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L What do we want to learn. What is mixing?

m Generations of quarks and leptons with definite mass do not mix in interactions
with ~, Z°

m They do mix in interactions with W=+

m The mixing is governed by unitary matrices Vckm for quarks and Vppng for
leptons

m V3,3 mixing matrix is parametrized by 3 mixing angles 6;;, 1 CP-violating phase
6 (2 more phase for Majorana neutrinos only)

= What do we want to learn?
< 0j;,9 and neutrino masses m;

m How can we learn it?
< Measurements of “neutrino mass": rn;“ =3 \Vu,v\zm,v
< Search for 0023 decays: mgg = |V2m;|
— Flavour appearance and disappearance in neutrino oscillations: 6, , Am§
— Cosmology and deep sky surveys limit 3. m;
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Reactor anti-neutrinos: some basic facts. Neutrino sources
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Reactor anti-neutrinos: some basic facts. Nuclear Reactions
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Water

m Nuclear plant gets its power via fission of uranium and plutonium isotopes.
m About 11% of world energy is produced in reactors.

m 437 nuclear power reactors operating in 31 countries

m Each fission releases about 200 MeV of energy and six antineutrino.
Typical 3GW,, reactor emits 6 - 10207, /s.
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Reactor anti-neutrinos: some basic facts. Typical antineutrino energy spectra
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Reactor anti-neutrinos: some basic facts. Fission i pes vs time (simulation)
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Reactor anti-neutrinos: some basic facts. ¢ flux, ¢ + p — n+ et cross-section and event rate
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L Brief history of discoveries with reactor antineutrinos. 7. discovery

m F.Reines and C.Cowan, 7
discovery in 1956

m The proposed method is now
the standard in all reactor
neutrino experiments

m Nobel Prize to F.Reines in
1995.
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L Brief history of discoveries with reactor

inos. 012
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L Brief history of discoveries with reactor i inos.

First indications

- sin®260:3 < 0.15 by Chooz.
Phys.Lett.B466:415-430,1999
- First hints in 2011 (but no results
> 30 for 13 > 0):
m Tensions between solar, reactor
oscillations suggest 033 > 0. G.L.
Fogli et al., Phys. Rev. D84, 053007
(2011)
= MINOS, T2K, Double Chooz
indicated 613 > 0

Discovery (2012)

Two reactor experiments Daya Bay (5.20)
and RENO (4.90) observed a clear deficit
in the event rate at far site:

sin? 203 = 0.092 £ 0.017 Daya Bay
0.113 £0.023 RENO
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The Breakthrough Prize in Fundamental Physics 2016
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L Brief history of discoveries with reactor anti inos. 013
: :
First indications . ; 0
- sin? 2013 < 0.15 by Chooz. A\ / :
Phys.Lett.B466:415-430,1999 e Lay

- First hints in 2011 (but no results

> 30 for 13 > 0): 0s
m Tensions between solar, reactor o Poloioio i
oscillations suggest 033 > 0. G.L. @ - Lo
Fogli et al., Phys. Rev. D84, 053007 % 26 L :
(2011) < 4, | ;
= MINOS, T2K, Double Chooz L N '
indicated 633 > 0 ng 24 SN
Current result (2016 based on 1230 days) 23 . S
Daya Bay provides the most accurate 2.2
measurement of sin? 2013 (250) and of 5
2 (}05 0.06 0.07 0.08 0.09 0.10 0.11 0.12
Amee : sin® 26,3

sin% 2013 = 0.0841 + 0.0027(stat.) + 0.0019(syst.)
Am2, = (2.50 & 0.06(stat.) + 0.06(syst.)) - 103 eVv?

The Breakthrough Prize in Fundamental Physics 2016
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L Brief history of discoveries with reactor

inos. Di y of g

m The main question: origin of heat in the Earth interior?

m Two main possible contributions (how much for each?):

1. Primordial heat
2. Decays of radioactive nuclei

- Is there a geo-reactor?
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L Brief history of discoveries with reactor i inos. Di y of g

m Primordial and radiogenic contributions are about the same
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L Accurate measurement of reactor e flux at short distances ... and a hint for sterile neutrino?

m Old reactor neutrino experiments yield data/theory = 0.976 + 0.024

m New theoretical calculation predicts theory by 3% lower thus leading to a reactor
anomaly with data/theory = 0.943 + 0.023 [hep-ex/1101.2755],
Phys.Rev.D83:073006,2011

m If interpreted in terms of neutrino oscillations one needs
AmZ,,, ~ 1eV? # Am3, 3, 3, and sin® 20new =~ 0.1

new —

V' Since Tiny(Z°) = 37,5(Z°) < new neutrino should be a sterile state=coherent
superposition of 4 v;
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Figure from [hep-ex/1101.2755]


http://arxiv.org/abs/hep-ex/1101.2755
http://arxiv.org/abs/hep-ex/1101.2755
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L Short y and open q

m The mixing of leptons is governed by the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) mixing matrix:

1 0 0 C13 0 51367"5 C12 S12 0
V = 0 C23 523 0 ) 1 0 —S12 caz2 0 s
0 —s3 o3 —s13e® 0 c13 0 0 1

m where s;; = sin0j;, c; = cos6;; are mixing angles, and e~ /% is the CP-violating
factor.

Parameter  best fit value (£10)

Parameter  best fit value (£10)

+0.26 5.2
in2 +0.018 Am3, 7547035 x 107 5ev
sin® 012 0.3077 5518
0.02 |am?,,| 2.43799% x 103ev?
sin? 63 0.38679:92% .
' me <2.05 eV
in2 +0.0025
sin® 013 0.02472-00%% 2o mi < 0.66 eV
The summary of neutrino mixing angle m < (02— 04) eV
parameters BB . .

The summary of neutrino mass parameters
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L Short y and open q

= Mass hierarchy.
B m3 > my Oor myg < my.
m accelerator (NOVA, T2HK, LBNE, LBNO), atmospheric (PINGU/ORCA, INO) and
reactor neutrinos (JUNO, RENO-50)
m CP violation.
m =7
m T2HK, NOVA and LBNE, LBNO
= Mixing matrix unitarity.
SRV |
m Do sterile neutrinos exist?
m A long list of experimental proposals on the market.

m Dirac vs. Majorana
?

my=U
m GERDA, CUORE, KamLand-Zen, EXO, SuperNEMO
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Spectrum measurement

Observed positron spectrum Extracted antineutrino spectrum
o 0.2
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m Bump feature around 5-6 MeV. m Global significance: 2.60.
m Consistent with other experiments. m Local significance: 4o

m Seen for both Huber+Mueller/ILL+Vogel.
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- Spectrum measurement

Claimed theoretical uncertainty of 2 — 2.7% does not look reasonable
m One needs to measure the spectra due to each isotope

m This is a hard task and one may need several experiments to measure 235Y
independently (PROSPECT) on 238U, 23%py, 241py,

m There is an ongoing work of JINR group in Daya Bay
m Other experiments with good energy resolution and large statistics are welcome
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L Non prolifiration

m Monitor the reactor power (first proposal by Borovoi and Mikaelyan).
< Strong correlation between U, rate and reactor power is found
m Monitor the Pu content

— Change of . spectrum with time
— Needs good energy resolution detector
< Needs to understand how the reactor actually work (spectra)

m Develop a detector technology

< Minimal overburden
— Close to a reactor
— Minimal shielding
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Coherent scattering

Detection Coherent Neutrino—-Ge Nucleus Elastic Scattering (KNPP).

Brief Summary JINR contribution

m Expertise in the production of unique

s v+ A — v+ A Coherent Neutrino
Nucleus Scattering (CNNS) lovethreshold HEGe detectors

m Recoil energy < 1 keV. JINR
low-threshold HPGe detectors with
energy threshold of 350 eV.

g =

m This is JINR proposal

u The background ~ 0.5 m Unique experience in conducting

events/kg/keV /day. Iow—bgckground 0v23-search
experiments and low-threshold
experiments (search for neutrino
magnetic moment) at the KNPP.
Expects to detect the coherent neutrino-nucleus scattering and measure CNNS
cross-section in Ge during the nearest 3-5 years.

m 10m from reactor core = 10 events
per day.
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Neutrino Nature via magnetic moment

GEMMA = Germanium Experiment Searching for Magnetic Moment of Antineutrino
m Kalinin Nuclear Power Plant

/ s GEMMA result: p, < 2.9-10" g
= Extensions of SM: p,, = 10711%12 ’

(Majorana) and p, < 107 ug " GEI\ﬁI\f%_zlzefﬂtMty:
(Dirac) Hw =24 1B

m Movable platform

m Standard Model: p, = 10710 Zx g

m An observation of the i, > 10~ up
= New Physics + Majorana.

1dG/dT [10 ®cm?/ MeV /fission / electron ]]

1000 d0gy/ dT (L)

1004

Run by JINR and ITEP
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L Sterile neutrino

Power Baseline Mass

(MWap) (m) (ton) Dopant Seg.
PROSPECT (US) 85 6-20 1&10 SLi Y
NuLat (US) 1500 3-8 1 10Bg, SLi Y
NUCIFER (FR) 70 ~7 0.7 Gd N
STEREO (FR) 57 ~ 10 1.8 Gd N
DANSS (RU) 3000 9-12 0.9 Gd Y
NEUTRINO-4 (RU) 100 6-12 15 Gd N
POSEIDON (RU) 100 5-8 1.3 Gd N
SOLID (UK) 45-80 6.8 2.9 Gd,SLi Y
HANARO (5K) 30 6 1 Gd Y
Advantages:
Challenges: m 6Li(n, a)3He — localization of the
m Background suppression delayed signal, better reduction of ~
background

m Calibrations
m Segmentation reduces the background
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L Sterile neutrino
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L Geo-neutrinos

ANTINEUTRINO

GLOBAL MAP 2015

= JUNO, RENO-50
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Mass hierarchy

Neutrino mass

vs [T
2
Am3,
v [T T 1] v2 [T T 1]
2 2 2
my, iAmz:l iAmn
vy [T vy | [T1
2
Ami,
L1 | ——
Normal hierarchy Inverted hierarchy
vel v v

Mixing defined by angles: 012, 023, 013.

Neutrino mass

m Neutrinos are massive
m Neutrino mass was never measured

> m, SleV (cosmology)
m me <22eV (direct)
m (mgg) <0.25eV (0vBB)

Mass splitting

From oscillation experiments:
m Am3, = (7.5340.18) x 1075 eV?
B |[AmZ,| = (2.42£0.06) x 1073 eV?
[ |Am§2| /Am3; ~ 32

Mass hierarchy

Which neutrino is the lightest one: v; or 137
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Mass hierarchy

Neutrino mass hierarchy in reactor experiments (JUNO and RENO-50)

v, disappearence probability (E=4 MeV)

— normal

— inverted M“WV\A\
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Mass hierarchy

Neutrino mass hierarchy in reactor experiments (JUNO and RENO-50)

v, disappearence probability (E=4 MeV)
T

— normal
— inverted AA%
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Mass hierarchy

Neutrino mass hierarchy in reactor experiments (JUNO and RENO-50)
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m Picture: ideal energy resolution.
m Sensitivity to: 012, Am3,, 013, Am3,.



Neutrinos at Reactors
Present and near Future

Mass hierarchy

Neutrino mass hierarchy in reactor experiments (JUNO and RENO-50)
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m Picture: ideal energy resolution.
m Sensitivity to: 012, Am3,, 013, Am3,.
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Mass hierarchy
:

Neutrino mass hierarchy in reactor experiments (JUNO and RENO-50)
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m Picture: energy resolution 2%.
m Sensitivity to: 012, Am3,, 013, Am3,.
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Mass hierarchy

Neutrino mass hierarchy in reactor experiments (JUNO and RENO-50)
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m Picture: energy resolution 3%.
m Sensitivity to: 012, Am3,, 013, Am3,.
m Required energy resolution < 3%.
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Mass hierarchy
:

Neutrino mass hierarchy in reactor experiments (JUNO and RENO-50)

, IV —
Ny —e

10
E,,, MeV

m Picture: energy resolution 4%.
m Sensitivity to: 012, Am3,, 013, Am3,.
m Required energy resolution < 3%.
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- Conclusions

m Several important discoveries were made with reactor antineutrino:
B U,
2
m 012, 013, Amy,
m Geo-neutrinos
m Precise measurement of Am3,

m Amazing hints:
m Sterile neutrino
m Near terms discoveries are expected:

m Neutrino mass hierarchy

m Coherent neutrino-nucleus scattering

m Constrain mixing parameters to help in measurement of 6 CP violation phase with
accelerators and atmospheric neutrinos

m Possible discoveries

m New physics and neutrino nature (v magnetic moments)
m Applied science

= non-prolifiration

m reactor power independent monitoring

Nuclear physics is a key ingredient to make this program possible
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