Neutrino Physics with Nuclear Reactors

Dmitry V Naumov

JINR

Mini-Workshop In Framework of the 72nd Board Meeting of the EPS Nuclear Physics Division September, 27 2016

1 Introduction

- What do we want to learn.
- Reactor anti-neutrinos: some basic facts
- Brief history of discoveries with reactor antineutrinos
- Short summary and open questions

2 Present and near Future

- Spectrum measurement
- Non prolifiration
- Coherent scattering
- Neutrino Nature via magnetic moment
- Sterile neutrino
- Geo-neutrinos
- Mass hierarchy
- Conclusions

- \blacksquare Generations of quarks and leptons with definite mass do not mix in interactions with γ, Z^0
- They do mix in interactions with W^{\pm}
- \blacksquare The mixing is governed by unitary matrices $V_{\sf CKM}$ for quarks and $V_{\sf PMNS}$ for leptons
- $V_{3\times 3}$ mixing matrix is parametrized by 3 mixing angles θ_{ij} , 1 CP-violating phase δ (2 more phase for Majorana neutrinos only)
- What do we want to learn?
 - $\hookrightarrow \theta_{ij}, \delta$ and neutrino masses m_i
- How can we learn it?
 - \hookrightarrow Measurements of "neutrino mass": $m_{\alpha}^{\text{eff}} = \sum_{i} |V_{\alpha i}|^2 m_i$
 - \hookrightarrow Search for $0\nu 2\beta$ decays: $m_{\beta\beta} = |V_{ei}^2 m_i|$
 - \hookrightarrow Flavour appearance and disappearance in neutrino oscillations: $\theta_{ij}, \delta, \Delta m_{ij}^2$
 - \hookrightarrow Cosmology and deep sky surveys limit $\sum_i m_i$

Introduction

Reactor anti-neutrinos: some basic facts. Neutrino sources

Neutrinos at Reactors

lnt roduction

Reactor anti-neutrinos: some basic facts. Nuclear Reactions

Inside of a Nuclear Reactor

- Nuclear plant gets its power via fission of uranium and plutonium isotopes.
- About 11% of world energy is produced in reactors.
- 437 nuclear power reactors operating in 31 countries
- Each fission releases about 200 MeV of energy and six antineutrino.
- Typical 3GW_{th} reactor emits $6 \cdot 10^{20} \bar{\nu}_e/s$.

Neutrinos at Reactors \Box Introduction \Box Reactor anti-neutrinos: some basic facts. $\bar{\nu}_e$ flux, $\bar{\nu}_e + p \rightarrow n + e^+$ cross-section and event rate

Neutrinos at Reactors └─ Introduction └─ Brief history of discoveries with reactor antineutrinos. ⊅_e discovery

- F.Reines and C.Cowan, ve discovery in 1956
- The proposed method is now the standard in all reactor neutrino experiments
- Nobel Prize to F Reines in 1995.

Neutrinos at Reactors

Introduction

Brief history of discoveries with reactor antineutrinos. θ_{12} measurement

KamLand + solar data yield $\sin^2 \theta_{12} = 0.307^{+0.018}_{-0.016},$

$$\Delta m_{21}^2 = 7.54^{+0.26}_{-0.22} \times 10^{-5} \text{eV}^2.$$

Figures from [1409.4515]

Brief history of discoveries with reactor antineutrinos. θ_{13} measurement

First indications

- $\sin^2 2\theta_{13} < 0.15$ by Chooz. Phys.Lett.B466:415-430,1999
- First hints in 2011 (but no results $\gtrsim 3 \sigma$ for $\theta_{13} > 0$):
 - Tensions between solar, reactor oscillations suggest θ₁₃ > 0. G.L. Fogli *et al.*, Phys. Rev. D84, 053007 (2011)
 - MINOS, T2K, Double Chooz indicated θ₁₃ > 0

Discovery (2012)

Two reactor experiments Daya Bay (5.2σ) and RENO (4.9σ) observed a clear deficit in the event rate at far site:

$$\sin^2 2\theta_{13} = \begin{cases} 0.092 \pm 0.017 \text{ Daya Bay} \\ 0.113 \pm 0.023 \text{ RENO} \end{cases}$$

The Breakthrough Prize in Fundamental Physics 2016

Neutrinos at Reactors

Introduction

Brief history of discoveries with reactor antineutrinos. θ_{13} measurement

First indications

- $\sin^2 2\theta_{13} < 0.15$ by Chooz. Phys.Lett.B466:415-430,1999
- First hints in 2011 (but no results $\gtrsim 3 \sigma$ for $\theta_{13} > 0$):
 - Tensions between solar, reactor oscillations suggest θ₁₃ > 0. G.L. Fogli *et al.*, Phys. Rev. D84, 053007 (2011)
 - MINOS, T2K, Double Chooz indicated θ₁₃ > 0

Current result (2016 based on 1230 days) Daya Bay provides the most accurate measurement of $\sin^2 2\theta_{13}$ (25 σ) and of Δm_{ee}^2 .

 $\sin^2 2\theta_{13} = 0.0841 \pm 0.0027 (\text{stat.}) \pm 0.0019 (\text{syst.})$ $\Delta m_{ee}^2 = (2.50 \pm 0.06 (\text{stat.}) \pm 0.06 (\text{syst.})) \cdot 10^{-3} \text{ eV}^2$

The Breakthrough Prize in Fundamental Physics 2016

- The main question: origin of heat in the Earth interior?
- Two main possible contributions (how much for each?):
 - 1. Primordial heat
 - 2. Decays of radioactive nuclei
 - Is there a geo-reactor?

Primordial and radiogenic contributions are about the same

- Old reactor neutrino experiments yield data/theory = 0.976 ± 0.024
- New theoretical calculation predicts theory by 3% lower thus leading to a reactor anomaly with data/theory = 0.943 ± 0.023 [hep-ex/1101.2755], Phys.Rev.D83:073006,2011
- If interpreted in terms of neutrino oscillations one needs $\Delta m_{\text{new}}^2 \simeq 1 \text{eV}^2 \neq \Delta m_{21,31,32}^2$ and $\sin^2 2\theta_{\text{new}} \simeq 0.1$
 - ✓ Since $\Gamma_{inv}(Z^0) = 3\Gamma_{\nu\bar{\nu}}(Z^0) \hookrightarrow$ new neutrino should be a sterile state=coherent superposition of 4 ν_i

Figure from [hep-ex/1101.2755]

 The mixing of leptons is governed by the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix:

$$V = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

• where $s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$ are mixing angles, and $e^{-i\delta}$ is the CP-violating factor.

Parameter	best fit value $(\pm 1\sigma)$			
$\sin^2 heta_{12}$	$0.307\substack{+0.018\\-0.016}$			
$\sin^2 \theta_{23}$	$0.386^{+0.024}_{-0.021}$			
$\sin^2 heta_{13}$	$0.024^{+0.0025}_{-0.0025}$			
The summary of neutrino mixing angle				
parameters				

Parameter	best fit value $(\pm 1\sigma)$			
Δm^2_{21}	$7.54^{+0.26}_{-0.22} imes10^{-5}$ eV 2			
$ \Delta m^2_{\mu\mu} $	$2.43^{+0.06}_{-0.10}\times10^{-3}\text{eV}^2$			
m _e	< 2.05 eV			
$\sum_i m_i$	< 0.66 eV			
$m_{\beta\beta}$	< (0.2 - 0.4) eV			

The summary of neutrino mass parameters

Introduction

Short summary and open questions

Mass hierarchy.

- $m_3 > m_1$ or $m_3 < m_1$.
- accelerator (NOVA, T2HK, LBNE, LBNO), atmospheric (PINGU/ORCA, INO) and reactor neutrinos (JUNO, RENO-50)

CP violation.

- δ =?
- T2HK, NOVA and LBNE, LBNO
- Mixing matrix unitarity.
 - $VV^{\dagger} \stackrel{?}{=} 1$
 - Do sterile neutrinos exist?
 - A long list of experimental proposals on the market.
- Dirac vs. Majorana
 - $\bullet \nu \stackrel{?}{=} \bar{\nu}$
 - GERDA, CUORE, KamLand-Zen, EXO, SuperNEMO

1 Introduction

- What do we want to learn.
- Reactor anti-neutrinos: some basic facts
- Brief history of discoveries with reactor antineutrinos
- Short summary and open questions

2 Present and near Future

- Spectrum measurement
- Non prolifiration
- Coherent scattering
- Neutrino Nature via magnetic moment
- Sterile neutrino
- Geo-neutrinos
- Mass hierarchy
- Conclusions

Observed positron spectrum

Extracted antineutrino spectrum

- Bump feature around 5-6 MeV.
- Consistent with other experiments
- Seen for both Huber+Mueller/ILL+Vogel.

- Global significance: 2.6σ.
- Local significance: 4σ

Claimed theoretical uncertainty of 2 - 2.7% does not look reasonable

- One needs to measure the spectra due to each isotope
- This is a hard task and one may need several experiments to measure 235^U independently (PROSPECT) on ²³⁸U, ²³⁹Pu, ²⁴¹Pu.
- There is an ongoing work of JINR group in Daya Bay
- Other experiments with good energy resolution and large statistics are welcome

- Monitor the reactor power (first proposal by Borovoi and Mikaelyan).
 - \hookrightarrow Strong correlation between $ar{
 u}_e$ rate and reactor power is found
- Monitor the Pu content
 - \hookrightarrow Change of $\bar{\nu}_e$ spectrum with time
 - \hookrightarrow Needs good energy resolution detector
 - \hookrightarrow Needs to understand how the reactor actually work (spectra)
- Develop a detector technology
 - → Minimal overburden
 - \hookrightarrow Close to a reactor
 - \hookrightarrow Minimal shielding

Detection Coherent Neutrino–Ge Nucleus Elastic Scattering (KNPP). Brief Summary JINR contribution

- $\nu + A \rightarrow \nu + A$ Coherent Neutrino Nucleus Scattering (CNNS)
- Recoil energy < 1 keV. JINR low-threshold HPGe detectors with energy threshold of 350 eV.

- The background ≃ 0.5 events/kg/keV/day.
- 10m from reactor core = 10 events per day.

Expertise in the production of unique low-threshold HPGe detectors

- This is JINR proposal
- Unique experience in conducting low-background 0ν2β-search experiments and low-threshold experiments (search for neutrino magnetic moment) at the KNPP.

Expects to detect the coherent neutrino-nucleus scattering and measure CNNS cross-section in Ge during the nearest 3–5 years.

GEMMA = Germanium Experiment Searching for Magnetic Moment of Antineutrino

- Standard Model: $\mu_{\nu} = 10^{-19} \frac{m_{\nu}}{eV} \mu_B$
- Extensions of SM: $\mu_{\nu} = 10^{-11+12} \mu_B$ (Majorana) and $\mu_{\nu} < 10^{-14} \mu_B$ (Dirac)
- An observation of the $\mu_{\nu} > 10^{-14} \mu_{\rm B}$ = New Physics + Majorana

- Kalinin Nuclear Power Plant
- GEMMA result: $\mu_{\nu} < 2.9 \cdot 10^{-11} \mu_B$
- GEMMA-2 sensitivity: $\mu_{\nu} = 1.0 \cdot 10^{-11} \mu_B$
- Movable platform

Run by JINR and ITEP

	Power	Baseline	Mass	Dopant	Seg.
	(MW _{th})	(m)	(ton)		Ů
PROSPECT (US)	85	6-20	1&10	6Li	Y
NuLat (US)	1500	3-8	1	¹⁰ B& ⁶ Li	Y
NUCIFER (FR)	70	$\simeq 7$	0.7	Gd	N
STEREO (FR)	57	$\simeq 10$	1.8	Gd	N
DANSS (RU)	3000	9-12	0.9	Gd	Y
NEUTRINO-4 (RU)	100	6-12	1.5	Gd	N
POSEIDON (RU)	100	5-8	1.3	Gd	N
SOLID (UK)	45-80	6.8	2.9	Gd, ⁶ Li	Y
HANARO (ŠK)	30	6	1	Gd	Y

Challenges:

- Background suppression
- Calibrations

Advantages:

- 6Li(n, α)³He localization of the delayed signal, better reduction of γ background
- Segmentation reduces the background

Neutrinos at Reactors Present and near Future Sterile neutrino

JUNO, RENO-50

Neutrino mass

Mixing defined by angles: $\theta_{12}, \theta_{23}, \theta_{13}$.

Neutrino mass

- Neutrinos are massive
- Neutrino mass was never measured
- $\sum m_{\nu} \lesssim 1 \text{ eV}$ $m_{e} < 2.2 \text{ eV}$

 $\langle m_{\beta\beta} \rangle < 0.25 \, \text{eV}$

(cosmology) (direct)

 $(0\nu\beta\beta)$

Mass splitting

From oscillation experiments:

•
$$\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$$

• $|\Delta m_{32}^2| = (2.42 \pm 0.06) \times 10^{-3} \text{ eV}^2$

$$\left| \Delta m_{32}^2 \right| / \Delta m_{21}^2 \sim 32$$

Mass hierarchy

Which neutrino is the lightest one: ν_1 or ν_3 ?

$$\begin{split} P_{\rm dis} &= \sin^2 2\theta_{13} \left(\sin^2 \theta_{12} \sin^2 \Delta_{32} + \cos^2 \theta_{12} \sin^2 \Delta_{31} \right) + \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} \\ \Delta_{jk} &= 1267 \cdot \frac{\Delta m_{jk}^2}{\rm eV^2} \; \frac{L}{E} \; \left[\frac{\rm MeV}{\rm km} \right] \end{split}$$

$$\begin{split} P_{\rm dis} &= \sin^2 2\theta_{13} \left(\sin^2 \theta_{12} \sin^2 \Delta_{32} + \cos^2 \theta_{12} \sin^2 \Delta_{31} \right) + \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} \\ \Delta_{jk} &= 1267 \cdot \frac{\Delta m_{jk}^2}{\rm eV^2} \; \frac{L}{E} \; \left[\frac{\rm MeV}{\rm km} \right] \end{split}$$

- Picture: ideal energy resolution.
- Sensitivity to θ_{12} , Δm_{21}^2 , θ_{13} , Δm_{32}^2 .
- Required energy resolution $\lesssim 3\%$.

- Picture: ideal energy resolution.
- Sensitivity to θ_{12} , Δm_{21}^2 , θ_{13} , Δm_{32}^2 .
- Required energy resolution $\lesssim 3\%$.

Picture: energy resolution 2%. Sensitivity to: θ_{12} , Δm_{21}^2 , θ_{13} , Δm_{32}^2 .

Required energy resolution $\lesssim 3\%$.

- Picture: energy resolution 3%.
- Sensitivity to θ_{12} , Δm_{21}^2 , θ_{13} , Δm_{32}^2
- Required energy resolution $\lesssim 3\%$.

- Picture: energy resolution 4%.
- Sensitivity to: θ_{12} , Δm_{21}^2 , θ_{13} , Δm_{32}^2 . Required energy resolution $\lesssim 3\%$.

Several important discoveries were made with reactor antineutrino:

- $\overline{\nu}_e$
- $\theta_{12}, \theta_{13}, \Delta m_{21}^2$
- Geo-neutrinos
- Precise measurement of Δm_{32}^2
- Amazing hints:
 - Sterile neutrino
- Near terms discoveries are expected:
 - Neutrino mass hierarchy
 - Coherent neutrino-nucleus scattering
 - Constrain mixing parameters to help in measurement of δ CP violation phase with accelerators and atmospheric neutrinos
- Possible discoveries
 - New physics and neutrino nature (ν magnetic moments)
- Applied science
 - non-prolifiration
 - reactor power independent monitoring

Nuclear physics is a key ingredient to make this program possible