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Transformation of Linear System of Evolution Equations into System
of Generalized Riccati Equations

A mapping between the linear system of evolution equations, generated by
a ˇnite-dimensional operator, and the system of generalized Riccati equations is
constructed. The canonical form of evolution equations is extended up to a multi-
variable system of linear differential equations governed by the companion matrix
of the ˇnite-dimensional operator. Solutions of these equations form a set of gen-
eralized trigonometric functions which are coefˇcients of the series of expansion of
an exponential function. This series is a polynomial function possessing a deˇnite
number of roots. A nonlinear system of differential equations for the roots of the
high-order Riccati-type equations is derived. Inverse mapping from the solutions of
the obtained system of Riccati equations onto the solutions of the evolution equations
is constructed.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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1. INTRODUCTION

Let H be a ˇnite-dimensional operator presented by (n × n) matrix. It is
supposed, the operator H is a generator of some evolution process which is
described by linear differential equation of the type

d

dt
Ψ(t) = HΨ(t), Ψ(0) = Ψ0, (1.1)

whose direct closed-form solution involves computation of the matrix exponential

Ψ(t) = exp (tH)Ψ0.

The matrix representation of the ˇnite-dimensional operator H obeys its charac-
teristic polynomial equation

f(H) = 0. (1.2)

As a matter of convenience, let us suppose that the characteristic polynomial
coincides with the minimal polynomial. We present polynomial f(X) in the form

f(X) = Xn +
n∑

k=1

(−)kakXn−k, ak ∈ C. (1.3)

Let E be a companion matrix of the operator H . The companion matrix satisˇes
the same characteristic equation (1.2), so that

f(E) = 0. (1.4)

Besides the evolution equation generated by operator H , one may deˇne an
evolution equation governed by the n-order Riccati equation of the form

d

dt
U = f(U). (1.5)

Evidently, the evolution equations (1.1) and (1.5) are closely connected with
each other. The main task is to establish an interconnection between solutions of
the evolution equations (1.1) and (1.5).

1



In general, the coefˇcients of the polynomial f(U) in (1.5) are deˇned as
certain functions of the parameter of evolution. If f(U) is a cubic polynomial,
then equation (1.5) is called the Abel ( RiccatiÄAbel) differential equation [1,2].
This kind of equations frequently appears in the modelling of real problems in
varied areas. Diverse methods were developed for ˇnding the Abel equations (see,
for instance, [3] and references therein). A general exact integration strategy for
these equations was ˇrst formulated by Liouville [4] and is based on the concept
of classes, invariants, and the solution of equivalence problem.

If the coefˇcients of the polynomial f(U) are given by rational functions,
then a classiˇcation according to invariant theory of the integrable rational Abel
differential equations can be done [5]. Many integrable members of one class can
be systematically mapped onto an integrable member of a different class. In [6],
it has been found a uniˇed way to ˇnd the rational map from the knowledge on
the explicitly given ˇrst integral.

In [7,8], solutions of the n-order Riccati equation with constant coefˇcients in
a ˇeld were expressed in terms of n-order trigonometric functions. The method
was based on the theory of generalized trigonometric functions which arise as
characteristic functions of multicomplex algebra [9,10]. The fact that the solutions
of special kind of the RiccatiÄAbel equation can be expressed in terms of the
third-order trigonometric functions, has been found by P. R.Vein [11]. Recently,
in [12,13] this result has been expanded with several novel ˇndings.

The purpose of the present paper is to establish a mapping between solutions
of these two types of evolution equations (1.1) and (1.5). In order to give
an idea, we start with the most simple exercise with operator of evolution H
deˇned by (2 × 2) matrix. In that case, evolution equations given by linear
system of differential equations (1.1) are straightforwardly transformed into the
Riccati equation (1.5) with quadratic polynomial. Next, we consider the case of
evolution generated by (3 × 3) matrix. By means of this example, we come to
the conclusion that the problem of solution of the RiccatiÄAbel equation is quite
distinct from the example with quadratic equation. At the level n � 3, a resolution
of the problem requires an extension of the conventional frames of the evolution
problem, namely, the evolution equation with single parameter of evolution has
to be extended up till the system of (n − 1)-equation with (n − 1) evolution
parameter. Then, it is shown, the extended system of linear differential equations
is transformed into the system of generalized Riccati equations. Furthermore,
under certain conditions, the extended system of evolution equations is reduced
to canonical form of n-order Riccati equation.

The paper is set out as follows: In Sec. 2, we recall the principal points
of the multicomplex algebra and solutions of evolution equations governed by
generator of the algebra. In Sec. 3, the problem of reduction of the linear system
of equations to the RiccatiÄAbel equation is explored. In Sec. 4, the properties of
the truncated polynomials are studied. In Sec. 5, a system of evolution equations
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governed by n-order matrix is transformed into the system of n-order Riccati
equations. In Sec. 6, one-to-one mapping between solutions of n-order Riccati
equation and the parameter of evolutions is established. In Sec. 7, the developed
method is illustrated by analysis of the particular case for n = 6.

2. TRIGONOMETRIC FUNCTIONS OF n-ORDER

Let E be (n × n) companion matrix of the ˇnite-dimensional operator H ,
and the polynomial f(X) be its characteristic polynomial deˇned in (1.3). It is
supposed that the n-order polynomial f(X) possesses n distinct roots xk, k =
1, . . . , n ∈ C. The companion matrix E is explicitly deˇned as follows:

E =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0 −an

1 0 0 0 0 an−1

. . . . . . . .
0 0 . . . 1 0 −a2

0 0 . . . 0 1 a1

⎞
⎟⎟⎟⎟⎠ . (2.1)

The companion matrix E is the representation of equivalence class of all (n×n)
matrices with trace a1, determinant an, and sum of corresponding minors ai, i =
2, . . . , n − 1. Elements of the general complex algebra are deˇned by the series

Z =
n−1∑
k=0

ekqk, e0 = I, Z ∈ GCn. (2.2)

In matrix representation, the generator e → E so, that the element of general
complex algebra of n-order is given by (n × n) matrix of the form

Z =
n−1∑
k=0

Ekqk, E0 = I. (2.3)

Thus, Z ∈ GCn is (n − 1)-degree polynomial of the form

Q(U) =
n−1∑
k=0

Ukqk, qn−1 �= 0. (2.4)

The modulus of Z ∈ GCn is conventionally deˇned by the following determi-
nant [10]:

|Z|n = Det(
n−1∑
k=0

Ekqk). (2.5)

3



The determinant is an n-order multivariable polynomial of n variables: qk, k =
0, 1, 2, . . . , n − 1. However, the algebraic module of the GCn-number has to be
deˇned via the basic polynomial f(X) of the general complex algebra GCn. In
fact, the following formula for the modulus holds true:

|Z|n = Det(
n−1∑
k=0

Ekqk) = qn
n−1

n−1∏
k=1

f(uk), (2.6)

where uk, k = 1, 2, . . . , n − 1 are roots of the (n − 1)-degree polynomial Q(U).
Introduce the following n-dimensional vectors:

(v0
i )ij = δi,j=i+1, i, j = 1, . . . , n; va

1 = [(−)n−1an, . . . ,−a2, a1]T , (2.7)

and form the set of n-component vectors by imposing

va
k+1 = Eva

k, k = 1, 2, 3, . . . , n − 2. (2.8)

It is convenient to present the companion matrix E and its powers Ep, p =
2, . . . , n − 1 in the basis of vectors va

k as follows:

E = [v0
1,v

0
2, . . . ,v

0
n−1,v

a
1 ], (2.9)

Ep = [v0
p, . . . ,v

0
n−1,v

a
1 , . . . ,va

p ], p = 2, 3, . . . , n − 1. (2.10)

Denote by xi, i = 1, 2, . . . , n the roots of polynomial f(X). Introduce n vectors
consisting of degrees of the roots of f(X) by

vx(i) = [1, xi, x
2
i , . . . , x

n−1
i ]T . (2.11)

Vandermonde's matrix is presented in the basis of these vectors

W = [vx(1),vx(2), . . . ,vx(n − 1),vx(n)]. (2.12)

The eigenvalue problem for companion matrix E is formulated as follows:

EW = WD(x), (2.13)

where D(x) is a diagonal matrix Dij(x) = xiδi,j . Correspondingly, the eigen-
value problem for single eigenvalue is written as

v̄x(i) E = xiv̄x(i), v̄x(i) = [1, xi, x
2
i , . . . , x

n−1
i ]. (2.14)

In the same way as the usual complex algebra is used to describe trigonom-
etry, the general complex algebra GCn induces representations of the set of
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n-order trigonometric functions [9]. The Euler formula for the exponential ma-
trix is deˇned by the series

exp

(
n−1∑
k=1

Ekφk

)
= g0(φ) + Eg1(φ) + E2g2(φ) + . . . + En−1gn−1(φ), (2.15)

where φ means the set of (n − 1) parameters φ := (φ1, φ2, φ3, . . . φn−1).
An evolution generated by matrix E is formulated in a standard way

d

dφ
vg(φ) = Evg(φ). (2.16)

Solution of this equation is given by the exponential matrix

vg(φ) = exp (Eφ)vg(φ = 0), (2.17)

where vg(φ) is a vector with components

vg = [g0, g1, g2, . . . , gn−1]T . (2.18)

Let vg(0) be an initial vector, then solution of Eq. (2.17) is expressed via the
exponential matrix as follows:

vg(φ + φ0) = exp (Eφ)vg(φ0). (2.19)

This formula can be also considered as summation formula for the ªg-functionsª
gk(φ), k = 0, 1, . . . , n − 1.

The crucial point is the following: besides the evolution governed by equa-
tion (2.17), the complete set of differential equations for generalized trigonometric
functions ( g-functions ) consists of the evolution equations generated by degrees
of the basic matrix E, they are

∂

∂φk
vg(φ) = Ekvg(φ), φ = (φ1, φ2, . . . , φn−1), k = 1, . . . , n − 1. (2.20)

3. EXPRESSION OF SOLUTION OF n-ORDER RICCATI EQUATION IN
TERMS OF GENERALIZED TRIGONOMETRY

Let us start with the simple example when n = 2. In that case

f(X) = X2 − a1X + a2, (3.1)

and

E =
(

0 −a2

1 a1

)
. (3.2)
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Algebraic modulus of Z ∈ GC2 is deˇned by

|Z|2 = |q0 + Eq1|2 = q2
1f(u), (3.3)

where u is a solution of linear equation

Q(U) = uq1 + q0 = 0. (3.4)

Exponential of E is deˇned by the Euler formula

exp (Eφ) = Q(E) = g1(φ)E + g0(φ)I, (3.5)

where functions g0(φ) and g1(φ) are trigonometric functions obeying the system
of differential equations

d

dφ

(
g0

g1

)
=

(
0 −a2

1 a1

) (
g0

g1

)
. (3.6)

This system of equations is readily transformed into the Riccati equation of the
type

f(u) = u2 − a1u − a2 =
du

dφ
, (3.7)

with u(φ) = −g0(φ)/g1(φ). Obviously,

Det(exp (Eφ)) = exp (sp(E)φ) = exp (a1φ), (3.8)

and, according to formula (3.3), we write

exp (a1φ) = g2
1f(u). (3.9)

This formula is necessary in order to construct an inverse mapping from solution
of the Riccati equation u(φ) onto solutions of the matrix equation (3.6). Thus,
possessing u(φ), we deˇne functions g1 and g0 as follows:

g1(φ) =
1√
|f(u)|

exp (
a1φ

2
), g0(φ) = −u(φ)g1(φ). (3.10)

Now, let us use a similar algorithm to construct an interconnection between
evolution equations generated by higher-order polynomials and the Riccati equa-
tion. In order to give a main idea, ˇrstly, let us consider an evolution equation
generated by the third-order companion matrix E obeying the cubic equation

E3 − a1E
2 + a2E − a3I = 0, I means unit matrix. (3.11)

Expansion of exponential function of E is given by the series

exp (Eφ) = g0(φ) + g1(φ)E + g2(φ)E2, (3.12)
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where third-order trigonometric functions are solutions to the system of differen-
tial equations

d

dφ

⎛
⎝ g0

g1

g2

⎞
⎠ =

⎛
⎝ 0 0 a3

1 0 −a2

0 1 a1

⎞
⎠

⎛
⎝ g0

g1

g2

⎞
⎠ . (3.13)

Our aim is to reduce this system of equations to the RiccatiÄAbel equation of the
type

dU

dφ
= U3 − a1U

2 + a2U − a3. (3.14)

Here, we have to recall that trigonometric functions of the third order depend on
two variables, φ1 and φ2, so that the Euler formula (3.12) has to be written in
the form

exp (Eφ1 + E2φ2) = g0(φ1, φ2) + Eg1(φ1, φ2) + E2g2(φ1, φ2). (3.15)

In [9,10], we have proved that the linear differential equations for trigonomet-
ric functions gk, k = 0, 1, 2 are reduced into canonical form of the Abel equation
under the condition g2 = 0. It is worth to emphasize, in that case one has to work
with complete form of the evolution generated by ˇnite dimensional operator, i.e.,
one has to take into account all system of differential equations with respect to
complete set of parameters (φ1, φ2). So, for evolution generated by the third-
order companion matrix E, besides the system of differential equations (3.13)
one has to consider equations with respect to the second parameter φ2:

d

dφ2

⎛
⎝ g0

g1

g2

⎞
⎠ =

⎛
⎝ 0 a3 a3a1

0 −a2 a3 − a1a2

1 a1 a2
1 − a2

⎞
⎠

⎛
⎝ g0

g1

g2

⎞
⎠ . (3.16)

These systems of differential equations are reduced into the RiccatiÄAbel equation
under the condition

g2(φ1, φ2) = 0. (3.17)

This equation implicitly contains functional dependence of the type φ2 = φ2(φ1)
and serves as a basic constraint to deˇne solution of the RiccatiÄAbel equation as
follows:

U(φ2) = −g0(φ1(φ2), φ2)
g1(φ1(φ2), φ2)

. (3.18)

When n > 2, this algorithm is generalized straightforwardly [10]. Let f(X)
be n-order polynomial with companion matrix E. First of all, it has to be
noted that the evolution process generated by (n × n) matrix E consists of
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(n − 1) evolution equations generated by matrices E, E2, . . . , En−1 with respect
to (n − 1) parameters of evolution φ1, φ2, . . . , φn−1, correspondingly,

∂kΨ(φ) = EkΨ(φ), k = 1, 2, . . . , n − 1; φ = (φ1, φ2, . . . , φn−1), ∂k =
∂

∂φk
.

(3.19)
The solution of this system is given by the exponential function

exp

(
n−1∑
k=1

Ekφk

)
= g0 + Eg1 + E2g2 + . . . + En−1gn−1 = Q(E). (3.20)

Then in [8] it is proved that by using constraints

gk(φ) = 0, k = 2, 3, . . . , n − 1, (3.21)

the system of linear differential equations (3.19) is reduced into the n-order
Riccati equation with respect to parameter of evolution φn−1 of the form

d

dφn−1
U = f(U), (3.22)

with solution
U(φn−1) = −g0

g1
. (3.23)

Thus, transformation of the linear system of evolution equations into canon-
ical form of the n-order Riccati equation requires (n − 2) constraints. However,
we can transform differential equations for g-functions into a system of ªRiccati-
typeª equations. Consider (n − 1)-degree polynomial in the right-hand side of
the Euler formula (3.20)

Q(U) = g0 + Ug1 + U2g2 + . . . + Un−1gn−1. (3.24)

Under constraints gk = 0, k = 2, 3, . . . , n − 1 this polynomial has been reduced
to the form

Q(U) = g0 + Ug1. (3.25)

Then the solution of equation Q(U) = 0 turns out to be the solution (3.23) to
the n-order Riccati equation (3.22). This observation prompts us an idea that
the roots of the polynomial Q(U) = 0 free of the constraints (3.21) will obey a
system of ªRiccati-typeª equations.

As an example, consider the case n = 3. We have to resolve the following
problem: it is necessary to derive differential equations for roots of the polynomial
Q(u) making use of differential equations (3.13). Roots of polynomial Q(u) are
denoted by U and V . The following Proposition 3.1 holds true.
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Let U, V be solutions of the quadratic equation

u2 + G12(φ)u + G02(φ) = 0, (3.26)

where G12(φ) = g1/g2, G02(φ) = g0/g2. Then the functions U(φ), V (φ) obey
the following system of differential equations:

(U − V )
d

dφ
U = f(U), (V − U)

d

dφ
V = f(V ). (3.27)

These equations are readily obtained from the following system of linear algebraic
equations: ⎛

⎜⎜⎝
dG12

dφ

dG02

dφ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

dG12

dU

dG12

dV

dG02

dU

dG02

dV

⎞
⎟⎟⎠

⎛
⎜⎜⎝

dU

dφ

dV

dφ

⎞
⎟⎟⎠ . (3.28)

Each of equations of the system (3.27) coincides with the Abel equation of the
second kind [2].

Proposition 3.1 is a particular case of the general theorem. In the general case,
we have to derive a system of differential equations for roots of the polynomial

Q(U) = g0(φ) + Ug1(φ) + U2g2(φ) + . . . + Un−1gn−1(φ), (3.29)

where φ means a set of (n − 1) parameter: φ1, φ2, . . . , φn−1.

4. TRUNCATED POLYNOMIALS AND THEIR PROPERTIES

The aim of this section is to recall some properties of the truncated polyno-
mials which (in Sec. 5) we shall use in proofs of Theorem 5.1.

Introduce n-dimensional vector vu, by deˇnition

vu = [1, U, U2, . . . , Un−1], (4.1)

and form scalar products of this vector with vectors vg , v0
k, and va

k which possess
the following properties:

Property 4.1

Q(U) =
n−1∑
j=0

U jgj = (vu · vg). (4.2)

Property 4.2

(vu · v0
k) = Uk. (4.3)
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Lemma 4.3
Let x be one of the roots of polynomial f(X). Then, the following formula

holds true:
xn+p = (Epva

1 · vx) = (va
p+1 · vx). (4.4)

Proof.
On making use of formulation of eigenvalue problem for companion matrix

E in (2.13) and (2.14), we get

xn = (va
1 ·vx), xn+1 = (Eva

2 ·vx), xn+p = (Epva
1 ·vx) = (va

p+1 ·vx). (4.5)

�

Lemma 4.4
The following formulae hold true:

(vu · va
1) = Un − f(U), (4.6)

(vu · va
p) = Up(Un − f(U)) + f(U)

p−2∑
k=0

Uk(v0
n−1 · va

p−k−1), p > 1. (4.7)

Proof.
Since vu is not an eigenvector of E, then instead of Eq. (4.5) we have

E+vu = Uvu + f(U)v0
n−1, (4.8)

where v0
n−1 = [0, 0, 0 . . . , 1]T . The set of Eqs. (4.5) are extended as follows:

(va
1 · vu) = Un − f(U),

(va
2 · vu) = U(Un − f(U)) + f(U)(va

1 · v0
n−1),

(va
3 · vu) = (va

2E+ · vu) = (va
2 · E+vu) = (4.9)

= (va
2 · (Uvu + v0

n−1))f(U) =

= U(va
2 · vu) + (va

2 · v0
n−1)f(U) =

= U ( U(Un − f(U)) + f(U)((va
1 · v0

n−1) + (va
2 · v0

n−1)) =

= U2(Un − f(U)) + U(f(U)(va
1 · v0

n−1) ) + f(U)(va
2 · v0

n−1).

At the ˇnal step of this algorithm, we come to the general formula of the form

(vu · va
p) = Up(Un − f(U)) + f(U)

p−2∑
k=0

Uk(v0
n−1 · va

p−k−1)). (4.10)

�
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Lemma 4.5
Let U be one of the roots of polynomial Q(U), then the following formula

holds true:

(vu · Epvg) = −f(U)(Un−2 + Gn−2U
n−3 + . . . + Gn−kUn−k−1 + . . . + G1),

(4.11)
p = 1, . . . , n − 1.

Proof.
Let us begin with the case p = 1. In that case, formula (4.11) is reduced to

(vu · Evg) = −Un + (vu · va
1) = −f(U). (4.12)

From deˇnition of the companion matrix E in the basis of vectors v0
k (see, (2.11),

(2.12)), it follows that the vector Evg can be presented as a sum of the following
vectors:

Evg = [v0
1G0 + v0

2G1 + . . . + v0
n−1Gn−2] + [va

1 ]. (4.13)

Form a scalar product of this vector with vector vu, then

(vu · (v0
1G0 + v0

2G1 + . . . + v0
n−1Gn−2)) + (vu · va

1). (4.14)

By taking into account (4.3), this series is transformed as follows:

(vu · Evg) = ( G0U + G1U
2 + . . . + Gn−2U

n−1 ) + (vu · va
1). (4.15)

Since U is one of the roots of the polynomial Q(U), equation Q(U) = 0 can be
written in the form

G0U + G1U
2 + . . . + Gn−2U

n−1 =

= U(G0U + G1U
2 + . . . + Gn−2U

n−2 = −Un−1) = −Un. (4.16)

By using this formula in (4.15), we obtain

(vu · Evg) = −Un + (vu · va
1). (4.17)

Now take into account that

(vu · va
1) = a1U

n−1 − a2U
n−2 + . . . + an(−1)n = −f(U) + Un. (4.18)

Hence, in the ˇnal formula, the term Un is removed, and the right-hand side of
Eq. (4.17) takes the form

(vu · Evg) = −Un + (vu · va
1) = −f(U). (4.19)
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Now, consider the general case when p > 1. Write the following series:

Epvg = [v0
pg0 +v0

p+1g1 + . . .+v0
n−1gn−p−1 +va

1gn−p + . . .+va
pgn−1]. (4.20)

Divide both sides of this equation by gn−1 �= 0 and form a scalar product of this
vector with vu which we present as a sum of two brackets:

(vu · (v0
pG0 + v0

p+1G1 + . . . + v0
n−1Gn−p−1)) + ((vu · va

1)Gn−p + . . .). (4.21)

On making use of formula
(vu · v0

p) = Up,

the series inside the ˇrst brackets in (4.21) is presented by the following polyno-
mial:

UpG0 + G1U
p+1 + . . . + Gn−p−1U

n−1 =

= Up(G0 + G1U + . . . + Un−p−1Gn−p−1). (4.22)

Since U satisˇes equation Q(U) = 0, the following identity is true:

G0 + G1U + . . . + Gn−p−1U
n−p−1 =

= −(Gn−pU
n−p + Gn−p+1U

n−p+1 + . . . + Un−1). (4.23)

By using this identity, we get

Up(G0 + G1U + . . . + Un−p−1Gn−p−1) =

= −Up (Gn−pU
n−p + Gn−p+1U

n−p+1 + . . . + Un−1). (4.24)

Now evaluate the series inside the second brackets in (4.21)

((vu ·va
1)Gn−p+. . .) = (vu ·va

1 )Gn−p+(vu ·va
2)Gn−p+1+. . .+(vu ·va

p). (4.25)

By using formulae (4.6), (4.7) and by collecting together the resulting expressions
of both brackets, we come to the following expression:

(vu · Epvg) = −f(U)(Un−2 + Gn−2U
n−3 + . . . + Gn−kUn−k−1 + . . . + G1).

(4.26)
�

To proceed, it is necessary to recall some features of the following m-degree
polynomial

B(Y ) := Y m +
m−1∑
k=0

Y kbk. (4.27)
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Lemma 4.6
Let yk, k = 1, .., m be a set of roots of B(Y ). Deˇne the following truncated

polynomials:

Bp(y) = ym−p
i +

m−p−1∑
k=0

yk
i bk+p, i = 1, . . . , m− 1; p = 1, 2, . . . , m− 1. (4.28)

The truncated polynomial Bp(y) implicitly is independent of yi and equals to

Bp(y) = bp|yi=0. (4.29)

Proof.
Since yi satisˇes the equation B(Y ) = 0, then

ui(um−1
i +

m−2∑
k=2

uk
i bk+1 + b1) = −b0. (4.30)

According to Vieta's formula, coefˇcient b0 is given by the product of the roots

b0 = (−1)m y1y2 . . . yi . . . ym. (4.31)

Use this expression instead of b0 which admits to remove the factor yi from both
the sides of Eq. (4.29). In this way, we come to the equation which does not
contain yi,(

ym−1
i +

m−2∑
k=1

yk
i bk+1 + b1

)
= y1 . . . yi−1yi+1 . . . ym(−1)m. (4.32)

In the right-hand side, we have the coefˇcient b1 with yi = 0, hence,(
ym−1

i +
m−2∑
k=1

yk
i bk+1 + b1

)
= b1|yi=0. (4.33)

Next, re-write this equation as follows:

yi

(
ym−2 +

m−3∑
k=2

ykbk+2 + b2

)
= b1|yi=0 − b1. (4.34)

Notice that
b1|yi=0 − b1 = yib2|yi=0, (4.35)

and remove the factor yi from the identity. We get,(
ym−2 +

m−3∑
k=2

ykbk+2 + b2

)
= b2|yi=0. (4.36)
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By continuing this process at the pth step, we arrive to the following equation:⎛
⎝ym−p +

m−p−1∑
k=p

ykbk+p + bp

⎞
⎠ = bp|yi=0. (4.37)

�

Lemma 4.7
Derivative of polynomial B(Y ) at Y = yi is equal to polynomial of the form

dB(Y )
dY

∣∣∣
Y =yi

= ym−1
i +

m−1∑
k=1

yk−1
i (bk|yi=0). (4.38)

Proof.
Differentiate B(Y ) with respect to Y ,

dB(Y )
dY

∣∣∣
Y =yi

= mym−1
i +

m−1∑
k=1

(k − 1)yk−1
i bk. (4.39)

This polynomial can be presented as a sum of polynomials as follows:

dB(Y )
dY

∣∣∣
Y =yi

=
m−1∑
j=0

⎛
⎝ym−1

i +
m−1∑

k=1+j

yk−1
i bk

⎞
⎠ . (4.40)

By applying Lemma 1 for all polynomials inside brackets, we obtain

dB(Y )
dY

∣∣∣
Y =yi

=
m−1∑
j=0

yj
i

⎛
⎝ym−2

i +
m−2∑

k=1+j

yk−1
i bk

⎞
⎠ =

= ym−1
i +

m−1∑
k=1

yk−1
i (bk|yi=0). (4.41)

�

Lemma 4.8
Consider triangle matrix Mij of the form

Mij = δij +
n/2−1∑
k=1

(v0
n−1 · va

k)δi+k,j ,

(4.42)
Mij = 0, i < j.
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The matrix inverse to Mij has the form:

M−1
ij = δij +

∑
k=1

δi,j+k(−)iak, i � j,

(4.43)
M−1

ij = 0, i < j.

5. SYSTEM OF n-ORDER RICCATI DIFFERENTIAL EQUATIONS FOR
ROOTS OF THE POLYNOMIAL

The aim of this section is to derive differential equations for roots of the
polynomial Q(U) through the agency of system of differential equations for its
coefˇcients.

Theorem 5.1
Let the set of functions uk(φ), k = 1, 2, 3, . . . , n−1; φ = (φ1, φ2, . . . , φn−1)

be a set of the roots of the polynomial

Q(U) =
n−1∑
j=0

U jgj(φ), (5.1)

where coefˇcients gj(φ), j = 0, 1, 2, . . . , n−1 are solutions of evolution equations:

∂i gj =
n∑

m=1

(Ei)m
j gm−1, i = 1, . . . , n − 1. (5.2)

Then, the functions uk(φ), k = 1, . . . , n−1 obey the following system of nonlinear
equations:

F (um)
n−p∑
k=1

an−k−p∂k um = Ap f(um), m = 1, . . . , n − 1, (5.3)

where F (um) is (n − 2)-degree truncated polynomial of the form

F (um) =
dQ(U)

dU

∣∣∣
U=um

= un−2
m +

n−3∑
k=0

uk
mAk(m) =

n−1∏
k=1,k �=m

(um − uk), (5.4)

and Ap(m) is p-th coefˇcient of the polynomial F (um).
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Proof.
The calculations are essentially simpliˇed if the generating polynomial f(X)

is taken in a reduced form, i.e.,

f(X) = Xn + (−1)n−1an−1X + (−1)nan, ak = 0, k = 1, 2, . . . , n − 2. (5.5)

Firstly, let us proceed the proofs with the reduced polynomial.
Step 1.
Differentiate equation Q(U) = 0 with respect to parameters φk ,

k = 1, . . . , n − 1:

∂kQ(U) = ∂k

⎛
⎝gn−1U

n−1 +
n−1∑
j=1

U j−1gj−1

⎞
⎠ = ∂k(vu · vg) = 0.

Here U is one of the roots of polynomial Q(U). Equation is presented as a sum
of two parts,

∂kQ(U) = ((vg · ∂kvu)) +

(
vu · ∂

∂ψk
vg

)
= 0. (5.6)

Divide this equation by gn−1 �= 0 and denote fractions by

Gj =
gj

gn−1
, j = 0, 1, 2, . . . , n − 2.

For pth root U = ul the ˇrst part is written as follows (see, Lemma 4.7):

( (n − 1)Un−2 +
n−1∑
j=2

(j − 1)U j−2Gj−1 )∂kU = F (ul)∂kU, (5.7)

where

F (ul) =
n−2∏

m=1,m �=l

(ul − um). (5.8)

The second part contains derivations of the g-functions

1
gn−1

(vu · ∂kvg) =
1

gn−1

⎛
⎝(∂kgn−1)Un−1 +

n−1∑
j=1

U j−1(∂kgj−1)

⎞
⎠ . (5.9)

Step 2.
Let us start with differential equation with respect to variable φ1. The

derivatives of g-functions with respect to φ1 are given by formula

(vu · ∂1vg) = (vu · Evg). (5.10)
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According to formula (2.11), we write

∂1vg = Evg = [v0
1G0 + v0

2G1 + . . . + v0
n−1Gn−2] + [va

1 ].

Form a scalar product with vector vu as

(vu · (v0
1G0 + v0

2G1 + . . . + v0
n−1Gn−2)) + (vu · va

1), (5.11)

and take into account formula (4.3) (see, Property 4.2 ). In this way we obtain

(vu · Evg) = ( G0U + G1U
2 + . . . + Gn−2U

n−1 ) + (vu · va
1) =

= −Un + (vu · va
1). (5.12)

Now recall formula (4.6) (see, Lemma 4.4)

(vu · va
1) = a1U

n−1 − a2U
n−2 + . . . + an(−1)n = −f(U) + Un.

By taking into account this formula, we come to conclusion that

(vu · ∂1vg) = (vu · Evg) = −Un + (vu · va
1) = −f(U). (5.13)

Finally, we come to the following equation:

F (ul)∂kul = f(ul), (5.14)

with F (ul) deˇned in (5.8).
Step 3.
Next, consider the case p > 1. On making use of formula

Ep = [v0
p,v

0
p+1, . . . ,v

0
n−1,v

a
1 ,va

2 , . . . ,va
p],

the derivatives of g-functions with respect to φp can be represented as follows:

∂pvg = Epvg = [v0
pg0 +v0

p+1g1 + . . .+v0
n−1gn−p−1 +va

1gn−p + . . .+va
pgn−1].
(5.15)

Divide this equation by gn−1 �= 0 and calculate the scalar product

(vu · (∂pvg)) = (vu · Epvg).

The result includes two parts, PI and PII :

PI + PII , PI = (vu · (v0
pG0 + v0

p+1G1 + . . . + v0
n−1Gn−p−1)),

(5.16)
PII = (vu · va

1Gn−p + . . .).
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The ˇrst part is calculated by taking into account formula (4.6). We get

PI = UpG0 + G1U
p+1 + . . . + Gn−p−1U

n−1 =

= Up(G0 + G1U + . . . + Un−p−1Gn−p−1). (5.17)

Since U is one of the roots of equation Q(U) = 0, the following equation holds
true:

G0 + G1U + . . . + Gn−p−1U
n−p−1 =

= −(Gn−pU
n−p + Gn−p+1U

n−p+1 + . . . + Un−1). (5.18)

Hence, the expression for PI takes the form

PI = −(Gn−pU
n + Gn−p+1U

n+1 + . . . + Gn−1U
n+p−1). (5.19)

Now calculate the second part of the sum, PII , which has the form

PII = (vu · va
1)Gn−p + (vu · va

2)Gn−p+1 + . . . + (vu · va
p). (5.20)

Firstly, let us consider the most simple case when polynomial f(X) has the
form deˇned in (5.1) with ak = 0, k = 1, 2, 3, . . . , n − 2. In that case, from
formulae (4.6), (4.7) of Lemma 4.4 it follows:

(vu · va
1) = Un − f(U),

(5.21)
(vu · va

2) = Un+1 − Uf(U), . . . , (vu · va
p) = Un+p−1 − f(U).

By replacing scalar products (vu · va
p) in (5.20) according to these equations, we

get

PII = (Un − f(U))Gn−p + (Un+1 −Uf(U))Gn−p+1 + . . . +(Un+p−1 − f(U)).
(5.22)

Now join the results of two calculations:

PI + PII = −(Gn−pU
n + Gn−p+1U

n+1 + . . . + Un+p−1)+

+(Un − f(U))Gn−p + (Un+1 − Uf(U))Gn−p+1 + . . . (Un+p−1 − f(U)) =

= (−f(U))Gn−p + (−Uf(U))Gn−p+1 + . . . + (−f(U)) = −f(U)Ap, (5.23)

where by Ap we denoted the polynomial (see, Lemma 4.6)

Ap(U) = Up−1 + Up−2Gn−2 + . . . + UGn−p+1 + Gn−p. (5.24)
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Notice, for p = 1, A1(U) = 1. Joining obtained equations into unique system,
we arrive to the following system of equations for function U(φ):

∏
k

(U − uk)
∂

∂ψp
U = f(U)( Up−1 + Up−2Gn−2 + . . . + UGn−p+1 + Gn−p).

(5.25)
In notations introduced in (5.8) and (5.24), this system of equations is written as

F (ul)
∂

∂ψp
ul = f(U) Ap(ul), l, p = 1, 2, 3, . . . , n − 1. (5.26)

From formula (5.8) for function F (ul) it follows that

∏
k

(U −uk) =
∑

p

Un−p−1( Up−1 +Up−2Gn−2 + . . .+UGn−p+1 +Gn−p) =

=
∑

p

Un−p−1Ap(U). (5.27)

In this way we come to the following equation:

n−1∑
p=1

Un−p−1∂pU = f(U). (5.28)

Step 4.
In the general case when ak �= 0, k = 1, 2, . . . , n, we have to use general

formulae for the scalar product vu with va
k. In the general case instead of

formulae
(vu · va

p) = Un+p−1 − f(U), ak = 0

for k = 1, 2, . . . , an−2, and an−1 �= 0, an �= 0, we have to use the formula

((vu · va
p) = −Up−1(Un − f(U)) + f(U)Up−2(v0

n−1 · va
1 ) + . . . +

+ Up−k−1(v0
n−1 · va

k) + . . . + (v0
n−1 · va

3 )). (5.29)

By using these formulae in

(vu · va
1)Gn−p + (vu · va

2)Gn−p+1 + . . . + (vu · va
p), (5.30)

we come to the following system of equations for function U(φ):

F (U)∂kU = f(U)
n−1∑
l=1

MklAl(U), (5.31)
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where matrix Mkl is deˇned in (4.42). The matrix inverse to Mij according to
Lemma 4.8 has the form

M−1
ij = δij +

∑
k=1

δi,j+k(−)iai, i � j,

M−1
ij = 0, i < j. (5.32)

By applying the inverse matrix to the system of equations (5.24), we come to the
following set of equations:

F (U)
n−p∑
k=1

an−k−p∂k U = Ap f(U), p = 1, 2, 3, . . . , n − 1. (5.33)

To proceed, multiply pth equation by function Up and summarize into one equa-
tion

F (U)
∑

k

Uk

n−p∑
k=1

an−k−p∂k U =
∑

p

Ap f(U). (5.34)

By using the identity ∑
p

ApU
p = F (U),

we arrive to the following equation:

n−2∑
k=0

Un−2−k(
i=k∑
i=0

(−1)i ai∂k+1−i) U = f(U), (5.35)

which also can be written in the form

n−1∑
k=1

(
n−k−1∑

i=0

(−1)i+1an−k−i−1U
i)∂k U = f(U). (5.36)

�

6. THE SYSTEM OF EQUATIONS INVERSE TO THE SYSTEM OF
n-ORDER RICCATI EQUATIONS

The n-order Riccati equation

dU

dφ
= f(U), (6.1)
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with constant coefˇcient, is directly integrated with respect to inverse function
φ = φ(U) by

dφ =
dU

f(U)
. (6.2)

Thus, in order to integrate the Riccati equation, one has to construct an inverse
equation [14]. The system of n-order Riccati equations also admits an inverse
system of equations, where the set of variables ψk, k = 1, 2, 3, . . . , n − 1 are
functions of the roots uk, k = 1, 2, 3, . . . , n − 1. Deˇne a mapping uk → ψk

given by the following Jacobian matrix:

J(
Du

Dψ
) =

⎛
⎜⎜⎜⎝

∂u1

∂ψ1
. . .

∂u1

∂ψn−1

. . . . . . . . .
∂un−1

∂ψ1
. . .

∂un−1

∂ψn−1

⎞
⎟⎟⎟⎠ . (6.3)

The differential of ui is given by

dui =
n−1∑
k=1

∂ui

∂ψk
dψk, i = 1, 2, . . . , n − 1. (6.4)

Firstly, let us consider the most simple case of the reduced polynomial f(X) de-
ˇned in (5.5). In that case, we have to use the reduced evolution equations (5.26),

∂ui

∂ψp
= f(ui) Ap[

∏
k �=i

(ui − uk)]−1, i, p = 1, 2, 3, . . . , n − 1. (6.5)

The right-hand sides of these equations are denoted by

Ak,p = Ap[
∏
k �=i

(ui − uk)]−1. (6.6)

In the Jacobian matrix (6.3), replace derivatives according to equations (6.5),

J(
Du

Dψ
) =

⎛
⎝ f(u1)A1,1 . . . f(u1)A1,n−1

. . . . . . . . .
f(un−1)An−1,1 . . . f(un−1)An−1,n−1

⎞
⎠ . (6.7)

It is seen, if in this matrix we put f(ui) = 1, then the inverse matrix is nothing
else than the Vandrmonde matrix

V =

⎛
⎜⎜⎝

un−2
1 . . . un−2

n−1

. . . . . . . . .
u1 . . . un−1

1 . . . 1

⎞
⎟⎟⎠ . (6.8)
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Consequently, the inverse matrix has the following form:

J−1(
Du

Dψ
) = J(

Dψ

Du
) ==

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

un−2
1

f(u1)
. . .

un−2
n−1

f(un−1)
. . . . . . . . .
u1

f(u1)
. . .

un−1

f(un−1)
1

f(u1)
. . .

1
f(un−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (6.9)

In this way, we come to the following system of equations for function φk(ui):

dψk =
n−1∑
i=1

un−k−1
i

f(ui)
dui, k = 1, 2, . . . , n − 1. (6.10)

In the general case, elements of Jacobian matrix in (6.3) are deˇned by
equations (5.31). We have

J(
Du

Dψ
) =

=

⎛
⎜⎜⎝

A1,1 A1,2 . . . A1,n−1

A2,1 A2,2 . . . A2,n−1

. . . . . . . . . . . .
An−1,1 An−1,2 . . . An−1,3

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

1 a1 . . . M1,n−1

0 1 a1 . . . M2,n−1

. . . . . . . . . . . .
0 0 . . . a1

0 0 . . . 1

⎞
⎟⎟⎟⎟⎠ .

(6.11)

Jacobian of inverse transformation is deˇned by matrix

J−1(
Du

Dψ
) = J(

Dψ

Du
) =

⎛
⎜⎜⎝

∂u1φ1 ∂u2φ1 . . . ∂un−1φ1

. . . . . . . . . . . .
∂u1φn−2 ∂u2φn−2 . . . ∂un−1φn−2

∂u1φn−1 ∂u2φn−1 . . . ∂un−1φn−1

⎞
⎟⎟⎠ .

On making use of Lemma 4.8 and formulae (6.7) and (6.8), we get

J(
Dψ

Du
) =

=

⎛
⎜⎜⎜⎜⎝

1 −a1 . . . an−2(−1)n

0 1 . . . an−3(−1)n−1

. . . . . . . . . . . .
0 0 . . . −a1

0 0 . . . 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

un−2
1 un−2

2 . . . un−2
n−1

un−1
1 un−1

2 . . . un−1
n−1

. . . . . . . . . . . .
u1 u2 . . . un−1

1 1 . . . 1

⎞
⎟⎟⎟⎟⎠ .

(6.12)
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7. EXAMPLE

It is useful to illustrate the method in the case of evolution equation generated
by polynomial given in an explicit form. Let us consider an evolution generated
by the polynomial of sixth order. The generating polynomial of n = 6 order is
written in the form

f(X) = X6 − a1X
5 + a2X

4 − a3X
3 + a4X

2 − a5X + a6. (7.1)

Let U be one of the roots of the polynomial Q(U). Then the function U obeys
the following system of equations:

F (U)∂1U = A1 f(U), (7.2)

F (U)∂2U = (A2 + a1A1)f(U),

F (U)∂3U = (A3 + A2a1 + (a2
1 − a2)A1)f(U),

F (U)∂4U = (A4 + a1A3 + (a2
1 − a2)A2 + (a3 − 2a1a2 + a3

1)A1)f(U),

F (U)∂5U = (A5 + A4a1 + (a2
1 − a2)A3 + (a3 − 2a1a2 + a3

1)A2+

+ (−a4 + 2a1a3 − 3a2
1a2 + a2

2 + a4
1)A1)f(U),

where

A1 = 1, −A2 = V +W +Y +Z, A3 = V W +V Y +V Z +WY +WZ +Y Z,

− A4 = WV Y + WV Z + WY Z + V Y Z, A5 = WV Y Z, (7.3)

and polynomial F (U) is deˇned by

F (U) = (U −V )(U −W )(U −Y )(U −Z) = A1U
4 +A2U

3+A3U
2+A4U +A5.

(7.4)
The system (7.2) is written in the matrix form as follows:

F (U) ∂k U =
5∑

j=1

Mkj Aj , k = 1, 2, 3, 4, 5, (7.5)

with matrix

Mkj =

=

⎛
⎜⎜⎜⎜⎝

1 a1 −a2 + a2
1 a3 − 2a1a2 + a3

1 −a4 + 2a1a3 − 3a2
1a2 + a2

2 + a4
1

0 1 a1 −a2 + a2
1 a3 − 2a1a2 + a3

1

0 0 1 a1 −a2 + a2
1

0 0 0 1 a1

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠.

(7.6)
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Notice that the inverse matrix has a more simple form:

M−1
ij =

⎛
⎜⎜⎜⎜⎝

1 −a1 a2 −a3 a4

0 1 −a1 a2 −a3

0 0 1 −a1 a2

0 0 0 1 −a1

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ . (7.7)

By using the inverse matrix, the system of Eqs. (7.5) is transformed to

F (U) (∂5 − a1∂4 + a2∂3 − a3∂2 + a4∂1)U = A5 f(U),

F (U) (∂4 − a1∂3 + a2∂2 − a3∂1)U = A4 f(U),

F (U) (∂3 − a1∂2 + a2∂1)U = A3 f(U),

F (U)(∂2 − a1∂1)U = A2 f(U),

F (U)∂1U = A1 f(U). (7.8)

Now, we collect these equations into one equation by taking into account the
identity (7.4). In this way we come to the equation containing unique unknown
U :

(
1 U U2 U3 U4

)
⎛
⎜⎜⎜⎜⎝

1 −a1 a2 −a3 a4

0 1 −a1 a2 −a3

0 0 1 −a1 a2

0 0 0 1 −a1

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

∂5

∂4

∂3

∂2

∂1

⎞
⎟⎟⎟⎟⎠ U = f(U).

(7.9)
This matrix equation can be written in the form either

(U4∂1 + U3(∂2 − a1∂1) + U2(∂3 − a1∂2 + a2∂1)+

+U(∂4 − a1∂3 + a2∂2 − a3∂1)+

+(∂5 − a1∂4 + a2∂3 − a3∂2 + a4∂1)) U = f(U), (7.10)

or
( (U4 − a1U

3 + a2U
2 − a3U + a4)∂1+

+(U3 − a1U
2 + a2U − a3)∂2+

+(U2 − a1U + a2)∂3+

+(U − a1)∂4 + ∂5) U = f(U). (7.11)
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The Jacobian of inverse mapping is deˇned by the matrix

J−1 =

⎛
⎜⎜⎜⎜⎝

∂uφ1 ∂vφ1 ∂wφ1 ∂yφ1 ∂zφ1

∂uφ2 ∂vφ2 ∂wφ2 ∂yφ2 ∂zφ2

∂uφ3 ∂vφ3 ∂wφ3 ∂yφ3 ∂zφ3

∂uφ4 ∂vφ4 ∂wφ4 ∂yφ4 ∂zφ4

∂uφ5 ∂vφ5 ∂wφ5 ∂yφ5 ∂zφ5

⎞
⎟⎟⎟⎟⎠ =

=

⎛
⎜⎜⎜⎜⎝

1 −a1 a2 −a3 a4

0 1 −a1 a2 −a3

0 0 1 −a1 a2

0 0 0 1 −a1

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠×

×

⎛
⎜⎜⎜⎜⎝

U4/f(u) V 4/f(v) W 4/f(w) Y 4/f(y) Z4/f(z)
U3/f(u) V 3/f(v) W 3/f(w) Y 3/f(y) Z3/f(z)
U2/f(u) V 2/f(v) W 2/f(w) Y 2/f(y) Z2/f(z)
U/f(u) V/f(v) W/f(w) Y/f(y) Z/f(z)
1/f(u) 1/f(v) 1/f(w) 1/f(y) 1/f(z)

⎞
⎟⎟⎟⎟⎠ . (7.12)

By using the notations u1 = u, u2 = v, u3 = w, u4 = y, u5 = z, the
matrix equation is reduced to

∂φ1

∂ui
=

1
f(ui)

(u4
i − a1u

3
i + a2u

2
i − a3ui + a4),

∂φ2

∂ui
=

1
f(ui)

(u3
i − a1u

2
i + a2ui + a3),

∂φ3

∂ui
=

1
f(ui)

(u2
i − a1ui + a2),

∂φ4

∂ui
=

1
f(ui)

(ui − a1),

∂φ5

∂ui
=

1
f(ui)

. (7.13)

Matrix form of this system of equations is

∂

∂ui

⎛
⎜⎜⎜⎜⎝

φ1

φ2

φ3

φ4

φ5

⎞
⎟⎟⎟⎟⎠ =

1
f(ui)

⎛
⎜⎜⎜⎜⎝

1 −a1 a2 −a3 a4

0 1 −a1 a2 −a3

0 0 1 −a1 a2

0 0 0 1 −a1

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

u4
i

u3
i

u2
i

ui

1

⎞
⎟⎟⎟⎟⎠ . (7.14)
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