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On the Mathematical Structure and Hidden Symmetries of the
Born-Infeld Field Equations

The mathematical structure of the Born—Infeld field equations was analyzed from
the point of view of the symmetries. To this end, the field equations were written
in the most compact form by means of quaternionic operators constructed according
to all the symmetries of the theory, including the extension to a non-commutative
structure. The quaternionic structure of the phase space was explicitly derived and
described from the Hamiltonian point of view, and the analogy and similarities
between the BI theory and the Maxwell (linear) electrodynamics in a curved space—
time was explicitly shown. Our results agree with the observation of Gibbons and
Rasheed that there exists a discrete symmetry in the structure of the field equations
that is unique in the case of the Born-Infeld nonlinear electrodynamics.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
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INTRODUCTION

The most significative nonlinear theory of electrodynamics is, by excellence,
the Born-Infeld (BI) theory. The Lagrangian density describing BI theory (in
arbitrary space—time dimensions) is
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where b is a fundamental parameter of the theory with field dimensions*. In four
space-time dimensions the determinant in (1) may be expanded out to give
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which coincides with the usual Maxwell Lagrangian in the weak field limit.
Similarly, if we consider the second rank tensor F#*” defined by
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(so that P*” =~ F"" for weak fields) this second kind of antisymmetrical tensor
satisfies the electromagnetic equations of motion
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which are highly nonlinear in F),,. Another interesting object to analyze is the
energy-momentum tensor that can be written as
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*In open superstring theory (2 dimensions), for example, loop calculations lead to this Lagrangian
with b—1 = 27a’ (o’ = inverse of the string tension).



But besides these more or less obvious statements which were observed by Born
and Infeld in their original work [1] that the tensor [F has to F' a relation similar
to that, which in Maxwell theory of macroscopical bodies is the dielectric dis-
placement and magnetic induction, but in the BI case this relation is a discrete
electric-magnetic duality invariance [5] that is associated to an underlying SO (2)
symmetry. In Ref. [1] the relations that put in evidence the symmetries of these
transformations that are the characteristics of the BI field equations only, are

R GFm ©
1+8-G?
Fr 4 QF#

P = Q=0 (7)

VI+P—Q?
where GG, ), S and P are the electromagnetic invariants constructed from the
two types of fields F' and I, and which we will express explicitly in the next
section. Although it is by no means obvious, it may be verified that equations (3),
(6) and (7) are invariant under the electric-magnetic rotations of duality F' «— T,
but notice that the BI Lagrangian (1) is not. This fact was pointed out first from
the general publications on the electromagnetic duality rotations by Gaillard and
Zumino [4] and more recently and specifically for the BI case, in the papers of
Gibbons and Rasheed [5, 6].

The main task of this work is to complete in any sense the analysis given
in Refs. [4, 5, 6] for the BI theory showing explicitly the quaternionic structure
of the field equations. The starting point to complete such analysis is based
on the previous paper of the author [7] where was explicitly shown that the
transformations (6), (7) are produced by quaternionic operator acting over vectors
in which the components are the corresponding electromagnetic fields:
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—@Fwﬁ‘“’ (b = absolute field of the BI theory) and the complex conjugation



is indicated by the horizontal bar over the operators. The Pauli matrix is defined
as (Landau-Lifshitz, 1968)

a0 ) () () ()

The norms of the operators A and B are
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where from expressions (8), (9) we have
AB=AB=1.

The plan of this paper is as follows In Sec. 1 the quaternionic structure of the BI
field equations is manifestly presented and the mathematical structure is carefully
analyzed and extended. In Sec. 2 we describe the phase space determined by the
symmetries of the BI field equations from the Hamiltonian point of view. In
Sec. 3 the constitutive-like relations of the BI theory are studied comparing them
with the ordinary Maxwell electrodynamics in a Riemannian space with arbitrary
metric and the Fresnel equation is explicitly given for the BI case. Finally,
remarks and conclusions are given.

Our convention is as in Ref. [2] with signatures of the metric, Riemann
and Einstein tensors (—++), the internal indexes (gauge group) are denoted by
a, b, c..., space—time indexes by Greek letters u, v, p... and the tetrad indexes by
capital Latin letters A, B, C...

1. THE QUATERNIONIC STRUCTURE

Now we can see in an explicit and compact form how the transformations
(6), (7) can be realized by means of a quaternionic structure. We will start
with the following definitions for the invariants of the electromagnetic field S =

1 1 ~
WFMF”", G = WFWF’“’. R =v1+ S — G? and the following signature
for the metric tensor is adopted g,,, = (— — —+). Starting from expressions (6),

(7) with the new definitions for the invariants we have
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It is interesting to notice that, because the following identity holds Flwﬁ/‘” =
IF‘W@”’, the quaternion Q is invariant from the topological point of view. It is a
very important property because the mapping between the different set of fields,
F and T, respectively, preserves the topological charge unaltered. This means
that the topological charge is a fixed point of the QQ transformation. Defining the
«spinors»

F
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and, in such manner,
F
o= | 3=(00)",
F

the square root R in (10) is simplified to the following expression:
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and relation (10) takes the compact form
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As we see in Introduction [1], in such manner, it is possible to invert the above
equation and to put all as a function of the spinor W. In order to do this, it is
1~ ~ 1~
sufficient to consider: P = ﬁIFpUIF"”, Q=G= WIFWIF‘“’and the following
property [, I'P7 = —F,, F'*?. The square root in this inverted transformation is
(Q = (09 + i02G))

V1i+P-Q2= 1—3@@),

and the inverse transformation becomes

P
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We stop here to consider in more detail the mathematical structure of the
operators Q. From (10) we can see that the Q form a part of a commutative
ring of complex operators Q = {« + ifI /o, 8 € C}, equipped with addition and

U — (12)
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multiplication laws induced by those in C, such as addition and multiplication on
Q are given by the usual matrix addition and multiplication, with I having the

following form*:
1=+ O iz
12 O
It is easily seen that Q is a commutative ring with zero divisors
Qoi = {)\(ldﬂ:’iﬂd),)\ S (C},

Q%,QY are the only multiplicative ideals in Q, for instance, they are maximal
ideals. Thus, the only fields that we can construct from Q are

QN 0 ~

In the general case that a, 3 € C, the map | - |*: Q — R/ |Q|* = QQ = a2 + 32
can be seen as a semi-modulus on the ring Q

Q=Q"uQ’uQ~

according to the sign of the modulus of Q. It is important to note that, in contrast
with the analysis of reference [9], for the BI case «, 3 € R (a, § — the identity
and the pseudoscalar invariants of the electromagnetic field, respectively) and the
commutative ring described by Q has no pseudo-complex structure.

Another interesting thing about this commutative ring of complex operators
is that it permits us to define for d = 2 the following exponential mapping:

ela00=i092) — 6@ (cos f — ioy sin 3)

that puts in a concrete and more clear form the mathematical structure described
in a more abstract way earlier.

The important thing is that the correct analysis of the algebraic and divisor
ring structure of the BI-field equations is a crucial point which goes towards a truly
non-commutative BI theory. The generalization of the transformations (10) will
be realized with the operators over the non-commutative field of full-quaternions
in the following manner:

1 .
R [00(5 —iG (o1 + 098 + 0'3’}/)] .

*Here d is the dimension.



We assume the coefficients a, b, c :reals and d :complex, in principle, being the
final form of the operator

()2 2]

where the star means complex conjugate, and the quantity G will have another
meaning as in the initial expression (10), obviously. The question that immedi-
ately arises is: Is it possible to impose conditions over the coefficients «, 3,y and
0 in the above expression in order to obtain a full-quaternionic non-commutative
operator from the equations of motion of a determinant-geometrical action? The
answer is affirmative: if and only if ¢ = 0 and § = « — i3, in such case the
square root of the determinant in the BI action, where the equations of motion
that determine the mapping coming from, is

V14t (g +b=1xFu),
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where y* = i(a — i) and G = QX—QFWF #v_ following the same conventions

from the beginning. This issue with a carefully study of the possible physical
meaning will be analyzed in our future work.

2. THE HAMILTONIAN POINT OF VIEW

We can show that the SO (2) structure of the BI theory is more easily seen
in the following operator form [7]:
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where we defined the following quaternionic operators:
L=F —ioyF,
L=TF —ioF,

the pseudo-scalar of the electromagnetic tensor F'*¥
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and oo, oo — the well-know Pauli matrices that we defined previously. Now,
with the definitions given before, we pass to describe the phase space from the
Hamiltonian point of view in the similar form as in Ref. [5].

The 6-dimensional space V = A% (R*) —2-forms € R*, has coordinates F),,,
and carries a Lorentz-invariant metric with signature (+ + + — ——) defined by

ki (F,F)= LL = 2FF.

The dual space V* of V consists of the skew-symmetric second rank contravari-
ant tensors F#¥. The phase space P = V ¢ V* carries a natural quaternionic
symplectic structure given by

dL AdL = dF A dF — dF A dF.

Notice that now, from the mathematical description of the phase space, the SO (2)
symmetry is, in fact, embedded in a large quaternionic structure.

3. MAXWELL EQUATIONS IN A RIEMANNIAN SPACE
AND THE BORN-INFELD THEORY

We want to give now some curious aspects about the relation between the
BI field equations and the Maxwell equations in a Riemannian space. From
Ref. [2] we know that when gravitational field exists (i.e. curved space—time), it
is possible to write the Maxwell equations in vacuum as the same equations in a
hypothetic medium as*

E B
DZE-F[BXg], Hzﬁ—[EXg}

(i.e. for a girotropic medium [3]). Analogously to the Born—Infeld case, we can
put these constitutive relations in the following form™**:
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Notice the remarkable analogy with the similar expression (10) from the BI theory
that makes it possible to be formulated in an effective metric theory as was shown
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*Here go = —g—,'yag = —gap+ and h = goo as in Ref. [2].
00

**Here ¢ is the full-antisymmetric tensor, as usual.



in [8]. For the BI case the constitutive-like relations give D and H in terms of
E and B [5]:
E+b2(E-B)B

B \/1+b—2 (B2 —E2) — b4 (E- B)’
_ B-b2(E-B)E
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From Introduction, we know that these equations can be solved to give E and H
in terms of E and B:

(1+bv?B))D+b2(D-B)B
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that make easy the explicit comparison between (13) and (14) when the fields D
and H are the same in both cases: BI fields in flat space—time and linear field in
curved space—time:
Eq
R
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where the subindexes BI and f indicate the fields in BI theory (flat space—time)
and the Maxwell fields in any frame (curved), respectively.

Following the same procedure as in [3] for the Maxwell case, without any
background (gravitatory and/or electromagnetic) the Fresnel equation in the Born—
Infeld case, the flat space—time takes the following form:
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where n; are the coordinates of the surface of propagation (wave number) and
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Notice that expression (15) has the same form as in [3] but with the &;; replaced
by the C;; given by (16). Notice also that, in the presence of any electromagnetic



background the particular form of the Fresnel equation (15) can take a more
general form depending on those components for Cj; with ¢ # j (i.e., Ref. [3]).
And it is interesting in order to have a theoretical tool to test the nonlinearity of
the BI field as a deviation of the Maxwell theory being of particular importance
in astrophysical phenomena [10].

CONCLUDING REMARKS

In this work the Born-Infeld field equations were written in the most com-
pact form by means of the quaternionic operators constructed according to the
symmetries of the theory.

We also show that the Q operators defined here form a part of a commutative
ring of complex operators and the SO (2) symmetry of the BI field equations is
in such manner embedded into a larger quaternionic structure. This extension
can be realized transforming the commutative ring of complex operators to a
non-commutative ring. Our results agree with the observation of Gibbons and
Rasheed in [5, 6] that there exists a discrete symmetry in the structure of the field
equations that is unique in the case of the nonlinear electrodynamics of Born and
Infeld: this fact is easily seen in our work because these discrete symmetries that
are generated by the QQ operators are invertible.

The quaternionic structure of the phase space was explicitly derived and
described from the Hamiltonian point of view, showing, at the same time, that
the results on the structure of the phase space of Ref. [5] are naturally included
in this large quaternionic symmetry.

Finally, the analogy and similarities between the BI theory and the Maxwell
(linear) electrodynamics in a curved space—time were explicitly shown and the
Fresnel equation in the nonlinear BI case without background was explicitly given
and proposed as a theoretical tool to test this particularly interesting nonlinear
electrodynamics of M. Born and L. Infeld.
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