fμν)|

}
, (1)

where b is a fundamental parameter of the theory with ˇeld dimensions∗. In four
space-time dimensions the determinant in (1) may be expanded out to give

LBI =
b2

4π

{
1 −

√
1 +

1
2
b−2FμνFμν − 1

16
b−4

(
Fμν F̃μν

)2
}

(2)

which coincides with the usual Maxwell Lagrangian in the weak ˇeld limit.
Similarly, if we consider the second rank tensor Fμν deˇned by

Fμν = −1
2

∂LBI

∂Fμν
=

Fμν − 1
4
b−2

(
FρσF̃ ρσ

)
F̃μν√

1 +
1
2
b−2FρσF ρσ − 1

16
b−4

(
FρσF̃ ρσ

)2
(3)

(so that Pμν ≈ Fμν for weak ˇelds) this second kind of antisymmetrical tensor
satisˇes the electromagnetic equations of motion

∇μFμν = 0 (4)

which are highly nonlinear in Fμν . Another interesting object to analyze is the
energy-momentum tensor that can be written as

Tμν =
1
4π

⎧⎪⎪⎨⎪⎪⎩
F λ

μ Fνλ + b2

[
R − 1 − 1

2
b−2FρσF ρσ

]
gμν

R

⎫⎪⎪⎬⎪⎪⎭ , (5)

R ≡
√

1 +
1
2
b−2FρσF ρσ − 1

16
b−4

(
FρσF̃ ρσ

)2

.

∗In open superstring theory (2 dimensions), for example, loop calculations lead to this Lagrangian
with b−1 = 2πα′ (α′ ≡ inverse of the string tension).
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But besides these more or less obvious statements which were observed by Born
and Infeld in their original work [1] that the tensor F has to F a relation similar
to that, which in Maxwell theory of macroscopical bodies is the dielectric dis-
placement and magnetic induction, but in the BI case this relation is a discrete
electric-magnetic duality invariance [5] that is associated to an underlying SO (2)
symmetry. In Ref. [1] the relations that put in evidence the symmetries of these
transformations that are the characteristics of the BI ˇeld equations only, are

Fμν =
Fμν − GF̃μν

√
1 + S − G2

, (6)

Fμν =
Fμν + QF̃μν√
1 + P − Q2

, Q ≡ G, (7)

where G, Q, S and P are the electromagnetic invariants constructed from the
two types of ˇelds F and F, and which we will express explicitly in the next
section. Although it is by no means obvious, it may be veriˇed that equations (3),
(6) and (7) are invariant under the electric-magnetic rotations of duality F ←→ F̃,
but notice that the BI Lagrangian (1) is not. This fact was pointed out ˇrst from
the general publications on the electromagnetic duality rotations by Gaillard and
Zumino [4] and more recently and speciˇcally for the BI case, in the papers of
Gibbons and Rasheed [5, 6].

The main task of this work is to complete in any sense the analysis given
in Refs. [4, 5, 6] for the BI theory showing explicitly the quaternionic structure
of the ˇeld equations. The starting point to complete such analysis is based
on the previous paper of the author [7] where was explicitly shown that the
transformations (6), (7) are produced by quaternionic operator acting over vectors
in which the components are the corresponding electromagnetic ˇelds:

⎛⎝ F

F̃

⎞⎠μν

=

≡A︷ ︸︸ ︷
1
R

(σ0 − iσ2P)

⎛⎝ F

F̃

⎞⎠μν

, (8)

⎛⎝ F

F̃

⎞⎠μν

=

≡B︷ ︸︸ ︷
R

1 + P2
(σ0 + iσ2P)

⎛⎝ F

F̃

⎞⎠μν

, (9)

where F̃kl ≡ ∂LBI

∂F̃kl

; R ≡
√

1 +
1
2
b−2FρσF ρσ − 1

16
b−4

(
FρσF̃ ρσ

)2

and P =

− 1
4b2

Fμν F̃μν (b ≡ absolute ˇeld of the BI theory) and the complex conjugation
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is indicated by the horizontal bar over the operators. The Pauli matrix is deˇned
as (LandauÄLifshitz, 1968)

σ1 =
(

1
1

)
σ2 =

(
−i

i

)
σ3 =

(
1

−1

)
σ0 =

(
1

1

)
.

The norms of the operators A and B are

AA = AA =
1 + P2

R2
,

BB = BB =
R2

1 + P2
,

where from expressions (8), (9) we have

AB = AB = 1.

The plan of this paper is as follows In Sec. 1 the quaternionic structure of the BI
ˇeld equations is manifestly presented and the mathematical structure is carefully
analyzed and extended. In Sec. 2 we describe the phase space determined by the
symmetries of the BI ˇeld equations from the Hamiltonian point of view. In
Sec. 3 the constitutive-like relations of the BI theory are studied comparing them
with the ordinary Maxwell electrodynamics in a Riemannian space with arbitrary
metric and the Fresnel equation is explicitly given for the BI case. Finally,
remarks and conclusions are given.

Our convention is as in Ref. [2] with signatures of the metric, Riemann
and Einstein tensors (Ä++), the internal indexes (gauge group) are denoted by
a, b, c..., spaceÄtime indexes by Greek letters μ, ν, ρ... and the tetrad indexes by
capital Latin letters A, B, C...

1. THE QUATERNIONIC STRUCTURE

Now we can see in an explicit and compact form how the transformations
(6), (7) can be realized by means of a quaternionic structure. We will start
with the following deˇnitions for the invariants of the electromagnetic ˇeld S ≡
1

2b2
FρσF ρσ , G =

1
2b2

Fμν F̃μν . R ≡
√

1 + S − G2 and the following signature

for the metric tensor is adopted gμν = (−−−+). Starting from expressions (6),
(7) with the new deˇnitions for the invariants we have⎛⎝ F

F̃

⎞⎠μν

=

≡Q

1
R

︷ ︸︸ ︷
(σ0 − iσ2G)

⎛⎝ F

F̃

⎞⎠μν

. (10)
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It is interesting to notice that, because the following identity holds Fμν F̃μν =
Fμν F̃μν , the quaternion Q is invariant from the topological point of view. It is a
very important property because the mapping between the different set of ˇelds,
F and F, respectively, preserves the topological charge unaltered. This means
that the topological charge is a ˇxed point of the Q transformation. Deˇning the
®spinors¯

Ψ =

⎛⎝ F

F̃

⎞⎠ Ψ = (σ3Ψ)† ,

and, in such manner,

Φ =

⎛⎝ F

F̃

⎞⎠ Φ = (σ3Φ)† ,

the square root R in (10) is simpliˇed to the following expression:

√
1 + S − G2 =

√
1 +

1
4
(
ΨQΨ

)
,

and relation (10) takes the compact form

Φ =
QΨ√

1 + 1
4

(
ΨQΨ

) . (11)

As we see in Introduction [1], in such manner, it is possible to invert the above
equation and to put all as a function of the spinor Ψ. In order to do this, it is

sufˇcient to consider: P ≡ 1
2b2

F̃ρσF̃ρσ, Q = G =
1

2b2
Fμν F̃μνand the following

property FρσF ρσ = −F̃ρσF̃ ρσ . The square root in this inverted transformation is
(Q ≡ (σ0 + iσ2G))

√
1 + P − Q2 =

√
1 − 1

4
(
ΦQΦ

)
,

and the inverse transformation becomes

Ψ =
QΦ√

1 − 1
4

(
ΦQΦ

) . (12)

We stop here to consider in more detail the mathematical structure of the
operators Q. From (10) we can see that the Q form a part of a commutative
ring of complex operators Q ≡ {α + iβI /α, β ∈ C}, equipped with addition and
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multiplication laws induced by those in C, such as addition and multiplication on
Q are given by the usual matrix addition and multiplication, with I having the
following form∗:

I = ±
(

0 1d/2

−1d/2 0

)
.

It is easily seen that Q is a commutative ring with zero divisors

Q0
± ≡ {λ (1d ± iId) , λ ∈ C} ,

Q0
−, Q0

+ are the only multiplicative ideals in Q, for instance, they are maximal
ideals. Thus, the only ˇelds that we can construct from Q are

Q

Q0
±

∼= Q0
∓
∼= C.

In the general case that α, β ∈ C, the map | · |2 : Q → R/ |Q|2 ≡ QQ = α2 +β2

can be seen as a semi-modulus on the ring Q

Q = Q+ ∪ Q0 ∪ Q−

according to the sign of the modulus of Q. It is important to note that, in contrast
with the analysis of reference [9], for the BI case α, β ∈ R (α, β Å the identity
and the pseudoscalar invariants of the electromagnetic ˇeld, respectively) and the
commutative ring described by Q has no pseudo-complex structure.

Another interesting thing about this commutative ring of complex operators
is that it permits us to deˇne for d = 2 the following exponential mapping:

e(ασ0−iβσ2) = ea (cosβ − iσ2 sin β)

that puts in a concrete and more clear form the mathematical structure described
in a more abstract way earlier.

The important thing is that the correct analysis of the algebraic and divisor
ring structure of the BI-ˇeld equations is a crucial point which goes towards a truly
non-commutative BI theory. The generalization of the transformations (10) will
be realized with the operators over the non-commutative ˇeld of full-quaternions
in the following manner:

1
R

[σ0δ − iG (σ1α + σ2β + σ3γ)] .

∗Here d is the dimension.
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We assume the coefˇcients a, b, c :reals and d :complex, in principle, being the
ˇnal form of the operator

1
R

[(
δ

∗δ

)
− iG

(
γ α − iβ

α + iβ −γ

)]
,

where the star means complex conjugate, and the quantity G will have another
meaning as in the initial expression (10), obviously. The question that immedi-
ately arises is: Is it possible to impose conditions over the coefˇcients α, β, γ and
δ in the above expression in order to obtain a full-quaternionic non-commutative
operator from the equations of motion of a determinant-geometrical action? The
answer is afˇrmative: if and only if c = 0 and δ = α − iβ, in such case the
square root of the determinant in the BI action, where the equations of motion
that determine the mapping coming from, is√

|det(gμν + b−1χFμν)|,

where χ4 = i(α − iβ) and G =
χ2

2b2
Fμν F̃μν , following the same conventions

from the beginning. This issue with a carefully study of the possible physical
meaning will be analyzed in our future work.

2. THE HAMILTONIAN POINT OF VIEW

We can show that the SO (2) structure of the BI theory is more easily seen
in the following operator form [7]:

1
R

(
σ0 − iσ2P

)
L = L,

R(
1 + P

2
) (

σ0 + iσ2P
)

L = L,

P ≡ P

b
,

where we deˇned the following quaternionic operators:

L = F − iσ2F̃ ,

L = F − iσ2F̃,

the pseudo-scalar of the electromagnetic tensor Fμν

P = −1
4
Fμν F̃μν ,
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and σ0 , σ2 Å the well-know Pauli matrices that we deˇned previously. Now,
with the deˇnitions given before, we pass to describe the phase space from the
Hamiltonian point of view in the similar form as in Ref. [5].

The 6-dimensional space V = Λ2
(
R4

)
→2-forms ∈ R4, has coordinates Fμν

and carries a Lorentz-invariant metric with signature (+ + + −−−) deˇned by

kH (F, F ) ≡ LL̃ = 2FF̃ .

The dual space V ∗ of V consists of the skew-symmetric second rank contravari-
ant tensors Fμν . The phase space P = V ⊕ V ∗ carries a natural quaternionic
symplectic structure given by

dL ∧ dL̃ = dF ∧ dF − dF̃ ∧ dF̃.

Notice that now, from the mathematical description of the phase space, the SO (2)
symmetry is, in fact, embedded in a large quaternionic structure.

3. MAXWELL EQUATIONS IN A RIEMANNIAN SPACE
AND THE BORNÄINFELD THEORY

We want to give now some curious aspects about the relation between the
BI ˇeld equations and the Maxwell equations in a Riemannian space. From
Ref. [2] we know that when gravitational ˇeld exists (i. e. curved spaceÄtime), it
is possible to write the Maxwell equations in vacuum as the same equations in a
hypothetic medium as∗

D =
E√
h

+ [B× g] , H =
B√
h
− [E × g]

(i. e. for a girotropic medium [3]). Analogously to the BornÄInfeld case, we can
put these constitutive relations in the following form∗∗:

⎛⎝ D

H

⎞⎠α

=

≡Q︷ ︸︸ ︷[
σ0√
h

+ iσ2εβγgβ

]α
⎛⎝ E

B

⎞⎠γ

. (13)

Notice the remarkable analogy with the similar expression (10) from the BI theory
that makes it possible to be formulated in an effective metric theory as was shown

∗Here gα = − g0α

g00
, γαβ = −gαβ+

g0αg0β

g00
and h = g00 as in Ref. [2].

∗∗Here ε is the full-antisymmetric tensor, as usual.
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in [8]. For the BI case the constitutive-like relations give D and H in terms of
E and B [5]:

D =
E + b−2 (E · B)B√

1 + b−2 (B2 − E2) − b−4 (E · B)2
,

H =
B − b−2 (E · B)E√

1 + b−2 (B2 − E2) − b−4 (E · B)2
. (14)

From Introduction, we know that these equations can be solved to give E and H
in terms of E and B:

E =

(
1 + b−2B2

)
D + b−2 (D · B)B√

(1 + b−2B2) (1 + b−2D2) − b−4 (D · B)2
,

B =

(
1 + b−2D2

)
B + b−2 (D · B)D√

(1 + b−2B2) (1 + b−2D2) − b−4 (D · B)2

that make easy the explicit comparison between (13) and (14) when the ˇelds D
and H are the same in both cases: BI ˇelds in �at spaceÄtime and linear ˇeld in
curved spaceÄtime:

Eα

R

∣∣∣∣
BI

=
Eα√

h

∣∣∣∣
f

,

(
γβγBβEγ

) Bα

R

∣∣∣∣
BI

=
√

γεαβγg0αBγ
∣∣
f

,

where the subindexes BI and f indicate the ˇelds in BI theory (�at spaceÄtime)
and the Maxwell ˇelds in any frame (curved), respectively.

Following the same procedure as in [3] for the Maxwell case, without any
background (gravitatory and/or electromagnetic) the Fresnel equation in the BornÄ
Infeld case, the �at spaceÄtime takes the following form:

−n2
(
Cxxn2

x + Cyyn2
y + Czzn

2
z

)
+ n2

xCxx (Cyy + Czz)+

+n2
yCyy (Cxx + Czz) + n2

zCzz (Cxx + Cyy) − CxxCyyCzz = 0, (15)

where ni are the coordinates of the surface of propagation (wave number) and

Cij ≡ (δij + (E · B)EiBj)
1 + b−2 (B2 − E2) − b−4 (E ·B)2

. (16)

Notice that expression (15) has the same form as in [3] but with the εij replaced
by the Cij given by (16). Notice also that, in the presence of any electromagnetic
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background the particular form of the Fresnel equation (15) can take a more
general form depending on those components for Cij with c = j (i. e., Ref. [3]).
And it is interesting in order to have a theoretical tool to test the nonlinearity of
the BI ˇeld as a deviation of the Maxwell theory being of particular importance
in astrophysical phenomena [10].

CONCLUDING REMARKS

In this work the BornÄInfeld ˇeld equations were written in the most com-
pact form by means of the quaternionic operators constructed according to the
symmetries of the theory.

We also show that the Q operators deˇned here form a part of a commutative
ring of complex operators and the SO (2) symmetry of the BI ˇeld equations is
in such manner embedded into a larger quaternionic structure. This extension
can be realized transforming the commutative ring of complex operators to a
non-commutative ring. Our results agree with the observation of Gibbons and
Rasheed in [5, 6] that there exists a discrete symmetry in the structure of the ˇeld
equations that is unique in the case of the nonlinear electrodynamics of Born and
Infeld: this fact is easily seen in our work because these discrete symmetries that
are generated by the Q operators are invertible.

The quaternionic structure of the phase space was explicitly derived and
described from the Hamiltonian point of view, showing, at the same time, that
the results on the structure of the phase space of Ref. [5] are naturally included
in this large quaternionic symmetry.

Finally, the analogy and similarities between the BI theory and the Maxwell
(linear) electrodynamics in a curved spaceÄtime were explicitly shown and the
Fresnel equation in the nonlinear BI case without background was explicitly given
and proposed as a theoretical tool to test this particularly interesting nonlinear
electrodynamics of M. Born and L. Infeld.
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