

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

БОЛЬШАЯ НАУКА — БИЗНЕС

ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Стратегическая ЦЕЛЬ

оияи до **2030** года

— стать одним из ведущих центров трансфера знаний в странах-участницах Института, способным обеспечить достижение знаковых результатов в русле их технологических приоритетов, рост интереса к расширению прикладной повестки на базовых установках ОИЯИ, демонстрацию значимости результатов фундаментальной науки для общества.

Флагманская инициатива Института в развитии инфраструктуры R&D — создание Инновационного центра ядерно-физических исследований в сфере радиационной биологии, биомедицинских технологий, радиационного материаловедения, а также экологии и информационных систем.

Исследователи и разработчики получат в своё распоряжение:

- специализированные каналы для прикладных исследований комплекса NICA (Life Science, тестирование электроники, ядерная энергетика будущего);
- ускорительный комплекс тяжёлых ионов ДЦ-140 (радиационное материаловедение, радиационная стойкость электронных компонентов, технологии трековых мембран);
- радиохимическую лабораторию 1-го класса и ускоритель электронов на энергию 40 МэВ (исследования по медицинским радиоизотопам);
- сверхпроводящий протонный циклотрон на энергию 230 МэВ (флеш-терапия, «карандашный» пучок, использование радиомодификаторов).

Григорий ТРУБНИКОВДиректор ОИЯИ

R&D на базе этих новых возможностей, укрепление прикладных сегментов пользовательских программ базовых установок, а также дальнейшее развитие уже состоявшихся историй успеха в области детекторных технологий, технологий сверхпроводящих накопителей энергии, лазерной метрологии, искусственного интеллекта, продуктов на базе трековых мембран — основа инновационной повестки ОИЯИ.

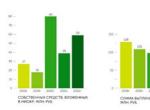
Один из приоритетов в её реализации – совместная работа с индустриальными партнёрами, с «отраслевой наукой» по освоению инфраструктуры **R&D ОИЯИ** как открытого пространства для творчества и передовых исследований (Open Research Space @ DUBNA).

В этот буклет включены некоторые из совместных с бизнесом проектов из самых разных, подчас очень далёких от фундаментальной ядерной физики и физики частиц, областей, где компетенции, инфраструктура исследований и разработок и конкретные результаты Института оказались востребованы со стороны реального сектора.

ОИЯИ открыт к реализации самых разных направлений и форматов сотрудничества. Надеюсь, буклет послужит приглашением к плодотворному взаимодействию Большой Науки и Бизнеса.

Объединённые ООО «Дока – Генные Технологии» исследовательские и производственно-технологические компании реализуют полный цикл «от пробирки до полки», производят микрорастения и мини-клубни собственных и лицензионных сортов картофеля в новейшем биотехнологическом комплексе; семенной картофель высоких репродукций, защищённый от вирусов и болезней; столовый картофель; овощную продукцию и зерновые культуры в севообороте.

Программа собственных исследований и разработок включает направления:


- Генетика, селекция, семеноводство картофеля
- Фитопатология, защита растений, биофарминг
- Разработка и производство биомолекулярных препаратов на основе РНК/пептидных технологий для защиты растений
- Дистанционная диагностика болезней картофеля, точное земледелие и агростюардшип

Компаниями сформирована уникальная экспериментальная база для разработок в области дистанционной диагностики, включающая автоматизированный стенд для круглогодичного формирования с использованием различных оптических сенсоров (RGB- и гиперспектральная камеры, спектрометр Vis-NIR) массивов данных для статистического обучения, а также специальные модули для размещения на инспекционных машинах агрономической службы, обеспечивающие сбор данных в условиях производственных участков.

История успеха ГК «ДокаДжин»

 это история пионерского внедрения инновационных биотехнологий в практическое семеноводство картофеля

1612 млн выручка группы компаний в 2022 году

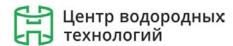
Специалисты из ОИЯИ по заказу и на экспериментальной базе ГК «ДокаДжин» разрабатывают сервис по дистанционной диагностике вирусных и других заболеваний картофеля.

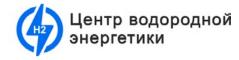
В работе используется опыт Института по созданию платформы распознавания болезней растений pdd.jinr.ru

Разрабатываемый программно-аппаратный комплекс, размещаемый на сельхозтехнике, благодаря использованию нейросетевых моделей позволит оперативно выявлять аномалии и строить карты их распределения на обследуемом участке. Текущая версия системы обеспечивает работу с RGB-данными. В дальнейшем её возможности планируется расширить за счёт использования спектральной информации.

Для обучения моделей используются данные, собранные как в условиях производственных участков (камеры высокого разрешения размещаются на инспекционных машинах агрономов), так и в контролируемых условиях на стенде (RGB-камеры, гиперспектральная камера и спектрометр Vis-NIR).

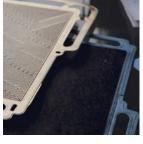
Для ряда сортов с характерными визуальными симптомами обученная нейросетевая модель уверенно справляется с задачей детекции и сегментации. Следующие шаги включают генерализацию результатов на другие сорта, а также использование информации с гиперспектральной камеры и/или спектрометра Vis-NIR для обеспечения более ранней диагностики.





КОНТАКТНОЕ ЛИЦО **Александр Ужинский** auzhinskiy@jinr.ru

Компания, объединяющая в себе


научно-исследовательские, образовательные экспертные компетенции в целях создания новых водородных технологий и подготовки кадров.

- Выявление направлений, имеющих научно-технологическую ценность
- Реинжиниринг передовых образцов водородной техники в целях импортозамещения
- Создание новых технологий в целях импортоопережения
- Передовое высшее образование в области водородных технологий и альтернативной энергетики
- Просветительская работа среди школьников, непрофильных специалистов, менеджеров ведущих российских компаний

БПЛА на топливных элементах имеют

явные преимущества (кратное увеличение времени полёта, ускоренное время заправки) перед БПЛА на АКБ для дальних перевозок грузов в условиях сурового российского климата. Ожидается, что установка с электрохимическим генератором на основе топливного элемента мощностью до 200 кВт сможет поднять в воздух грузовой беспилотный вертолёт взлётной массой 750 кг.

Энергетические решения для парков электрической складской техники.

Экологически чистый электротранспорт

для мегаполисов. Электрические судовые установки, питающиеся от электрохимических генераторов на топливных элементах, обеспечивают необходимую грузоподъёмность, дальность перевозок и ускоренное время заправки.

Системы резервного и автономного энергоснабжения на основе низкотемпературных топливных элементов мощностью до 50 кВт. Безопасные и компактные системы хранения и очистки водорода на основе металлогидридов. Резервные и основные источники питания на основе водородного цикла.

Инфраструктура R&D, сформированная в Лаборатории ядерных реакций ОИЯИ на базе циклотронного комплекса и современной нанолаборатории, востребована в разработке инновационных материалов для самых разных приложений.

Совместный проект Центра водородной энергетики и ОИЯИ направлен на разработку новых материалов для водородной энергетики и преодоление недостатков существующих коммерческих протонпроводящих мембран.

ЦВЭ и ЛЯР ОИЯИ изучают возможность **создания гибридных мембран** на основе модифицированных фторированных плёнок для применения в качестве протонпроводящих мембран для водородно-воздушных и метанольных топливных элементов.



КОНТАКТНОЕ ЛИЦО

Александр Нечаев
nechaeffalexander@jinr.ru

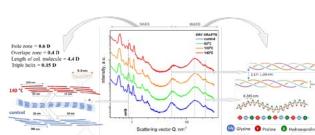
Инновации в офтальмологии

"Многолетний опыт офтальмологической практики позволил нам сформировать программу исследований и разработок «Дубна-Биофарм», нацеленную на решение самых актуальных задач, таких как:

- разработка и опытное производство биопластических материалов, нанонаполнителей к фотопреобразующим материалам, используемым при производстве интраокулярных линз;
- разработка и опытное производство протекторов роговицы глаза;
- разработка новых методов лечения и изделий медицинского назначения. проведение лабораторных испытаний", — Сергей Игоревич АНИСИМОВ, доктор медицинских наук, профессор, основатель и руководитель Глазного центра «Восток-Прозрение», член Европейского общества катарактальной и рефракционной хирургии ESCRS (European Society of Cataract and Refractive Surgeons), титулярный член Французского общества офтальмологов (SFO).

Глазной центр «Восток-Прозрение» — одна из старейших (с 1995 года) и наиболее известных частных медицинских офтальмологических клиник Москвы и России.

Резидент особой экономической зоны «Дубна» 000 «Дубна-Биофарм» с 2010 года разрабатывает и производит препараты и материалы для офтальмологии и стоматологии.



ПРОБЛЕМА

Пересадка роговицы глаза (кератопластика) — единственное решение при многих патологиях в офтальмологии.

По мировой статистике, только один из семидесяти пациентов, нуждающихся в пересадке роговицы, получает эту процедуру.

Основной барьер – использование человеческого донорского материала ограничено, а применяемые полусинтетические или синтетические материалы имеют низкую биосовместимость.

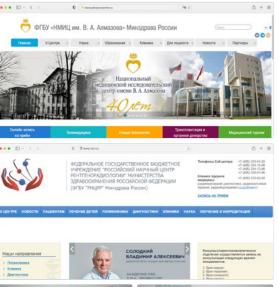
Создание доступных биоподобных роговичных графтов длительного хранения, пригодных для основных видов кератопластики и обладающих высокой степенью биосовместимости, позволит полноценно заменить человеческий донорский материал.

Перспективы использования роговицы млекопитающих в кератопластике связаны с возможностью управлять степенью гидратации коллагена как основного её компонента.

Такую возможность открывает метод дегидротермического кросслинкинга **(ДТК)** — образование поперечных сшивок в биоматериалах при их нагревании под вакуумом.

Анисимов С. И. // The Eve Глаз. 2023 (в печати).

Оптимизация параметров метода произведена по результатам экспериментов по малоугловому рентгеновскому рассеянию (МУРР) на станции USAXS/ SAXS/WAXS XEUSS 3.0 в Лаборатории нейтронной физики оияи.



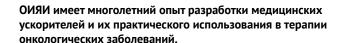
Создание ускорительного комплекса

в сотрудничестве с НИИ электрофизической аппаратуры им. Д. В. Ефремова

АО «НИИЭФА», Госкорпорация «Росатом»

Ведущие исследовательские и медицинские центры, а также эксперты в области радиационной медицины и протонной терапии выразили заинтересованность в тесном сотрудничестве как на этапе создания нового медицинского ускорителя, так и в ходе формирования и реализации исследовательской программы на базе создаваемой в ОИЯИ современной инфраструктуры.

По мнению экспертов, создаваемая машина будет востребована медицинскими центрами.



Создание ускорительного комплекса на базе сверхпроводящего циклотрона MSC–230 для протонной лучевой терапии онкологических заболеваний осуществляется в сотрудничестве с Научно-исследовательским институтом электрофизической аппаратуры им. Д. В. Ефремова (АО «НИИЭФА», Госкорпорация «Росатом»).

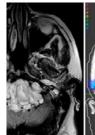
НОВАЯ УСТАНОВКА

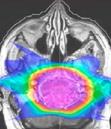
Сверхпроводящий медицинский циклотрон ОИЯИ на 230 МэВ

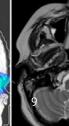
- Низкое энергопотребление и разумные габариты
- Минимальные риски реализуемости
- Использование отработанных решений
- Высокое качество пучка
- Ток не менее 10 мкА
- Возможность реализации режима флэш-терапии: не менее 5 Грей на мишень объёмом 1 литр в импульсе 50 мс

ИННОВАЦИИ

- Отработка использования высокотемпературных сверхпроводников (HTS).
- Разработанные для NICA технологии сверхпроводящих магнитов будут применены при создании обмоток MSC-230
- Магнитное поле в центре машины — 1,7 Тесла





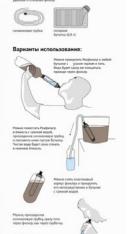


000 «РЕАТРЕК-Фильтр»

— научно-производственное предприятие, существующее с начала 2000-х годов и базирующееся в первом наукограде России — городе Обнинске.

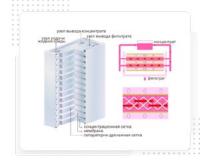
Компания специализируется на разработке и производстве новейших средств фильтрации.

ФИЛЬТРАЦИЯ


- Механических частиц, мутности
- Водорослей, планктона, вредных примесей биологического происхождения
- Общего железа, тяжёлых металлов, радионуклидов, пестицидов и др.
- Болезнетворных бактерий и вирусов, вредных примесей химического происхождения
- При этом в воде остаются все необходимые для организма микроэлементы

ЗАО «Владисарт»

— это многопрофильное предприятие с опытом работы на рынке более 28 лет, занимающееся разработкой, производством, сбытом и техническим обслуживанием фильтрационной техники и материалов. Собственная производственная база по выпуску фильтров и установок находится в городе Владимире.



ОИЯИ изготавливает для компании «PEATPEK-Фильтр» трековые мембраны (TM) со структурными параметрами, необходимыми для санитарно-паразитологического и микробиологического анализа качества воды, а также для фильтрации воды.

Плоская поверхность трековой мембраны делает её идеальной для идентификации частиц и биологических объектов с помощью микроскопии, а небольшая толщина улучшает транспортные характеристики. Минимальное отклонение диаметра пор от заданного значения обеспечивает захват 100% частиц, превышающих размер пор (механизм сита). Для этих целей трековые мембраны поставляются в виде дисков и в составе фильтровальных комплектов.

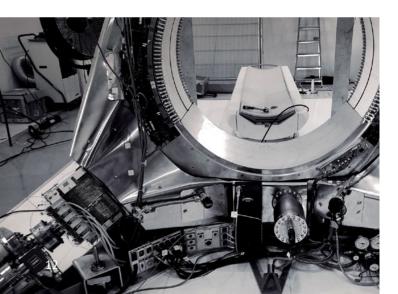
Портативные фильтры на основе ТМ эффективно очищают воду от бактерий и водорослей, простейших микроорганизмов, взвешенных частиц и вредных примесей различного происхождения, адсорбированных на них.

Для ЗАО «Владисарт» ОИЯИ изготавливает трековые мембраны для кассетных модулей, используемых в установках тангенциальной фильтрации.

Компания «Владисарт» разработала мембранный кассетный модуль на основе трековой мембраны. Потенциальная сфера применения — получение иммуноферментных препаратов, в том числе различных вакцин.

КОНТАКТНОЕ ЛИЦО
Николай Дмитриев
ndmitriev@jinr.ru

000 **«БРС»**

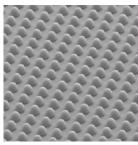

Участвует в проекте ГК «Ростех» (проектная компания — AO «РЗМ Технологии») по созданию нового электронно-лучевого компьютерного томографа с двойным источником излучения (ЭЛКТДИ).

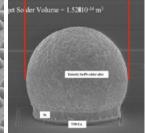
Преимущества ЭЛКТДИ

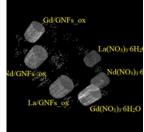
- Высокая скорость (х10)
- Уникальные клинические применения (например, режим 3D-кино для сосудистой системы)
- Отсутствие движущихся механических частей,
- Масштабируемая архитектура

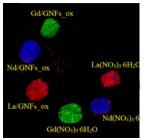
В текущем варианте используются фотодетекторы на основе GOS-сцинтиллятора производства Detection Technology (Финляндия/Китай).

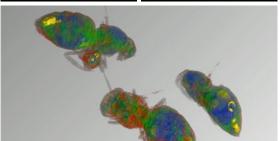
Общее количество каналов — 594432, объединённых на 16 считывающих плат (разработка БРС) с высокоскоростным каналом передачи данных (оптика) в сервер сбора данных. Считывание всех каналов с тактом в 16 мкс, всего 1875 рентгеновских проекций за полный оборот пучка в 30 мс. В такой конфигурации поток данных составляет до 189 гигабайт в секунду.

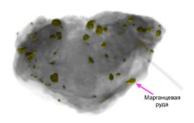


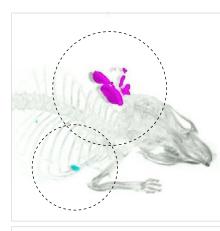

В качестве перспективного варианта прорабатывается возможность создания энергодисперсионной детекторной системы на базе гибридных полупроводниковых детекторов, работающих в режиме регистрации единичных квантов.




ОИЯИ имеет значительный опыт создания и использования гибридных матричных полупроводниковых детекторов рентгеновского излучения в режиме счёта единичных квантов с энергетическими порогами. Такие детекторы открывают возможность для реализации «цветной» компьютерной томографии, позволяющей дифференцировать области не только с различной плотностью, но и элементным составом. Создание подобных систем находится на переднем крае развития КТ.


Базовая идея сотрудничества с ООО «БРС» — создание гибридного пиксельного детектора, состоящего из GaAs:Cr сенсора (доступная технология; CdTe и т. п. — очень интересные варианты на перспективу по мере получения доступа к соответствующим тенологиям) и специально разрабатываемого чипа ASIC, соединенных посредством bump-bonding.





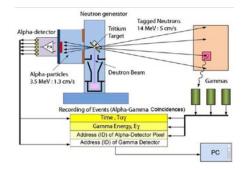
КОНТАКТНОЕ ЛИЦО
Георгий Шелков
chelkov@jinr.ru

Сегодня вопрос экологического и, в частности, «карбонового» следа продукции приобретает всё более «практическое» значение. От его решения зависят позиции страны на многих важнейших мировых рынках.

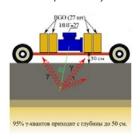
Минобрнауки реализует проект по созданию сети так называемых карбоновых полигонов, где отрабатывается контроль эмиссии и поглощения, секвестрации углекислого газа, производится оценка состояния природных систем, качества водных ресурсов и других параметров.

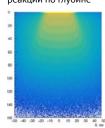
Почва — один из крупнейших природных резервуаров углерода. Мониторинг содержания органического углерода в почвах (SOC) — важнейшая задача в проблематике глобальных климатических изменений, в выработке и реализации мер, направленных на сокращение выбросов парниковых газов.

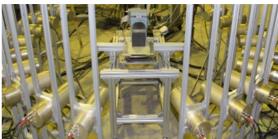
Новый уровень детализации и обновления данных о SOC необходим для разработки технологий агроиндустрии, обеспечивающих одновременно увеличение секвестрационного потенциала почв и их продуктивности.



"В мониторинге содержания углерода в почве перспективы связаны с различными вариантами спектроскопии. И в этом ряду основные ожидания от метода меченых нейтронов — анализ пробы значительного объёма, расположенной не только в тонком поверхностном слое, без её «извлечения»", — Н. Д. Дурманов, заместитель председателя Экспертного совета при Министерстве науки и высшего образования Российской Федерации по вопросам научного обеспечения развития технологий контроля углеродного баланса.


- «Объёмный метод» сигнал собирается со значительного объёма: 0,1 – 0,5 м³
- Наличие «метки» (время вылета и направление альфа-частицы)
 позволяет определять распределение углерода по глубине
- Мечение нейтронов обеспечивает улучшение соотношения сигнал/фон
- Наведённая активность пренебрежимо мала




Эскиз измерительной установки

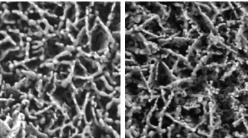
Распределение реакций по глубине

Экспериментальный стенд проекта TANGRA

КОНТАКТНОЕ ЛИЦО

Юрий Копач
kopatch@nf.jinr.ru

14 15


Инновации в материаловедении позитронная спектроскопия (ПАС)

Таким областям как:

- **Современная медицина** (стоматология (ZrO2), протезирование (Ti, TiN))
- Производство полупроводников (Ga2O3, ZrO2)
- Производство высокочувствительных датчиков (искусственные алмазы, BiVO4, GeSiSn)
- Коррозийная защита материалов работающих в агрессивных средах (Zr/Nb, W, WC, TiN, ZrB2, ZrO2)
- **Очистка загрязнений** (BiVO4)
- Переработка нефти (ZSM-5)

Необходим метод контроля качества материалов, в некоторых случаях до одиночных атомов.

На роль такого метода хорошо подходит неразрушающий метод позитронной аннигиляционной спектроскопии (ПАС). Метод ПАС является чувствительным к детектированию различных дефектов размером от 0.1 до 1 нм с минимальной концентрацией до 10^{-7} см $^{-3}$.

Метод ПАС имеет на 4 порядка лучшее пространственное разрешение по сравнению с просвечивающим электронным микроскопом. Существует несколько методов позитронной аннигиляционной спектроскопии (ПАС).

Один из методов заключается в анализе доплеровского уширения линии аннигиляции и предоставляет информацию о концентрации дефектов. Наблюдение совпадения двух квантов дает дополнительную информацию об окружающей среде вокруг дефекта. Другой метод основан на концепции времени жизни, который позволяет различать типы дефектов.

В ОИЯИ эксплуатируются и развиваются методы позитронной спектроскопии.

В настоящее время реализованы метод времени жизни и метод ДУАЛ на пучке. Позитронные пучки представляют большой интерес для материаловедения. Используя низкоэнергетический моноэнергетический пучок, можно контролировать глубину проникновения позитронов, от поверхности образца до глубины в несколько микрон. Таким образом, пучок может быть использован для характеристики тонких пленок, анализа модификации поверхности, изучения влияния ионов на вещество и т.д.

Для предсказания поведения позитрона в веществе используется гетерогенная платформа «HybriLIT» расположенная в ОИЯИ.

Сотрудничество ведется с многими странами членами ОИЯИ

Центр ядерных технологий

(Вьетнам, Хошимин)

Институт Радиационных Проблем, Министерство Науки и Образования Азербайджанской Республики (Азербайджанская Республика, Баку)

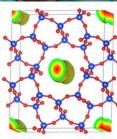
Институт ядерных исследований и ядерной энергетики при Болгарской академии наук (Болгария, София)

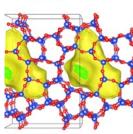
Томский политехнический университет (Россия, Томск)

Северный (Арктический) федеральный университет имени М. В. Ломоносова

(Россия, Архангельск)

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ





КОНТАКТНОЕ ЛИЦО

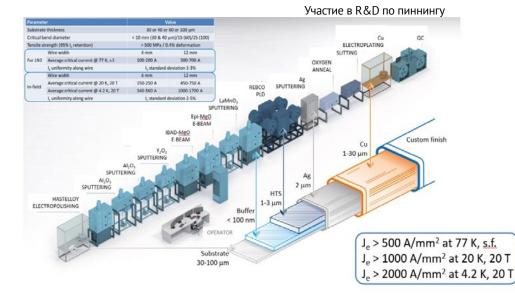
Алексей Сидорин sidorina@jinr.ru

Инфраструктура для прикладных исследований ARIADNA на базе ускорительного комплекса NICA предоставляет уникальные возможности для проведения исследовательских работ научно-производственными компаниями в области наук о жизни и радиационного материаловедения

ИННОВАЦИОННАЯ ИНФРАСТРУКТУРА

Выведенные пучки ускоренных ионов комплекса NICA

Широкий диапазон энергий ионов


 Пользовательская лабораторная инфраструктура

СОВМЕСТНЫЕ РАЗРАБОТКИ

Партнерство с компанией ООО «С-Инновации» — производителем высокотемпературных сверхпроводящих лент — в области совместной разработки методов увеличения критического тока высокотемпературных сверхпроводников (ВТСП) путем радиационной модификации с использованием пучков ускоренных ионов.

С-ИННОВАЦИИ:

Разработка и производство ВТСП ленты для магнитных систем

ПОЗИТРОННАЯ СПЕКТРОСКОПИЯ

В ОИЯИ эксплуатируются и развиваются методы позитронной спектроскопии.

В настоящее время реализованы метод времени жизни и метод ДУАЛ на пучке. Позитронные пучки представляют большой интерес для материаловедения. Используя низкоэнергетический моноэнергетический пучок, можно контролировать глубину проникновения позитронов, от поверхности образца до глубины в несколько микрон. Таким образом, пучок может быть использован для характеристики тонких пленок, анализа модификации поверхности, изучения влияния ионов на вещество и т.д.

По вопросам сотрудничества обращайтесь в Отдел инноваций и интеллектуальной собственности ОИЯИ

КОНТАКТНОЕ ЛИЦО Игорь Ленский iflensky@jinr.ru

Международная межправительственная организация ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

141980 Россия Московская обл., г. Дубна ул. Жолио-Кюри, 6

post@jinr.int

+7 (496) 216-50-59

www.jinr.int

JINR Press Office & International Communication

Заявки на новостную рассылку ОИЯИ: press@jinr.int