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1 Introduction

In this work we undertake an attempt to formulate the method of categorical extension
of the theory of a Cayley–Klein group G(j) [1 – 3].
Let us define Pimenov algebra Dn(ι; C) as an associative algebra with unit over complex
number field and with nilpotent commutative generators ιk , ι2k = 0, ιkιm = ιmιk 6= 0,
k 6= m, k, m = 1, . . . , n. The general element of Dn(ι; C) is in the form

d = d0 +

n∑

p=1

∑

k1<...<kp

dk1...kp
ιk1

. . . ιkp
, d0, dk1...kp

∈ C.

For n = 1 we have D1(ι1; C) 3 d = d0 + d1ι1, i.e. the elements d are dual (or Study)
numbers when d0, d1 ∈ R. For n = 2 the general element of D2(ι1, ι2; C) is d = d0 +
d1ι1 + d2ι2 + d12ι1ι2. Two elements d, d̃ ∈ Dn(ι; C) are equal if and only if d0 =
d̃0, dk1...kp

= d̃k1...kp
, p = 1, . . . , n. If d = dkιk and d̃ = d̃kιk , then the condition

d = d̃, which is equivalent to dkιk = d̃kιk , make possible the consistently definition of the
division of nilpotent generator ιk by itself, namely: ιk/ιk = 1, k = 1, . . . , n. Let us stress
that the division of different nilpotent generators ιk/ιp, k 6= p, as well as the division of
complex number by nilpotent generators a/ιk, a ∈ C are not defined. It is convenient to
regard the Cayley–Klein algebras CKn(j; K), where K = R, C, H, O and the parameters
jk = 1, ιk, i; k = 1, . . . , n. If m parameters are nilpotent jks

= ιs, s = 1, . . . , m and the
other are equal to unit, then we have Pimenov algebra Dm(ι; C).

The matrix realization allows a natural interpretation of the Cayley–Klein algebras as
the Lie algebras of the motion groups of the homogeneous symmetric spaces with a Hermi-
tian metric. Let us consider the space V N+1(j) endowed with a Hermitian (sesqui)linear
form 〈 . | . 〉j : V N+1(j) ⊗ V N+1(j) → KN+1 ⊗ KN+1 defined by

〈a|b〉j := ā0b0+ā1j1b
1+ā2j1j2b

2+. . .+āNj1 · · · jNbN = ā0b0+

N∑

i=1

āi(

i∏

l=1

jl)b
i , (1)
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where a,b ∈ V N+1(j) and āi means the conjugation of the component ai. For the mo-
ment, we assume that we are in the generic case with all jl 6= 0. The underlying metric is
provided by the matrix

Ij = diag (1, j1, j1j2, . . . , j1 · · · jN ) (2)

and the Cayley–Klein group G(N + 1, j1, . . . , jN ) ≡ G(N + 1, j) is defined as the group
of linear isometries of this Hermitian metric over space V N+1(j). Thus the isometry con-
dition for an element U of the Cayley–Klein group G(N + 1, j)

〈Ua|Ub〉j = 〈a|b〉j ∀ a,b ∈ V N+1(j) , (3)

leads to the following relation

U †IjU = Ij ∀U ∈ G(N + 1, j) , (4)

which for the Cayley–Klein algebra implies

X†Ij + IjX = 0 ∀X ∈ CKN+1(j) . (5)

Let G(j) be a Cayley–Klein group. Then there exists a certain category CKK such
that the group itself is the automorphism group of a certain object V (j), while the semi-
group Γ(j) is the semigroup of endomorphisms of this same object. Furthermore, each
representation ρ(j) of Cayley–Klein group G′(j) on a Cayley–Klein space H(j) can be
extended to a representation of the Cayley–Klein category CKK. In other words, for
each objects W (j) of the Cayley–Klein category CKK we can construct a linear space
T (W (j)) and for each morphism P (j) : W (j) → W ′(j) we can construct a linear operator
τ(P (j)) : T (W (j)) → T (W ′(j)) such that for any morphisms P (j) : W (j) → W ′(j) and
Q(j) : W ′(j) → W ′′(j) we have

τ(Q(j)P (j)) = τ(Q(j))τ(P (j)) , (6)

with T (V (j)) = H(j), and for all g ∈ G the operators τ((g)) and ρ((g)) are the same.
We note that all the spaces T (W (j)) and all the operators τ(j) “grow out of” the

one and only representation ρ(j) of Cayley–Klein group G(j) and the one and only space
Cayley–Klein H(j).

To define a Cayley–Klein category CKK we require the following data:
(a) a set Ob(CKK) of elements called the objects of the category CKK;
(b) for any two objects V (j), W (j) ∈ Ob(CKK) a set MorCKK(V (j), W (j)) is de-

fined, called the morphisms from V (j) to W (j) (when it is clear what the category in
question is, we omit the index CKK and merely write Mor(V (j), W (j)));

(c) for any P (j) in Mor(V (j), V ′(j)) and Q(j) in Mor(V ′(j), V ′′(j)) their product
Q(j)P (j) is defined in Mor(V (j), V ′′(j)). The product must be associative: for any P (j)
in Mor(V (j), V ′(j)), Q(j) in Mor(V ′(j), V ′′(j)), and R(j) in Mor(V ′′(j), V ′′′(j)), the
formula

R(j)(Q(j)P (j)) = (R(j)Q(j))P (j) (7)

holds;
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(d) it is usually assumed that the set Mor(V (j), V (j)) contains an element 1V (j) called
the identity such that, for any P (j) ∈ Mor(Y (j), V (j)), we have P (j) · 1V (j) = P (j) and,
for any Q(j) ∈ Mor(V (j), W (j)), we have 1V (j) · Q(j) = Q(j).

To explain the idea of an analog of a structure on a category, let us consider first the
category of linear relations. The objects of this category are linear spaces over a field K

(and we will suppose them to be finite-dimensional). The morphisms P (j) : V (j) ⇒ W (j)
are the linear relations, that is, the subspaces P (j) of V (j) ⊕ W (j).

If P (j) : V (j) ⇒ W (j) and Q(j) : W (j) ⇒ Y (j) are linear relations, then their
product Q(j)P (j) : V (j) ⇒ Y (j) is defined as follows: (v(j), y(j)) ∈ V (j) ⊕ Y (j) is
contained in the subspace Q(j)P (j) if there exists ω ∈ W (j) such that (v(j), ω) ∈ P (j)
and (ω, y(j)) ∈ Q(j) (and this is how one would want to define the product of “multivalued
maps”).

The following are defined for a linear relation P (j) : V (j) ⇒ W (j) in the same way
as for an operator:

(a) the kernel ker P (j) — the set of all v(j) ∈ V (j) such that (v(j), 0) ∈ P (j);

(b) the image im P (j) — the projection of P (j) onto W (j);

(c) the domain of definition D(P (j)) — the projection of P (j) onto V (j).

(d) the indefiniteness Indef(P (j)); this is the set of ω ∈ W (j) such that (0, ω) ∈ P (j);
if P (j) is the graph of an operator then Indef(P (j)) = 0;

(e) the rank rk(P (j)): rk(P (j)) = dim D(P (j)) − dim kerP (j) = dim imP (j) −
dim IndefP (j) = dim P (j) − dim kerP (j) − dim IndefP (j).

2 The real classical Cayley−Klein categories

All the real classical Cayley–Klein categories that can be obtained by the method of
categorical extension are listed in Table 1.
The first column gives the name of the category. The second column gives the field (or
division ring) K, while the third gives the objects of the category (p, q, n,∈ Z); in all
cases these objects are the spaces V p,q(j) = V+(j) ⊕ V−(j) = Kp ⊕ Kq, where K =
R, C or H, consisting of the vectors x = (x+, x−) = (x+

0 , x+
1 , . . . , x+

p ; x−
0 , x−

1 , . . . , x−
q )

and endowed with the Hermitian form (1). As well as the form Λ, which appears in the
fourth column, and is introduced in V (j) as a non-degenerate skew-symmetric, symmetric,
Hermitian, or skew-Hermitian form Λ = ΛV (j) so that the spaces V+(j) and V−(j) are
isotropic with respect to Λ. In Table 1 the field (or division ring) K = R, C, H and the type
of form Λ are determined by the category CKK. The morphisms V (j) → W (j) are the
linear relations L(j) : V (j) ⇒ W (j) satisfying the two conditions:
(a) L(j) contracts the form (1);
(b) L(j) “preserves the form Λ”, that is, form (1) is a maximal isotropic subspaces of
V (j)⊕W (j) with respect to the form

ΛV (j)⊕W (j)((v, w), (v′, w′)) = ΛV (j)(v, v′) − ΛW (j)(w, w′) . (8)

The fifth column gives the group G(j) = AutA(V (j)) of automorphisms of V (j).
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Table 1. List of the real classical Cayley–Klein categories

Name Field Object Form Λ ≡<, > Aut(V (j))
CKK K V+ ⊕ V−

CKU C C
p
⊕ C

q U(p, q, j)

CKSp C C
n
⊕ C

n x+

0 y−

0 − x−

0 y+

0 +
P

k=1

(
k

Q

l=1

jl)(x
+

k y−

k − x−

k y+

k ) U(n, j)

CKSO∗

C C
n
⊕ C

n x+

0 y−

0 + x−

0 y+

0 +
P

k=1

(
k

Q

l=1

jl)(x
+

k y−

k + x−

k y+

k ) SO∗(2n, j)

CKGL(C) C C
n
⊕ C

n x+

0 y−

0 − x−

0 y+

0 +
P

k=1

(
k

Q

l=1

jl)(x
+

k y−

k − x−

k y+

k ) GL(n, C, j)

CKO(R) R R
p
⊕ R

q O(p, q, j)

CKGL(R) R R
p
⊕ R

q x+

0 y−

0 − x−

0 y+

0 +
P

k=1

(
k

Q

l=1

jl)(x
+

k y−

k − x−

k y+

k ) GL(n, R, j)

CKO(C) R R
n
⊕ R

n x+

0 y−

0 + x−

0 y+

0 +
P

k=1

(
k

Q

l=1

jl)(x
+

k y−

k + x−

k y+

k ) O(n, C, j)

CKSp(H) H H
p
⊕ H

q Sp(p, q, j)

CKGL(H) H H
n
⊕ H

n x+

0 y−

0 − x−

0 y+

0 +
P

k=1

(
k

Q

l=1

jl)(x
+

k y−

k − x−

k y+

k ) GL(n, H, j)

CKSp(C) H H
n
⊕ H

n x+

0 y−

0 + x−

0 y+

0 +
P

k=1

(
k

Q

l=1

jl)(x
+

k y−

k + x−

k y+

k ) Sp(2n, C, j)

3 The complex classical Cayley−Klein categories

The category CKGA. The objects of CKGA are finite–dimensional complex lin-
ear Cayley–Klein spaces. The morphisms MorCKGA(V (j), W (j)) consist of all possible
linear relations V (j) ⇒ W (j), together with the formal element null = nullV (j),W (j),
which is not identified with any linear relations. Let P (j) ∈ MorCKGA(V (j), W (j)), and
Q(j) ∈ MorCKGA(W (j), Y (j)).
We define their product Q(j)P (j) ∈ MorCKGA(V (j), Y (j)) by the following rule:
(a) the product of null with any morphism is null: nullW (j),Y (j)·P (j) = nullV (j),Y (j); Q(j)·
nullV (j),W (j) = nullV (j),Y (j); (b) if P (j) 6= null and Q(j) 6= null and

kerQ(j)
⋂

IndefP (j) = 0 , (9)

imP (j) + D(Q(j)) = W (j) , (10)

then Q(j) and P (j) are multiplied as linear relations. Otherwise, Q(j)P (j) = null.
The category CKGD. The objects of the category CKGD are the even–dimensional
complex linear Cayley–Klein spaces V (j) endowed with a non-degenerate symmetric bi-
linear form {., .}V (j).
Let V (j), W (j) ∈ Ob(CKGD). We introduce in V (j) ⊕ W (j) the bilinear form

{(v, ω), (v′, ω′)}V (j)⊕W (j) = {v, v′}V (j) − {ω, ω′}W (j) . (11)
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The morphisms from V (j) to W (j) in the category CKGD are of two types:
(a) maximal isotropic subspaces of V (j) ⊕ W (j); (b) the formal element nullV (j),W (j)

(this element does not correspond to any subspace of V (j) ⊕ W (j)).
We need to define the product Q(j)P (j) of morphisms P (j) ∈ Mor(V (j), W (j)); and
Q(j) ∈ Mor(W (j), Y (j)). First, the product of null and any other morphism is equal to
null, that is,

nullW (j),Y (j) · P = nullV (j),Y (j) ; Q(j) · nullV (j),W (j) = nullV (j),Y (j) . (12)

for any P (j) ∈ Mor(V (j), W (j)); and Q(j) ∈ Mor(W (j), Y (j)). Now let P (j) and Q(j)
be linear relations. If ker(Q(j)) ∩ IndefP (j) = 0, then Q(j) and P (j) are multiplied as
linear relations. If, on the other hand, (12) does not hold, then Q(j)P (j) = nullV (j),Y (j).
The Cayley–Klein category CKA is the category of linear Cayley–Klein spaces and linear
operators.
The Cayley–Klein category CKB has odd-dimensional complex Cayley–Klein spaces as
objects endowed with a non-degenerate symmetric bilinear form {., .}V (j). Let V (j), W (j)
be objects of the category CKB. We introduce in V (j) ⊕ W (j) the symmetric bilinear
form

{(v, ω), (v′, ω′)}V (j)⊕W (j) = {v, v′}V (j) − {ω, ω′}W (j) . (13)

The set MorCKB(V (j), W (j)) consists of null and maximal isotropic subspaces of V (j)⊕
W (j). The morphisms are multiplied in the same way as in the category CKGA.

An object of the Cayley–Klein category CKC is a finite–dimensional complex linear
Cayley–Klein space V (j) endowed with a non-degenerate skew-symmetric bilinear form
{., .}V (j). If V (j), W (j) ∈ ObCKC, then we introduce in V (j)⊕W (j) the skew-symmetric
bilinear form defined by (13). The set MorCKC(V (j), W (j)) consists of null and all max-
imal isotropic subspaces of V (j) ⊕ W (j). The morphisms are multiplied in the same way
as in the Cayley–Klein category CKGA.
The Cayley–Klein category CKD. Let Y (j) be a complex even-dimensional Cayley–
Klein space endowed with a non-degenerate symmetric bilinear form. We denote by
Gr(Y (j)) the Grassmannian of all maximal isotropic subspaces of Y (j). An object of the
category CKD is an object V (j) of the category CKGD in which one of the connected
components Gr+(V (j)) = MorCKGD(0, V (j))\null is fixed. Let V (j), W (j) be objects
in CKD. Let W+(j) ∈ Gr+(W (j)), V+(j) ∈ Gr+(V (j)), and let W−(j) ∈ Gr(W (j)) be
a complement of W+(j) with respect to W (j). The set MorCKD(V (j), W (j)) consists of
null and the connected component of MorCKGD(V (j), W (j))\null = Gr(V (j) ⊕ W (j))
containing V+(j) ⊕ W−(j). The morphisms are multiplied in the same way as in the cate-
gory CKGD.

LEMMA 1 (a) Let P ∈ MorCKCK(V (j), W (j)) and Q ∈ MorCKCK(W (j), Y (j)), and
suppose that QP 6= null . Then dim Q(j)P (j) = dim P (j) + dim Q(j) − dim W (j).
(b) Multiplication of morphisms is a jointly continuous operation.

Proof (a) Let H = V (j)⊕W (j)⊕W (j)⊕Y (j), and let Z be the subspace of vectors of the
form (v, w, w, y). We define the subspace T = P ⊕ Q as the set of all vectors of the form
(v, w, w′, y), where (v, w) ∈ Q and (w′, y) ∈ P . In view of (10) we have T + Z = H .
Thus T ∩ Z has dimension dim Z + dim T − dim H = dim P + dim Q − dim W .
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Next we denote the projection of H onto V (j)⊕Y (j) along W (j)⊕W (j) by π. Then,
as is easily seen, π(T ∩ Z) is the product QP . Furthermore, π is injective on T ∩ Z. In
fact, π(v, w, w′, y) = 0 implies that v = 0 and y = 0, while (v, w, w′, y) ∈ Z implies that
w = w′. Finally, (0, w, w, 0) ∈ T implies that w lies in ker ∩ Indef P , which, by virtue
of (9), consists merely of the origin. This completes the proof of assertion (a).
Assertion (b) is proved in similar fashion. 2

LEMMA 2 Let P (j) : V (j) ⇒ W (j) and Q(j) : W (j) ⇒ Y (j) be morphisms of the
Cayley–Klein category CKK. Then
(a) (P ′(j))′ = P (j); (b) dim P ′(j) + dim P (j) = dim V (j) + dim W (j);
(c) kerP ′(j) = AnnD(P (j)), D(P ′(j)) = Ann kerP (j), IndefP ′(j) = Ann imP (j),
and imP ′(j) = Ann IndefP (j); (d) Q′(j)P ′(j) = null in the category CKCK if and
only if Q(j)P (j) = null in the category CKK; (e) (Q(j)P (j))′ = Q′(j)P ′(j).

Proof (a) Ann Ann T = T . (b) and (c) are simple exercises in linear algebra. (d)
Conditions (9) and (10) change places on passing to the dual morphism. (e) Let Q, P , and
QP be non-null morphisms. Let (f ′′, f) ∈ Q′P ′. Then there exists f ′ ∈ W ′(j) such that
(f ′′, f ′) ∈ Q′ and (f ′, f) ∈ P ′. Let (y, v) be an arbitrary element of QP . Then there exists
w ∈ W such that (y, w) ∈ Q and (v, w) ∈ P . Then f ′′(y) = f ′(w) = f(v) by definition
of the dual morphism. Thus (f ′′, f ′) belongs to (QP )′, and hence Q′P ′ ⊂ (QP )′. On
the other hand, the dimensions of Q′P ′ and (QP )′ are the same (see Lemma 1). This
completes the proof. 2

LEMMA 3 Multiplications of morphisms of the CKK is associative.

Proof Let P ∈ Mor(V (j), W (j)), Q ∈ Mor(W (j), Y (j)), R ∈ Mor(Y (j), Z(j)), and
suppose that R(QP ) = null. This means that one of the following four conditions holds:
(1) ker Q ∩ Indef P 6= O, (2) ker R ∩ Indef (QP ) = 0, (3) im P + D(Q) 6= W ,
(4) D(R)+im QP 6= Y . Suppose first that the case (1) holds. Clearly ker(RQ) ⊃ kerQ,
and therefore we have Indef P ∩ ker(RQ) 6= 0. Hence (RQ)R = null. Suppose next
that the case (2) holds. Then y ∈ Indef(QP ) ∩ kerR contains a non-zero vector. Take
w ∈ W such that (0, w) ∈ P and (w, y) ∈ Q. Then (y, 0) ∈ R, which implies that
w ∈ IndefP ∩ ker(RQ). Hence (RQ)P = null. The cases (3) and (4) reduce to (1) and
(2) by going over to the dual morphisms. 2

PROPOSITION 1 The definitions of the Cayley–Klein categories mentioned above are cor-
rect.

Proof We have just verified associativity. Let be QP 6= null, where P ∈ Mor(V (j), W (j)),
Q ∈ Mor(W (j), Y (j)). Then, by Lemma 1 dim QP = 1

2 (dim V (j) + dim W (j)).
Hence the isotropic subspace QP has maximum possible dimension. 2
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