"Forbidden" chemistry

Artem R. Oganov

Skolkovo Institute of Science and Technology, Russia

Stony Brook University, USA

The basics

Periodic Law and Periodic Table

Valence

(«how many atoms can be bonded?») ("why sodium chloride is NaCl and silicon oxide is SiO₂?")

Structure of molecules and crystals and chemical bonding

Chemistry fundamentally changes under pressure

At 100 GPa oxygen becomes a superconductor!

Periodic Law disappears at ultrahigh Pressures (Al'tshuler, 1999)

Novel chemistry of the elements under pressure

New superhard structure of boron (Oganov et al., Nature, 2009)

High-pressure transparent allotrope of sodium (Ma & Oganov, Nature, 2009)

Most matter of the Universe is under pressure

P.W. Bridgman 1946 Nobel laureate (Physics)

Earth's interior cannot be probed directly, we rely on seismology and mineral physics

1906: Oldham discovers liquid core.

1914: Guthenber determines depth of core-mantle boundary

1936: Lehmann discovers solid inner core

1981: Dziewonski creates reference Earth model

2002-2003: Discovery of the innermost core (Ishii, Beghein)

Pressure in Earth's center = 364 Gpa, temperature ~6000 K.

What is the Earth made of?

Model based on non-volatile part of the solar photosphere and CI chondrites

Element	Universe	Earth	Earth's crust	Earth's mantle
0	20.10	3.73	2.9	3.68
Mg	1.08	1.06	0.09	1.24
Al	0.08	0.09	0.36	0.12
Si	1	1	1	1
Fe	0.9	0.9	0.11	0.16

Properties of D" layer (2700-2890 km) were explained by MgSiQ₃ post-perovskite

D" – root of hot spots

MgSiO₃ makes ~75 vol.% of lower mantle

Anomalies of D": seismic discontinuity, anisotropy

Discovery of post-perovskite has motivated us to develop crystal structure prediction

D" discontinuity **Explains existence of** D", allows to determine its temperature. **Explains variations of** its thickness. Explains variations of the length of day. Predicts that D" grows with time as Earth cools down.

nature

Vol 438/22/29 December 2005/doi:10.1038/nature04439

Anisotropy of Earth's D["] layer and stacking faults in the MgSiO₃ post-perovskite phase

Artem R. Oganov¹, Roman Martoňák², Alessandro Laio², Paolo Raiteri² & Michele Parrinello²

Predicted a new family of minerals. Confirmation – Tschauner (2008)

Core-mantle boundary

140

130

With novel predictive methods, we get a powerful tool to look inside the planets

ppPv-Pnma

2. Predicting planetary mineralogy

3. Discovering novel chemistry

1. Predicting crystal structures by evolution

Acc. Chem. Res. 1994, 27, 309-314

Are Crystal Structures Predictable?

Angelo Gavezzotti*

J. Maddox (*Nature*, 1988)

USPEX

(Universal Structure Predictor: Evolutionary Xtallography)

- (Random) initial population
- Evaluate structures by relaxed (free) energy
- Select lowest-energy structures as parents for new generation
- Standard variation operators:

(2) Lattice mutation

(3) Permutation

Test: MgSiO₃ at 120 GPa

120 GPa: post-perovskite is stable

[Oganov & Glass, J.Chem.Phys. 2006]

The USPEX project (Universal Structure Prediction: Evolutionary Xtallography) http://uspex-team.org

[Oganov A.R., Glass C.W., J.Chem.Phys. 124, 244704 (2006)]

Combination of evolutionary algorithm and quantum-mechanical calculations.
>3500 users.

(–

•Solves «intractable» problem of structure prediction -3D, 2D, 1D, 0D –systems, -prediction of phase transition mechanisms.

Quantun-mechanical calculations (density functional theory):

E.Schroedinger

W. Kohn

$$\frac{\nabla^2}{2} + v_{e-n} [\rho(\mathbf{r})] + v_H [\rho(\mathbf{r})] + v_{xc} [\rho(\mathbf{r})] \phi_i(\mathbf{r}) = \varepsilon_i \phi_i(\mathbf{r})$$
$$E_{GGA,xc} = \int d\mathbf{r} F_{xc}(\rho, \frac{|\nabla \rho|}{2k_F \rho(\mathbf{r})}) \rho(\mathbf{r}) e_x[\rho(\mathbf{r})]$$

2. Predicting planetary mineralogy

With USPEX, discovered a universal *Pnma* post-postperovskite structure (Xu, Oganov, et al., PRB 2015)

FIG. 2: (Color online). Pressure dependence of the enthalpy of the Pv-Pnma, pPv-Cmcm and ppPv-Pnma phases of NaMgF₃ (Panel (a)), along with the schematization of (b) the Pv-Pnma, (c) pPv-Cmcm and (c) and (d) ppPv-Pnma crystallographic structures. Note that the enthalpy of the Pv-Pnma phase has been set to be zero for any pressure in Panel (a).

NaMgF₃ post-post-perovskite and its stability for NaMgF₃. Independently discovered by Crichton (2015) using experiment

Pressure ranges of stability of perovskite, post-perovskite and post-post-perovskite

What is the chemistry of the Earth's core?

The core is less dense than pure iron.
It must contain lighter elemens, e.g. S, Si, O, C, H.
In Fe-C and Fe-H systems, new compounds are predicted (FeH₄!).
Carbon can exist in the core in large concentrations
[Bazhanova, Oganov, Gianola, Physics-Uskekhi 2012].

Carbon content needed to reproduce the density of the inner core

A very recent discovery: stable compound FeO₂ (Hu et al., Nature 2016)

Calculations show thermodynamic stability of FeO₂ both at 100 and 300 GPa

•FeO₂ is a new stable compound, in the pyrite-like structure, both from experiment and theory.

•Surprising reaction: 2FeOOH = 2FeO₂ + H₂

3. Discovering novel chemistry

With minor (but carefully made) modifications, USPEX can be made to predict stable compositions

How to evaluate the thermodynamic stability

"Forbidden" Na₃Cl, Na₂Cl, Na₃Cl₂, NaCl₃, NaCl₇ are stable under pressure (Zhang, Oganov, et al. *Science*, 2013).

Stability fields of sodium chlorides

NaCl₃: atomic and electronic structure, and X-ray diffraction pattern

[Zhang, Oganov, et al., *Science* (2013)] [Saleh & Oganov, *PCCP* (2016)]

K-CI: extreme richness of the phase diagram

(Zhang, Oganov, Goncharov, 2016). Predictions confirmed by experiment!

P-x phase diagram of the K-CI system

Electronic structure of K₃Cl₅

Electronic DOS of K-CI compounds

Helium chemistry? Yes!

(Dong, Oganov, Goncharov, Nature Chemistry, in press)

- Helium is the 2nd most abundant element in the Universe (24 wt.%).
- Helium: ionization potential = 24.39 eV (record!)

electron affinity = 0.08 eV

 No stable compounds are known at normal conditions. Under pressure: van der Waals compound NeHe₂ (Loubeyre et al., 1993).

- 1. Na₂He is stable at >120 GPa, at least up to 1000 GPa.
- Stabilized by an acceptor of an electron pair on the "2e" site. Na₂HeO stable already at 14 GPa.

«Forbidden» compounds can exist in planetary interiors

(1) Rocky planets (Mercury, Venus, Mars, Earth):

-Relatively small

-Solid

- -Mantle crudely, MgSiO₃
- -Core Fe with impurities (~20 мол.%)
- -Earth's center 364 GPa, 6000 K.

(2) Gas giants:

-Large -Fluid -Composition: Jupiter, Saturn - H+He Uranus, Neptune – H₂O+CH₄+NH₃ -Jovian center – 50000 GPa (?), 24000 K (?).

(3,4,...) Exoplanets: gas giants, superearths, diamond planets

"Forbidden" MgO₂, Mg₃O₂, SiO, SiO₃ are stable at planetary pressures

Phase diagram of Si-O system and structure of SiO (Niu & Oganov, 2015)

Phase diagram of Mg-O system and structure of MgO₃ (Niu & Oganov, 2015; Zhu & Oganov, 2013)

Experiment:

[Lobanov S. et al., Sci. Rep. 5, 13582 (2015)].

Niu H., Oganov A.R., Chen X., Li D., *Sci. Rep.* 5, 18347 (2015). Zhu Q., Oganov A.R., Lyakhov A.O., *Phys. Chem. Chem. Phys.* 15, 7796-7700 (2013).

At ultrahigh pressures Super-Earths MgSiO₃ post-perovskite decomposes

 $\textbf{MgSiO}_3 \rightarrow \textbf{Mg}_2 \textbf{SiO}_4 + \textbf{MgSi}_2 \textbf{O}_5 \rightarrow \textbf{Mg}_2 \textbf{SiO}_4 + \textbf{SiO}_2 \rightarrow \textbf{MgO} + \textbf{SiO}_2 \ (\textbf{T} < 6500 \ \textbf{K})$

 $MgSiO_3 \rightarrow Mg_2SiO_4 + MgSi_2O_5 \rightarrow MgSi_2O_5 + MgO \rightarrow MgO + SiO_2 \text{ (T > 6500 K)}$

Multistage decomposition implies complex structure of super-Earths [Niu H., Oganov A.R., Chen X., Li D., *Sci. Rep.* 5, 18347 (2015)].

Figure 4. (a) Pressure-composition phase diagram of the pseudo-binary MgO-SiO₂ system. (b) *P*-*T* phase diagram of MgSiO₃. The core-mantle boundary (CMB) pressures of super-Earths and mega-Earths with 5, 8 and 17 M_{\oplus} are also plotted by vertical dashed lines.

"Forbidden" MgSi₃O₁₂ and MgSiO₆ are stable at pressures of mantles of super-Earths

Phase diagram of Mg-Si-O system [Niu H., Oganov A.R., Chen X., Li D., *Sci. Rep.* 5, 18347 (2015)].

Phase diagram of MgSi₃O₁₂

Giant planets

Mg-Si-O system: MgSi₃O₁₂ and MgSiO₆ in planetary mantles and cores?

Phase diagram of the Mg-Si-O system (Niu & Oganov, Sci. Rep. 2015)

Structure of MgSi₃O₁₂

Stability of MgSi₃O₁₂

Uranus, Neptune

C-H-O system under pressure

•Uranus and Neptune: $H_2O:CH_4:NH_3 = 59:33:8$. •Temperature in the center – 5500 K, pressure – 800 GPa.

- Ice H_2O and CO_2 are stable at all pressures.
- Methane CH₄: decomposes above 93 GPa. Ethane, butane, polyethylene stable.
- Carbonic acid H_2CO_3 stable at >1 GPa polymeric at >44 GPa.
- Experimental confirmation: Wang H., et al., Sci. Rep. 6, 19902 (2016).
- Orthocarbonic acid H_4CO_4 is stable at >314 GPa.

[Saleh G., Oganov A.R, Sci. Rep. 6, 32486 (2016)]

High-pressure hydronitrogens (Qian, Oganov, 2016)

• Polymeric hydronitrogens

• N_xH ($x \ge 1$)

- 2D-polymeric phase
 N₉H₄
- Molecular hydronitrogens
 - NH₅, NH₄, NH₃, NH₂, N₃H₇

• N₈H

Green: molecular **Purple:** molecular ionic

Uranus, Neptune

Hydronitrogen at ambient pressure

High-pressure hydronitrogens

Uranus, Neptune

N₃H

 N_3H_7

Highest-Tc superconductivity: new record, 203 Kelvin

Pressure-induced metallization of dense **OPEN** $(H_2S)_2H_2$ with high- T_c superconductivity SUBJECT AREAS:

THEORY AND Defang Duan^{1,2}, Yunxian Liu¹, Fubo Tian¹, Da Li¹, Xiaoli Huang¹, Zhonglong Zhao¹, Hongyu Yu¹, COMPUTATION Bingbing Liu¹, Wenjing Tian² & Tian Cui¹ CONDENSED-MATTER PHYSICS

Received 7 July 2014 Accepted 29 September 2014 Published 10 November 2014

Correspondence and requests for materials should be addressed to T.C. (cuitian@jlu.edu.

¹State Key Laboratory of Superhard Materials, College of physics, Jilin University, Changchun, 130012, P. R. China, ²State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China.

The high pressure structures, metallization, and superconductivity of recently synthesized H2-containing compounds (H2S)2H2 are elucidated by ab initio calculations. The ordered crystal structure with P1 symmetry is determined, supported by the good agreement between theoretical and experimental X-ray diffraction data, equation of states, and Raman spectra. The Cccm structure is favorable with partial hydrogen bond symmetrization above 37 GPa. Upon further compression, H2 molecules disappear and two intriguing metallic structures with R3m and Im-3m symmetries are reconstructive above 111 and 180 GPa, respectively. The predicted metallization pressure is 111 GPa, which is approximately one-third of the currently suggested metallization pressure of bulk molecular hydrogen. Application of the Allen-Dynes-modified McMillan equation for the Im-3 m structure yields high T, values of 191 K to 204 K at 200 GPa, which is among the highest values reported for H2-rich van der Waals compounds and MH3 type hydride thus far.

SCIENTIFIC REPORTS | 4:6968 | DOI: 10.1038/srep06968

Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system

A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov & S. I. Shylin

Nature (2015) | doi:10.1038/nature14964 Received 25 June 2015 | Accepted 22 July 2015 | Published online 17 August 2015

A superconductor is a material that can conduct electricity without resistance below a superconducting transition temperature, T_c . The highest T_c that has been achieved to date is in the copper oxide system¹: 133 kelvin at ambient pressure² and 164 kelvin at high pressures³. As the nature of superconductivity in these materials is still not fully understood (they are not conventional superconductors), the prospects for achieving still higher transition temperatures by this route are not clear. In contrast, the Bardeen-Cooper-Schrieffer theory of conventional superconductivity gives a guide for achieving high T_c with no theoretical upper bound—all that is needed is a favourable combination of high-frequency phonons, strong electron-phonon coupling. and a high density of states⁴. These conditions can in principle be fulfilled for metallic hydrogen and covalent compounds dominated by hydrogen^{5, 6}, as hydrogen atoms provide the necessary highfrequency phonon modes as well as the strong electron-phonon coupling. Numerous calculations support this idea and have predicted transition temperatures in the range 50-235 kelvin for many hydrides⁷, but only a moderate T_c of 17 kelvin has been observed experimentally⁸. Here we investigate sulfur hydride9, where a T c of 80 kelvin has been predicted 10. We find that this system transforms to a metal at a pressure of approximately 90 gigapascals. On cooling, we see signatures of superconductivity: a sharp drop of the resistivity to zero and a decrease of the transition temperature with magnetic field, with magnetic susceptibility measurements confirming a T_c of 203 kelvin. Moreover, a pronounced isotope shift of T_c in sulfur deuteride is suggestive of an electron– phonon mechanism of superconductivity that is consistent with the Bardeen-Cooper-Schrieffer scenario. We argue that the phase responsible for high- T_c superconductivity in this system is likely to be H₃S, formed from H₂S by decomposition under pressure. These findings raise hope for the prospects for achieving room-temperature superconductivity in other hydrogen-based materials.

Prior record Tc=135 K (Putilin, Antipov, 1993) is broken: theorists (T. Cui, 2014) predicted new compound H_3S with Tc~200 K. Confirmed by A.Drozdov (Nature, 2015).

1

0D-materials (nanoparticles) also display unexpected chemistry

Performance of USPEX and other methods for Lennard-Jones clusters (Lyakhov & Oganov, *Comp.Phys.Comm.* 2013)

Statistics for Lennard-Jones clusters with different algorithms. Best algorithms are highlighted in bold.

	Success rate (%)	Average number of structures until global minimum is found	Dispersion	Number of calculations
LJ ₃₈ (PSO [48]) LJ ₃₈ (USPEX)	100 100	605 35	N/a 58	100 183 100
LJ ₃₈ (EA [46]) ^b LJ ₃₈ (EA [47]) ^b LJ ₃₈ (EA [47]) ^b	100 N/a 100	1190 ~2000* 1649	N/a N/a N/a	100 100 N/a 20
LJ ₅₅ (PSO [48]) LJ ₅₅ (USPEX) LJ ₅₅ (EA [46]) ^b LJ ₅₅ (MH [46]) ^b	100 100 100 100	159 11 100 190	N/a 30 N/a N/a	100 60 100 100
LJ ₇₅ (PSO [48]) LJ ₇₅ (USPEX)	98 100	2858 2145	N/a 2024	50 53

PSO = Particle Swarm Optimization MH = Minima Hopping EA = Evolutionary Algorithm

Peroxo-group! Dominant at T=300 K, P(O₂)=1 atm

Predicted abundances of nanoparticles

Aromaticity of "magic" clusters

(Yu & Oganov, J. Comp. Chem. 2015; Angew. Chem. 2016)

 Fe_4O_n , Ti_8O_n clusters. Fe_6O_8 – first example of spherical d-aromaticity Ti_8O_{12} – first example of small antiferromagnetic cluster

With novel predictive methods, we get a powerful tool to look inside the planets – and there is much to explore!

ppPv-Pnma

2. Predicting planetary mineralogy

3. Discovering novel chemistry

1. Predicting crystal structures by evolution

The team. Where great minds do NOT think alike

Zahed Allahya

Mahdi Davar

Shenghan Wang

Olen Fev

Olang Zhu

Dong Dong

Shuvin Yu

Pavel Bushlanov

Valery Royze

Haivang Niu

Duan Li

Nikita Matsko

Jin Zhang

Vladimir Baturin

Julia Fomicheva

Sergey Leoeshkir

Tao Fan

USPEX Computational **Materials** Discovery

Experimental confirmation:

M. Eremets

Qing-Long Liu

