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Abstract

A FORTRAN 77 program is presented which calculates energy values, reaction matrix and corresponding radial wave functions in a coupled-
channel approximation of the hyperspherical adiabatic approach. In this approach, a multi-dimensional Schrödinger equation is reduced to a
system of the coupled second-order ordinary differential equations on the finite interval with homogeneous boundary conditions of the third type.
The resulting system of radial equations which contains the potential matrix elements and first-derivative coupling terms is solved using high-order
accuracy approximations of the finite-element method. As a test desk, the program is applied to the calculation of the energy values and reaction
matrix for an exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials.

Program summary

Program title: KANTBP
Catalogue identifier: ADZH_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADZH_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 4224
No. of bytes in distributed program, including test data, etc.: 31 232
Distribution format: tar.gz
Programming language: FORTRAN 77
Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV
Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP
RAM: depends on (a) the number of differential equations; (b) the number and order of finite-elements; (c) the number of hyperradial points; and
(d) the number of eigensolutions required. Test run requires 30 MB
Classification: 2.1, 2.4
External routines: GAULEG and GAUSSJ [W.H. Press, B.F. Flanery, S.A. Teukolsky, W.T. Vetterley, Numerical Recipes: The Art of Scientific
Computing, Cambridge University Press, Cambridge, 1986]

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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Nature of problem: In the hyperspherical adiabatic approach [J. Macek, J. Phys. B 1 (1968) 831–843; U. Fano, Rep. Progr. Phys. 46 (1983) 97–165;
C.D. Lin, Adv. Atom. Mol. Phys. 22 (1986) 77–142], a multi-dimensional Schrödinger equation for a two-electron system [A.G. Abrashkevich,
D.G. Abrashkevich, M. Shapiro, Comput. Phys. Comm. 90 (1995) 311–339] or a hydrogen atom in magnetic field [M.G. Dimova, M.S. Kaschiev,
S.I. Vinitsky, J. Phys. B 38 (2005) 2337–2352] is reduced by separating the radial coordinate ρ from the angular variables to a system of second-
order ordinary differential equations which contain potential matrix elements and first-derivative coupling terms. The purpose of this paper is to
present the finite-element method procedure based on the use of high-order accuracy approximations for calculating approximate eigensolutions
for such systems of coupled differential equations.
Solution method: The boundary problems for coupled differential equations are solved by the finite-element method using high-order accuracy
approximations [A.G. Abrashkevich, D.G. Abrashkevich, M.S. Kaschiev, I.V. Puzynin, Comput. Phys. Comm. 85 (1995) 40–64]. The generalized
algebraic eigenvalue problem AF = EBF with respect to pair unknowns (E,F) arising after the replacement of the differential problem by the
finite-element approximation is solved by the subspace iteration method using the SSPACE program [K.J. Bathe, Finite Element Procedures in
Engineering Analysis, Englewood Cliffs, Prentice–Hall, New York, 1982]. The generalized algebraic eigenvalue problem (A−EB)F = λDF with
respect to pair unknowns (λ,F) arising after the corresponding replacement of the scattering boundary problem in open channels at fixed energy
value, E, is solved by the LDLT factorization of symmetric matrix and back-substitution methods using the DECOMP and REDBAK programs,
respectively [K.J. Bathe, Finite Element Procedures in Engineering Analysis, Englewood Cliffs, Prentice–Hall, New York, 1982]. As a test desk,
the program is applied to the calculation of the energy values and reaction matrix for an exactly solvable 2D-model of three identical particles on a
line with pair zero-range potentials described in [Yu. A. Kuperin, P.B. Kurasov, Yu.B. Melnikov, S.P. Merkuriev, Ann. Phys. 205 (1991) 330–361;
O. Chuluunbaatar, A.A. Gusev, S.Y. Larsen, S.I. Vinitsky, J. Phys. A 35 (2002) L513–L525; N.P. Mehta, J.R. Shepard, Phys. Rev. A 72 (2005)
032728-1-11; O. Chuluunbaatar, A.A. Gusev, M.S. Kaschiev, V.A. Kaschieva, A. Amaya-Tapia, S.Y. Larsen, S.I. Vinitsky, J. Phys. B 39 (2006)
243–269]. For this benchmark model the needed analytical expressions for the potential matrix elements and first-derivative coupling terms, their
asymptotics and asymptotics of radial solutions of the boundary problems for coupled differential equations have been produced with help of a
MAPLE computer algebra system.
Restrictions: The computer memory requirements depend on:

• (a) the number of differential equations;
• (b) the number and order of finite-elements;
• (c) the total number of hyperradial points; and
• (d) the number of eigensolutions required.

Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see Long Write-Up and listing for details).
The user must also supply subroutine POTCAL for evaluating potential matrix elements. The user should supply subroutines ASYMEV (when
solving the eigenvalue problem) or ASYMSC (when solving the scattering problem) that evaluate the asymptotics of the radial wave functions at
the right boundary point in case of a boundary condition of the third type, respectively.
Running time: The running time depends critically upon:

• (a) the number of differential equations;
• (b) the number and order of finite-elements;
• (c) the total number of hyperradial points on interval [0, ρmax]; and
• (d) the number of eigensolutions required.

The test run which accompanies this paper took 28.48 s without calculation of matrix potentials on the Intel Pentium IV 2.4 GHz.
© 2007 Elsevier B.V. All rights reserved.

PACS: 02.30.Hq; 02.60.Jh; 02.60.Lj; 03.65.Nk; 31.15.Ja; 31.15.Pf; 34.50.-s; 34.80.Bm

Keywords: Eigenvalue and multi-channel scattering problems; Kantorovich method; Finite element method; R-matrix calculations; Hyperspherical coordinates;
Multi-channel adiabatic approximation; Ordinary differential equations; High-order accuracy approximations

1. Introduction

Development of stable numerical methods for solution of elliptic partial differential equation is one of the main problems of
modern computational physics. Therefore elaboration of efficient, stable and high-accurate numerical schemes for solving the
Schrödinger equation in a multi-dimensional space is an important task. Numerical solution of such equation has wide applications
in various quantum-mechanical problems such as the modern calculations of the weakly bound states and elastic scattering in a
system of three helium atoms considered as point particles with some short range pair potentials, i.e. a trimer of helium atoms
[1], or in processes of ionization and recombination of antihydrogen in magnetic trap of modern laser physics experiments [2–4].
The above mentioned experiments require computer modeling of dynamics of exotic few-body Coulomb systems in external laser
pulsed fields [5–7].

There are two conditions for elaborating numerical methods: to be stable and to have a high accuracy of calculations. The
resulting system of ordinary second-order differential equations obtained after reduction of a multi-dimensional boundary problem
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to a one-dimensional one is solved using high-order approximations of the Finite Element Method (FEM). In order to guarantee
high-order accuracy of numerical solutions, the relevant potential matrix elements should be evaluated with the same level of
accuracy as approximate solutions.

One of the most popular and widely used approaches for solving the quantum-mechanical three-body problem with pair Coulomb
and point interactions is the adiabatic representation method [8–10]. In the framework of the hyperspherical coordinates formulation
of this method [9–14], the hyperradius ρ is treated as a slowly varying adiabatic variable, analogous to the internuclear distance in
the Born–Oppenheimer approximation for molecules [8]. From the mathematical point of view this approach is well known as the
Kantorovich method (KM) for the reduction of a multi-dimension boundary problem to the one-dimensional one by using a set of
solutions of an auxiliary parametric eigenvalue problem [15]. These solutions are obtained for a given set of values of the adiabatic
variable, which plays here a role of an external parameter. The convergence of the adiabatic expansion in the hyperspherical
coordinates is higher than the ones used in most conventional approaches based on the independent electron model. This is due to

the fact that collective variables such as hyperradius ρ =
√

r2
1 + r2

2 and hyperangle α = arctan(r2/r1) allow for more natural and
accurate accounting of electron correlations in an atomic system (see, e.g., [9,12,16–18]) than the independent electron coordinates,
r1 and r2.

An essential part in the implementation of the KM is the computation of variable coefficients (potential matrix elements) for
the resulting system of the ordinary second-order differential equations. These coefficients are the integrals over eigenfunctions
and their derivatives with respect to the adiabatic variable. In real applications, an efficient and stable computation of derivatives
of the adiabatic eigenfunctions and the corresponding integrals with the accuracy comparable with the one achieved for adiabatic
eigenfunctions presents a serious challenge for most of numerical approaches involved in various types of calculations within the
adiabatic representation method [19].

This problem has been successfully solved in the paper [20]. A new method for computing variable coefficients (potential matrix
elements of radial coupling) of a resulting system of ordinary second-order differential equations has been elaborated. It allows
the calculation of the coefficients with the same precision as the adiabatic functions obtained as solutions of an auxiliary para-
metric eigenvalue problem. In the method proposed, a new boundary parametric problem with respect to unknown derivatives of
eigenfunctions in the adiabatic variable (hyperradius) was formulated. An efficient, fast and stable algorithm for solving the bound-
ary problem with the same accuracy for the adiabatic eigenfunctions and their derivatives was proposed. The method developed
was tested on a parametric eigenvalue problem for a hydrogen atom on a three-dimensional sphere which has an analytical so-
lution [21]. The accuracy, efficiency and robustness of the algorithm were studied in details. The method was also applied to the
computation of the ground state energy of the helium atom and negative hydrogen ion [20], and low-excited states of a hydrogen
atom in strong magnetic field [22]. The results obtained have shown an excellent agreement with the results of calculations by other
methods.

The method of calculating the potential matrix elements of radial coupling suggested in paper [20] can be used in scattering
calculations using some appropriate propagation scheme. In scattering calculations, in order to eliminate derivatives of the adiabatic
surface eigenfunctions in hyperradius, the diabatic-by-sector approach is widely used [23]. The price for using this approximation
is a slower convergence of the diabatic basis and therefore a larger number of hyperradial equations to be solved in order to get
the required accuracy of the S-matrix elements [24,25]. Matrix elements computed by the method [20] can be directly incorporated
in the popular hyperspherical close-coupling scheme. Applications of the method to scattering problems can be very useful and
promising.

In this work we present program KANTBP for solving the eigenvalue and scattering problems for the multi-dimensional
Schrödinger equation using the KM approach. In this method the multi-dimensional boundary problem is reduced to a system
of ordinary differential equations of the second order with variable coefficients on a semi-axis with the help of expansion of the
solution over a set of orthogonal solutions of an auxiliary parametric eigenvalue problem. Reduction of the boundary problem
on a finite interval is implemented in the program with help of the Dirichlet, Neumann and third type boundary conditions in
calculations of the eigenvalue problem for bound states and the third type boundary condition in a form appropriate for the R-
matrix calculations of the multi-channel scattering problem [26–28]. Then a FEM is applied to construct numerical schemes for
solving corresponding boundary problem for a system of ordinary differential equations with an accuracy of order O(hp+1) in
the grid step h. The order of approximation, p, depends on the smoothness of required solution. Note that variable coefficients
of ordinary differential equations and the corresponding solutions can have a long-range asymptotic behavior [29]. That is why
one has to be very careful in the formulation of the boundary problems under consideration. As a benchmark, we consider known
exactly solvable 2D-model of three identical particles on a line with pair zero-range potentials [30–32] based on an adequate
formulation of spectral problems and corresponding numerical schemes. For this benchmark model the needed analytical expres-
sions for the potential matrix elements and first-derivative coupling terms, their asymptotics and asymptotics of radial solutions
of the boundary problems for coupled differential equations have been produced with help of a MAPLE computer algebra sys-
tem.

The paper is organized as follows. In Section 2 we give a brief overreview of the problem. The construction of the finite-element
high-order schemes is discussed in Section 3. A description of the KANTBP program is given in Section 4. Subroutine units are
briefly described in Section 5. Test desk is discussed in Section 6.
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2. Statement of the problem

In many cases the solution of a multi-dimensional quantum-mechanical problem is reduced to a solution of the time-independent
Schrödinger equation for wave function Ψ (ρ,Ω)

(1)
(
H + U(ρ,Ω)

)
Ψ (ρ,Ω) = EΨ (ρ,Ω),

where H is the d > 1 dimensional Hamiltonian, U(ρ,Ω) is the given potential, E is the energy of a system, ρ is the hyperradius,
and Ω is the set of angular coordinates which describe the internal motion of system on sphere Sd−1(Ω). In the close coupling
approximation, known in mathematics as the KM [15] the partial wave function Ψi(ρ,Ω) is expanded over the one-parametric
basis functions {Bj (Ω;ρ)}Nj=1:

(2)Ψi(ρ,Ω) =
N∑

j=1

Bj (Ω;ρ)χ
(i)
j (ρ).

In Eq. (2), the vector-functions χ (i)(ρ) = (χ
(i)
1 (ρ), . . . , χ

(i)
N (ρ))T are unknown, and the surface functions B(Ω;ρ) = (B1(Ω;ρ),

. . . ,BN(Ω;ρ))T is an orthonormal basis with respect to the set of angular coordinates Ω for each value of hyperradius ρ which
is treated here as a given parameter. In the Kantorovich approach [15], the functions Bj (Ω;ρ) are determined as solutions of the
following parametric eigenvalue problem:

(3)

(
− 1

ρ2
Λ̂

2
Ω + 2U(ρ,Ω)

)
Bj (Ω;ρ) = εj (ρ)Bj (Ω;ρ),

where Λ̂
2
Ω is the generalized self-adjoint angular momentum operator. The eigenfunctions of this problem satisfy the same boundary

conditions in angular variable Ω for Ψi(ρ,Ω) and are normalized as follows

(4)
〈
Bi(Ω;ρ)

∣∣ Bj (Ω;ρ)
〉
Ω

=
∫

B∗
i (Ω;ρ)Bj (Ω;ρ)dΩ = δij ,

where “ ∗ ” denotes the complex conjugate and δij is the Kroneker symbol.
After minimizing the Rayleigh–Ritz variational functional (see [20]), and using the expansion (2) equation (1) is reduced to a

finite set of N ordinary second-order differential equations for the χ(ρ) ≡ χ (i)(ρ)

(5)(L − 2EI)χ(ρ) ≡
(

− 1

ρd−1
I

d

dρ
ρd−1 d

dρ
+ V(ρ) + Q(ρ)

d

dρ
+ 1

ρd−1

dρd−1Q(ρ)

dρ
− 2EI

)
χ(ρ) = 0.

Here I, V(ρ) and Q(ρ) are matrices of dimension N × N whose elements are given by the relation

Vij (ρ) = Hij (ρ) + εi(ρ) + εj (ρ)

2
δij , Iij = δij ,

Hij (ρ) = Hji(ρ) =
〈
∂Bi(Ω;ρ)

∂ρ

∣∣∣∣ ∂Bj (Ω;ρ)

∂ρ

〉
Ω

,

(6)Qij (ρ) = −Qji(ρ) = −
〈
Bi(Ω;ρ)

∣∣∣∣ ∂Bj (Ω;ρ)

∂ρ

〉
Ω

.

Let us consider the general radial homogeneous boundary conditions for the partial function Ψ i (ρ,Ω) at the endpoints of the
finite interval 0 < ρ < ρmax < ∞:

(7)μ1
∂Ψi(ρ,Ω)

∂ρ
− λ1Ψi(ρ,Ω) = 0, ρ = 0, Ω ∈ Sd−1(Ω),

(8)μ2
∂Ψi(ρ,Ω)

∂ρ
− λ2Ψi(ρ,Ω) = 0, ρ = ρmax, Ω ∈ Sd−1(Ω),

where μ1, λ1 are some constants and μ2 = μ2(ρmax), λ2 = λ2(ρmax) are some numbers depending on the ρ = ρmax. Since the
adiabatic functions form a complete set, one can alternatively require that projections of (7) and (8) onto all adiabatic functions
fulfill

(9)

〈
Bj (Ω;ρ)

∣∣∣∣ μl

∂Ψi(ρ,Ω)

∂ρ
− λlΨi(ρ,Ω)

〉
Ω

= 0, l = 1,2,

using which we obtain the following matrix homogeneous boundary conditions

(10)μl

(
I

d

dρ
− Q(ρ)

)
χ(ρ) − λlχ(ρ) = 0, l = 1,2.

From here for l = 1, the left boundary condition imposed on function χ(ρ) at ρ = 0 has one of the following form:
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1. if limρ→0 ρd−1|Vii(ρ)| = ∞, we have the Dirichlet boundary condition

(11)χ(0) = 0,

2. if limρ→0 ρd−1|Vii(ρ)| < ∞, we have the Neumann type boundary condition

(12)lim
ρ→0

ρd−1
(

I
d

dρ
− Q(ρ)

)
χ(ρ) = 0.

2.1. The bound state case

For the bound state problem the energy E and radial wave function χ(ρ) are calculated. For large ρ the radial wave function
χ(ρ) satisfies the exponentially or power decreased asymptotic behavior. From Eq. (10) for l = 2, the right boundary condition
imposed on function χ(ρ) at ρ = ρmax has one of the following form:

• if μ2 = 0, we have the Dirichlet boundary condition

(13)χ(ρmax) = 0,

• if λ2 = 0, we have the Neumann type boundary condition

(14)

(
I

d

dρ
− Q(ρ)

)
χ(ρ) = 0,

• if μ2 �= 0 and λ2 �= 0, we have the homogeneous third type boundary condition

(15)

(
I

d

dρ
− Q(ρ)

)
χ(ρ) = λχ(ρ),

i.e., λ ≡ λ(ρ) = λ2(ρ)/μ2(ρ) and χ(ρ) should be the eigenvalue and corresponding eigenvector of the above eigenvalue
problem. After substituting (15) in Eq. (5) we obtain the following eigenvalue problem at ρ = ρmax

(16)
(
V(ρ) + Q2(ρ)

)
χ̂(ρ) = μ(ρ)χ̂(ρ), χ̂(ρ) = χ(ρ),

where eigenvalues μ(ρ) and λ(ρ) satisfy the following relation

(17)μ(ρ) = 1

ρd−1

dρd−1λ(ρ)

dρ
+ λ2(ρ) + 2E.

Note that, the eigenvalue μ(ρ) should be a fixed value for the any E and λ(ρ) at ρ = ρmax and this condition plays a very
important role in the future calculations.

2.2. The scattering case

Most physical matrix potentials V(ρ) and Q(ρ) satisfy the following asymptotic behavior at large ρ

(18)Vij (ρ) =
∑
l=2

v
(l)
ij

ρl
, Qij (ρ) =

∑
l=1

q
(l)
ij

ρl
, for i �= j,

(19)Vjj (ρ) = εj − 2Zj

ρ
+ lj (lj + d − 2)

ρ2
+
∑
l=3

v
(l)
jj

ρl
,

where ε1 � · · · � εN are the threshold energy values. For the scattering problem we need to obtain the reaction matrix K and radial
wave functions at given momentum 2E > ε1. For large ρ the radial wave functions {χ (i)(ρ)}No

i=1 satisfy the following asymptotic
conditions

(20)χ
(i)
j (ρ) → sin(wj (ρ))δji + cos(wj (ρ))Kji√

kjρd−1
+ O(ρ−(d+1)/2), j = 1,No,

(21)χ
(i)
j (ρ) → exp(−vj (ρ))√

qjρd−1
+ O

(
ρ−(d+1)/2 exp

(−vj (ρ)
))

, j = No + 1,N,
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where

wj(ρ) = kjρ + Zj

kj

ln(2kjρ) − 2lj + d − 3

4
π + δc

j ,

δc
j = arg

(
2lj + d − 1

2
− ı

Zj

kj

)
,

(22)vj (ρ) = qjρ − Zj

qj

ln(2qjρ).

Here No is the number of open channels, δc
j is the known Coulomb phase shift, K = {Kji}No

ji=1 is the required reaction matrix,

kj =√
2E − εj for j = 1,No and qj =√

εj − 2E for j = No + 1,N .
Let us consider the quadratic functional

Ξ(Φ,E,ρmax) ≡
ρmax∫
0

ΦT(ρ)(L − 2EI)Φ(ρ)ρd−1 dρ

(23)= Π(Φ,E,ρmax) − ρd−1
max ΦT(ρmax)Φ(ρmax)Λ,

where Π(Φ,E,ρmax) is the symmetric functional

Π(Φ,E,ρmax) =
ρmax∫
0

(
dΦT(ρ)

dρ

dΦ(ρ)

dρ
+ ΦT(ρ)V(ρ)Φ(ρ)

(24)+ ΦT(ρ)Q(ρ)
dΦ(ρ)

dρ
− dΦ(ρ)T

dρ
Q(ρ)Φ(ρ) − 2EΦT(ρ)Φ(ρ)

)
ρd−1 dρ,

and Φ(ρ) = {χ (i)(ρ)}No

i=1 is the matrix-solution of dimension N ×No which satisfies the following eigenvalue problem at ρ = ρmax

(25)
dΦ(ρ)

dρ
− Q(ρ)Φ(ρ) = Φ(ρ)Λ, Λ = {

δij λ
(i)
}No

ij=1.

After using FEM, Eq. (23) can be approximated by the following problem at ρ = ρmax (see details in Section 3)

(26)G(ρ)Φ(ρ) = dΦ(ρ)

dρ
− Q(ρ)Φ(ρ),

where G(ρ) is the symmetric matrix of dimension N × N . From here, we obtain the relation between Φ(ρ) and its derivative at
ρ = ρmax

(27)
dΦ(ρ)

dρ
= R(ρ)Φ(ρ), R(ρ) = G(ρ) + Q(ρ).

After that, Φ(ρ) and its derivative can be rewritten via the two independent fundamental regular and irregular asymptotic matrix-
solutions Φreg(ρ) = {χ (i)

reg(ρ)}No

i=1, Φ irr(ρ) = {χ (i)
irr (ρ)}No

i=1 of Eq. (5) and their derivatives at ρ = ρmax

(28)Φ(ρ) = Φreg(ρ) + Φ irr(ρ)K,
dΦ(ρ)

dρ
= dΦreg(ρ)

dρ
+ dΦ irr(ρ)

dρ
K.

Using formula (27), we obtain the following matrix equation for the reaction matrix K

(29)

(
dΦ irr(ρ)

dρ
− R(ρ)Φ irr(ρ)

)
K = −

(
dΦreg(ρ)

dρ
− R(ρ)Φreg(ρ)

)
.

In addition, it should be noted that the regular and irregular functions satisfy the generalized Wronskian relation for large ρ

(30)Wr
(
Q(ρ);Φ irr(ρ),Φreg(ρ)

)= Ioo,

where Wr(•;a(ρ),b(ρ)) is a generalized Wronskian with a long derivative defined as

(31)Wr
(•;a(ρ),b(ρ)

)= ρd−1
[

aT(ρ)

(
db(ρ)

dρ
− •b(ρ)

)
−
(

da(ρ)

dρ
− •a(ρ)

)T

b(ρ)

]
.

This Wronskian will be used to estimate a desirable accuracy of the above expansion. Here Ioo is the unit matrix of dimension
No × No and Eq. (30) at ρ = ρmax is equivalent to

(32)Wr
(
R(ρ);Φ irr(ρ),Φreg(ρ)

)= Wr
(
Q(ρ);Φ irr(ρ),Φreg(ρ)

)
.
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Note that, when some channels are closed, the left and right matrices of Eq. (29) are rectangle matrices. Therefore, we obtain the
following formula for the reaction matrix K

(33)K = −X−1(ρmax)Y(ρmax),

where

X(ρ) =
(

dΦ irr(ρ)

dρ
− R(ρ)Φ irr(ρ)

)
oo

,

(34)Y(ρ) =
(

dΦreg(ρ)

dρ
− R(ρ)Φreg(ρ)

)
oo

,

are the square matrices of dimension No × No depended on the open–open matrix (channels).

2.3. Construction of the regular and irregular matrix-solutions

We can construct the regular and irregular matrix-solutions by various methods (see [33–37]). For example, we can find regu-
lar and irregular matrix-solutions Φreg(ρ), Φ irr(ρ) of Eq. (5) with components χ

(i)
reg(ρ) = (χ

reg
1i (ρ), . . . , χ

reg
Ni (ρ))T and χ

(i)
irr (ρ) =

(χ irr
1i (ρ), . . . , χ irr

Ni(ρ))T using the following asymptotic form for large ρ

χ
reg
ji (ρ) = sin(wi(ρ))√

kiρd−1

∑
l=0

s
(l,1)
j i

ρl
+ cos(wi(ρ))√

kiρd−1

∑
l=0

c
(l,1)
j i

ρl
,

(35)χ irr
ji (ρ) = cos(wi(ρ))√

kiρd−1

∑
l=0

c
(l,2)
j i

ρl
+ sin(wi(ρ))√

kiρd−1

∑
l=0

s
(l,2)
j i

ρl
,

with initial data

(36)s
(0,1)
j i = δji, c

(0,1)
j i = 0, c

(0,2)
j i = δji , s

(0,2)
j i = 0.

Substituting expansions (18), (19) and (35) into Eq. (5) and equating expressions of sin(wi(ρ)), cos(wi(ρ)), and again equating
coefficients of expansion for the same powers of ρ, we arrive to a set of recurrence relations with respect to unknown coefficients
s
(l,1)
j i , s

(l,2)
j i and c

(l,1)
j i , c

(l,2)
j i . By means of initial data (36) we have a step-by-step procedure for determining of series coefficients

s
(l,1)
j i , s

(l,2)
j i and c

(l,1)
j i , c

(l,2)
j i [38,39].

3. High-order approximations of the finite-element method

In order to solve numerically the Sturm–Liouville problem for Eq. (5) subject to the corresponding boundary conditions from
Eqs. (11), (12) and (13), (14), (15), (25) the high-order approximations of the FEM [40,41] elaborated in our previous paper [42]
have been used. Such high-order approximations of the FEM have been proved [42] to be very accurate, stable, and efficient for a
wide set of quantum-mechanical problems. Computational schemes of the High-order of accuracy are derived from the Rayleigh–
Ritz variationals functional for the bound state problem

(37)Rb(χ ,E,λ) =
{ ρmax∫

0

N∑
i,j=1

[χHχ]ij ρd−1 dρ − λρd−1
max

N∑
j=1

χ2
j (ρmax)

}{ ρmax∫
0

N∑
j=1

χ2
j (ρ)ρd−1 dρ

}−1

,

and for the scattering problem with χ(ρ) ≡ χ (i)(ρ) and λ ≡ λ(i)

(38)Rs(χ , λ) =
{ ρmax∫

0

N∑
i,j=1

[
χ(H − 2E)χ

]
ij
ρd−1 dρ

}{
ρd−1

max

N∑
j=1

χ2
j (ρmax)

}−1

,

on the basis of the FEM. Here

[χHχ]ij = χ ′
i (ρ)χ ′

j (ρ)δij + χi(ρ)Vij (ρ)χj (ρ) + Qij (ρ)
[
χi(ρ)χ ′

j (ρ) − χ ′
i (ρ)χj (ρ)

]
,

(39)
[
χ(H − 2E)χ

]
ij

= [χHχ]ij − 2Eχi(ρ)χj (ρ)δij ,

and symbol “ ′ ” denotes a derivative in ρ.
The general idea of the FEM in one-dimensional space is to divide interval [0, ρmax] into many small domains called elements.

The size of elements can be defined very freely so that physical properties can be taken into account.
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Now we cover the interval � = [0, ρmax] by a system of n subintervals �j = [ρj−1, ρj ] in such a way that � =⋃n
j=1 �j . In

each subinterval �j the nodes

(40)ρ
p
j,r = ρj−1 + hj

p
r, hj = ρj − ρj−1, r = 0,p,

and the Lagrange elements {φp
j,r (ρ)}pr=0

(41)φ
p
j,r (ρ) =

p∏
i=0,i �=r

(ρ − ρ
p
j,i)

(ρ
p
j,r − ρ

p
j,i)

are determined. By means of the Lagrange elements φ
p
j,r (ρ), we define a set of local functions Nl(ρ) as follows:

(42)N
p
l (ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
φ

p

1,0(ρ), ρ ∈ �1,

0, ρ /∈ �1,
l = 0,{

φ
p
j,r (ρ), ρ ∈ �j,

0, ρ /∈ �j,
l = r + p(j − 1), r = 1,p − 1,⎧⎨

⎩
φ

p
j,p(ρ), ρ ∈ �j,

φ
p

j+1,0(ρ), ρ ∈ �j+1,

0, ρ /∈ �j

⋃
�j+1,

l = jp, j = 1, n − 1,

{
φ

p
n,p(ρ), ρ ∈ �n,

0, ρ /∈ �n,
l = np.

The functions {Np
l (ρ)}Ll=0, L = np, form a basis in the space of polynomials of the pth order. Now, we approximate each function

χμ(ρ) by a finite sum of local functions N
p
l (ρ)

(43)χμ(ρ) =
L∑

l=0

χl
μN

p
l (ρ), χl

μ ≡ χl
μ

(
ρ

p
j,r

)
.

For the bound state problem, after substituting expansion (43) into the variational functional (37) and minimizing it [40,41] we
obtain that vector-solution χh is the eigenvector of the generalized eigenvalue problem

(44)(Ap − λhM)χh = 2Eh Bp χh.

Here M is a diagonal matrix with zero elements, except the last N elements that are equal ρd−1
max , and in case of the Dirichlet and

Neumann type boundary conditions λh ≡ 0. For the third type of boundary condition we use the following additional condition (17)

(45)μ = 1

ρd−1

dρd−1λh

dρ
+ (λh)2 + 2Eh,

where μ is the first eigenvalue of the problem (16). In this case we use the following iterative scheme for solutions λ ≡ λh, E ≡ Eh

and χ ≡ χh

(Ap − λ(j−1)M)χ (j−1) = 2E(j−1) Bp χ (j−1),

(46)(λ(j))2 = μ − dλ(j−1)

dρ
− d − 1

ρmax
λ(j−1) − 2E(j−1),

with initial value λ(0).
To solve the scattering problem at a fixed value of energy E, after substituting expansion (43) into the variational functional

(38) and minimizing it [40,41] we obtain that matrix-solution Φh ≡ ((χ (1))h, . . . , (χ (No))h) is a set of eigenvectors of a special
eigenvalue problem

(47)GpΦh ≡ (Ap − 2EBp)Φh = MΦhΛh, Λh = {
δij (λ

(i))h
}No

ij=1,

where Mp is a diagonal matrix with zero elements except the last N elements equal to ρd−1
max . Eq. (47) can be rewritten in the

following form

(48)

(
Gp

aa Gp
ab

Gp
ba Gp

bb

)(
Φh

a

Φh
b

)
= ρd−1

max

(
0 0
0 I

)(
Φh

a

Φh
b

)
Λh, Φh =

(
Φh

a

Φh
b

)
,

where Φh
a and Φh

b ≡ Φ(ρmax) are the matrix-solutions of dimension (LN −N)×No and N ×No, respectively. From here, we obtain
the following eigenvalue problem with respect to Φh

b and Λh, of nonhomogeneous problem with respect to Φh
b with right-hand side
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from Eq. (25)

(49)
(
Gp

bb − Gp
ba

(
Gp

aa

)−1Gp
ab

)
Φh

b = ρd−1
max Φh

bΛ
h ≡ ρd−1

max

(
dΦh

b

dρ
− Q(ρmax)Φ

h
b

)
,

and explicit expression for component, Φh
a ,

(50)Φh
a = −(Gp

aa

)−1Gp
abΦ

h
b.

From Eqs. (27) and (49) we can obtain the relation between Φh
b and its derivative

dΦh
b

dρ
= R(ρmax)Φ

h
b,

(51)R(ρmax) = ρ1−d
max

(
Gp

bb − Gp
ba

(
Gp

aa

)−1Gp
ab

)+ Q(ρmax),

i.e. we have found the required R(ρmax) matrix without calculation of eigenvalue Λh and corresponding eigenvector Φh of the
eigenvalue problem (47). For calculating Eq. (51) consider the following auxiliary system of algebraic equation, as the determinant
of the matrix Gp nonzero,

(52)

(
Gp

aa Gp
ab

Gp
ba Gp

bb

)(
Fp

a

Fp
b

)
= ρd−1

max

(
0
I

)
.

The above equation has solutions

(53)Fp
a = −(Gp

aa

)−1Gp
abFp

b , Fp
b = ρd−1

max

(
Gp

bb − Gp
ba

(
Gp

aa

)−1Gp
ab

)−1
.

From here, our required R(ρmax) matrix is equal to

(54)R(ρmax) = (
Fp

b

)−1 + Q(ρmax),

and required solution Φ is calculated by formulae (50) and (53)

(55)Φh
a = Fp

a

(
Fp

b

)−1
Φh

b, Φh
b = Φreg(ρmax) + Φ irr(ρmax)K,

where reaction matrix K is evaluated from (33) and asymptotics of solution Φreg(ρ) = {χ (i)
reg(ρ)}No

i=1, Φ irr(ρ) = {χ (i)
irr (ρ)}No

i=1 are
determined in (28).

Let Em and χm(ρ) be the exact solutions of Eq. (44) and Eh
m and χh

m(ρ) be the corresponding numerical solutions. Then the
following estimations are valid [40]

(56)
∣∣Eh

m − Em

∣∣� c1|Em|h2p,
∥∥χh

m(ρ) − χm(ρ)
∥∥

0 � c2|Em|hp+1,

where h is the maximal step of the finite-element grid, m is the number of the corresponded solution, and the positive constants c1

and c2 do not depend on step h. Similar estimations are valid for approximate values of the eigenvalue (λ(i))h and corresponding
solution (χ (i)(ρ))h. The stiffness matrix Ap and the mass matrix Bp are symmetric and have a banded structure, and Bp matrix is
positively defined. They have the following form

(57)Ap =
n∑

j=1

ap
j , Bp =

n∑
j=1

bp
j ,

where the local matrices ap
j and bp

j are calculated as

(
ap
j

)qr

μν
=

+1∫
−1

{
δμν

4

h2
j

(
φ

p
j,q

)′
(ρ)
(
φ

p
j,r

)′
(ρ) + Vμν(ρ)φ

p
j,q(ρ)φ

p
j,r (ρ)

+ Qμν(ρ)
[
φ

p
j,q(ρ)

(
φ

p
j,r

)′
(ρ) − (

φ
p
j,q

)′
(ρ)φ

p
j,r (ρ)

] 2

hj

}
ρd−1 hj

2
dη,
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(58)
(
bp

j

)qr

μν
= δμν

+1∫
−1

φ
p
j,q(ρ)φ

p
j,r (ρ)ρd−1 hj

2
dη,

ρ = ρj−1 + 0.5hj (1 + η), q, r = 0,p, μ, ν = 1,N.

Integrals (58) are evaluated using the Gaussian quadrature formulae

(
ap
j

)qr

μν
=

p∑
g=0

{
δμν

4

h2
j

(
φ

p
j,q

)′
(ρg)

(
φ

p
j,r

)′
(ρg) + Vμν(ρg)φ

p
j,q(ρg)φ

p
j,r (ρg)

+ Qμν(ρg)
[
φ

p
j,q(ρg)

(
φ

p
j,r

)′
(ρg) − (

φ
p
j,q

)′
(ρg)φ

p
j,r (ρg)

] 2

hj

}
ρd−1

g

hj

2
wg,

(59)
(
bp

j

)qr

μν
=

p∑
g=0

δμνφ
p
j,q(ρg)φ

p
j,r (ρg)ρ

d−1
g

hj

2
wg,

where ρg = ρj−1 + 0.5hj (1 + ηg), ηg and wg , g = 0,p are the Gaussian nodes and weights.
This way the following solution strategy can be used: since we know functions V(ρ) and Q(ρ) we choose first the FEM grid,

then we calculate these matrix elements in the Gaussian points and finally we evaluate the integrals. This allow us to organize the
calculation scheme for a system of N equations as follows. We evaluate the values of all matrix elements for these N equations
in the Gaussian nodes and store them into the external file. Then we use it to investigate the convergence rate of the Kantorovich
expansion as a function of number of equations.

In order to solve the generalized eigenvalue problem (44), the subspace iteration method [40,41] elaborated by Bathe [41] for the
solution of large symmetric banded matrix eigenvalue problems has been chosen. This method uses a skyline storage mode, which
stores components of the matrix column vectors within the banded region of the matrix, and is ideally suited for banded finite-
element matrices. The procedure chooses a vector subspace of the full solution space and iterates upon the successive solutions in
the subspace (for details, see [41]). The iterations continue until the desired set of solutions in the iteration subspace converges to
within the specified tolerance on the Rayleigh quotients for the eigenpairs. Generally, 10–16 iterations are required for the subspace
iterations to converge the subspace to within the prescribe tolerance. If matrix Ap − λhM in Eq. (44) is not positively defined,
problem (44) is replaced by the following problem:

(60)Ãp χh = Ẽh Bp χh, Ãp = Ap − λhM − αBp.

The number α (the shift of the energy spectrum) is chosen in such a way that matrix Ãp is positive. The eigenvector of problem
(44) is the same, and Eh = Ẽh + α.

For the solution of Eq. (16) it is impossible to define some minimum shift, because a total set of eigenvalues, μ(ρmax), should
be defended on ρ = ρmax. But, we can use the following lower and upper bounds for the eigenvalues [43]

(61)
∣∣μ(ρmax) − fii

∣∣� N∑
j=1,i �=j

|fij |, fij = (
V(ρmax) + Q2(ρmax)

)
ij
, i = 1,N,

and from them we can determine the minimum shift of a full set of eigenvalues μ(ρmax)

(62)α = min
i=1,N

(
fii −

N∑
j=1,j �=i

|fij |
)

− 1.

After that, we can rewrite (16) in the following form

(
V(ρmax) + Q2(ρmax) − αI

)
χ̂(ρmax) = μ̃(ρmax)χ̂(ρmax),

(63)μ(ρmax) = μ̃(ρmax) + α.

In this case left matrix should be positively defined, and can be diagonalized by the generalized Jacobi method.
From the estimates above one can see that we have a high accuracy for calculating the bound states and corresponding wave

functions of both (eigenvalues and continuous) cases. From this point of view, the main error in the solution depends only on the
number of equations N and computer precision used in calculations.
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Fig. 1. Flow diagram of the KANTBP program.

4. Description of the program

Fig. 1 presents a flow diagram for the KANTBP program. The function of each subroutine is described in Section 5. The
KANTBP program is called from the main routine (supplied by a user) which sets dimensions of the arrays and is responsible for
the input data. In the present code each array declarator is written in terms of the symbolic names of constants. These constants are
defined in the following PARAMETER statement in the main routine:
PARAMETER (MTOT = 9000000, MITOT = 900000, NMESH1 = 7, MDIM1 = 6) where

• MTOT is the dimension of the working DOUBLE PRECISION array TOT.
• MITOT is the dimension of the working INTEGER array ITOT.
• NMESH1 is the dimension of the DOUBLE PRECISION array RMESH containing the information about the subdivision

of the hyperradial interval [0, ρmax] on subintervals and number of elements on each one of them. NMESH1 is always odd
and � 3.

• MDIM1 is the dimension of the DOUBLE PRECISION array THRSHL and INTEGER array NDIL containing information
about a set of threshold values and numbers of coupled differential equations, respectively.

A more concrete assignment of these dimensions is discussed below. In order to change the dimensions of the code, all one has to
do is to modify the single PARAMETER statement defined above in the main program unit.

The calling sequence for the subroutine KANTBP is:

CALL KANTBP(TITLE,IPTYPE,NROOT,MDIM,IDIM,NPOL,RTOL,NITEM,
1 SHIFT,IPRINT,IPRSTP,NMESH,RMESH,NDIR,NDIL,NMDIL,
2 THRSHL,IBOUND,FNOUT,IOUT,POTEN,IOUP,FMATR,IOUM,
3 EVWFN,IOUF,TOT,ITOT,MTOT,MITOT)



Author's personal copy

660 O. Chuluunbaatar et al. / Computer Physics Communications 177 (2007) 649–675

where the arguments have the following type and meaning:

• POTCAL is the name of the user-supplied subroutine which calculates the potential matrices V(ρ) and Q(ρ) and should be
written as follows:

SUBROUTINE POTCAL(RHO,VV,QQ,MDIM,IOUT)
C..................................................................
C. .
C. P R O G R A M .
C. TO CALCULATE THE POTENTIAL MATRIX ELEMENTS .
C. VV AND QQ OF DIMENSION MDIM X MDIM IN POINT .
C. RHO .
C. .
C..................................................................

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION VV(MDIM,MDIM),QQ(MDIM,MDIM)
RETURN
END

• ASYMEV is the name of the user-supplied subroutine for the bound state problem which calculates the initial value λ(0)(ρ) for
the homogeneous third boundary condition at ρ = ρmax and should be written as follows:

SUBROUTINE ASYMEV(RMAX,NDIM,MDIM,SHIFT,DLAMBDA,IOUT)
C..................................................................
C. .
C. P R O G R A M .
C. TO CALCULATE THE INITIAL VALUE DLAMBDA FOR. .
C. THE HOMOGENEOUS THIRD TYPE BOUNDARY CONDITION .
C. AT RMAX .
C. .
C..................................................................

IMPLICIT REAL*8 (A-H,O-Z)
RETURN
END

• ASYMSC is the name of the user-supplied subroutine for the scattering problem which calculates the regular, irregular asymp-
totic matrix-solutions Φreg(ρ), Φ irr(ρ) and their derivatives at ρ = ρmax and should be written as follows:

SUBROUTINE ASYMSC(RMAX,NDIM,NOPEN,QR,PREG,PIRR,DREG,DIRR,IOUT)
C.................................................................
C. .
C. P R O G R A M .
C. TO CALCULATE THE REGULAR, IRREGULAR .
C. ASYMPTOTIC MATRIX SOLUTIONS PREG, PIRR .
C. AND THEIR DERIVATIVES DREG, DIRR AT RMAX .
C. .
C.................................................................

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION QR(NOPEN),PREG(NDIM,NOPEN),PIRR(NDIM,NOPEN),

1 DREG(NDIM,NOPEN),DIRR(NDIM,NOPEN)
RETURN
END

Here in the ASYMEV, DLAMBDA is the initial value λ(0) and in the ASYMSC, array QR contains a set of momentum values,
and NOPEN is the number of open channels. All parameters except VV, QQ, DLAMBDA, PREG, PIRR, DREG and DIRR in
the subroutines POTCAL, ASYMEV and ASYMSC have the same meaning as described below and should not be changed by
subroutines POTCAL, ASYMEV and ASYMSC.
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4.1. Input data

TITLE CHARACTER title of the run to be printed on the output listing. The title should be no longer than 70
characters.

IPTYPE INTEGER IPTYPE contains information about type of the problem solved. If IPTYPE = 0 the program
calculates the eigenvalue problem; otherwise, it calculates the scattering problem.

NROOT INTEGER number of eigenvalues (energy levels) and eigenvectors (radial wave functions) required.
NROOT should be equals to 1 in case of IBOUND > 4 and not used for the scattering problem.

MDIM INTEGER maximum number of coupled differential equations.
IDIM INTEGER dimension of the envelope space.
NPOL INTEGER order of finite-element shape functions (interpolating Lagrange polynomials). Usually set to 6.
RTOL REAL*8 convergence tolerance on eigenvalues (1.D–06 or smaller). This value is not used for the

scattering problem.
NITEM INTEGER maximum number of iterations permitted (usually set to 16). This value is not used for the

scattering problem.
SHIFT REAL*8 For the eigenvalue problem, SHIFT contains the energy spectrum. If SHIFT = 0 the value of

the energy shift is determined automatically by the program; otherwise, the NROOT
eigenvalues and eigenvectors closest to the shift given are calculated (the nonzero value of
SHIFT is recommended since it significantly speeds up the calculation). For the scattering
problem, SHIFT contains the given double energy spectrum.

IPRINT INTEGER level of print:
= 0—minimal level of print. The initial data, short information about the numerical scheme
parameters, main flags and keys, and energy values calculated are printed out;
= 1—radial functions calculated are printed out with step IPRSTP additionally;
= 2—potential matrix is printed out with step IPRSTP;
= 3—information about nodal point distribution is printed out;
= 4—global matrices A and B are printed out additionally;
= 5—the highest level of print. The local stiffness and mass matrices together with all current
information about the course of the subspace iteration method solution of the generalized
eigenvalue problem are printed out.

IPRSTP INTEGER step with which potential matrix and radial wave functions are printed out.
NMESH INTEGER dimension of array RMESH. NMESH always should be odd and � 3.
RMESH REAL*8 array RMESH contains information about subdivision of interval [0, ρmax] of hyperradius ρ on

subintervals. The whole interval [0, ρmax] is divided as follows: RMESH(1) = 0,
RMESH(NMESH) = ρmax, and the values of RMESH(I) set the number of elements for each
subinterval [RMESH(I − 1), RMESH(I + 1)], where I = 2,4, . . . , NMESH − 1.

NDIR INTEGER dimension of array NDIL. If NDIR > MDIM the message about the error is printed and the
execution of the program is stopped.

NDIL INTEGER array NDIL containing information about the set of numbers of coupled differential equations
and always should be NDIL(NDIR) � MDIM.

NMDIL INTEGER key parameter. If NMDIL = 0 the potential matrix elements of radial coupling are calculated
and written to file POTEN; otherwise, they are read from file POTEN.

THRSHL REAL*8 array THRSHL of dimension MDIM containing values of the thresholds. This array is not used
for the eigenvalue problem.

IBOUND INTEGER parameter defining the type of boundary conditions set in the boundary points ρ = 0 and
ρ = ρmax:
= 1—the Dirichlet–Dirichlet boundary conditions:
χi(0) = 0, χi(ρmax) = 0;
= 2—the Dirichlet–Neumann boundary conditions:
χi(0) = 0, lim

ρ→ρmax
χ ′

i (ρ) = 0;

= 3—the Neumann–Dirichlet boundary conditions:
lim
ρ→0

ρnχ ′
i (ρ) = 0, χi(ρmax) = 0;

= 4—the Neumann–Neumann boundary conditions:
lim
ρ→0

ρnχ ′
i (ρ) = 0, lim

ρ→ρmax
χ ′

i (ρ) = 0.

= 6—the Dirichlet—third type boundary conditions (only for NROOT = 1):
at ρ = 0 the Dirichlet boundary condition
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(see the case 2) is used and at ρmax the user-supplied subroutine ASYMEV for the calculation
of initial value λ(0)(ρmax) or user-supplied subroutine ASYMSC for the calculation of the
regular, irregular asymptotic matrix-solutions Φreg(ρ), Φ irr(ρ) and their derivatives at
ρ = ρmax are used;
= 8—the Neumann—third type boundary conditions (only for NROOT = 1):
at ρ = 0 the Neumann boundary condition (see the case 4) is used and at ρmax the same
boundary condition is used as in case 6.
Here n = IDIM-1. IBOUND should always be equal to 6 or 8 for the scattering problem.

FNOUT CHARACTER name of the output file (up to 55 characters) for printing out the results of the calculation. It is
system specific and may include a complete path to the file location.

IOUT INTEGER number of the output logical device for printing out the results of the calculation (usually set
to 7).

POTEN CHARACTER name of the input/output file (up to 55 characters) containing potential matrix elements of
radial coupling.

IOUP INTEGER number of the logical device for reading/storing data from/into file POTEN.
FMATR CHARACTER name of the scratch file (up to 55 characters) for storing stiffness matrix.
IOUM INTEGER number of the logical device for storing stiffness matrix.
EVWFN CHARACTER name of the output file (up to 55 characters) for storing the results of the calculation, namely,

the energy values or reaction matrix, finite-element grid points, and radial wave functions. It is
used only if IOUF > 0.

IOUF INTEGER number of the logical device for storing data into file EVWFN.
TOT REAL*8 working vector of the DOUBLE PRECISION type.
ITOT INTEGER working vector of the INTEGER type.
MTOT INTEGER dimension of the DOUBLE PRECISION working array ITOT. The last address ILAST of array

TOT is calculated and then compared with the given value of MTOT. If ILAST > MTOT the
message about an error is printed and the execution of the program is aborted. In the last case,
in order to carry out the required calculation it is necessary to increase the dimension MTOT of
array TOT to the quantity ILAST taken from the message.

MITOT INTEGER dimension of the INTEGER working array ITOT. The last address ILAST of array ITOT is
calculated and then compared with the given value of MITOT. If ILAST > MITOT the
message about an error is printed and the execution of the program is aborted. In the last case,
in order to carry out the required calculation it is necessary to increase the dimension MITOT
of array ITOT to the quantity ILAST taken from the message.

4.2. Output data

The results of the calculation of energy values or reaction matrix and radial wave functions are written using unformatted
segmented records into file EVWFN, according to the following operator:

WRITE(IOUF) NDIM,NN,NROOT,NGRID,(EIGV(I),I=1,NROOT)
1 ,(XGRID(I),I=1,NGRID),((R(I,J),I=1,NN),J=1,NROOT)

or

WRITE(IOUF) NDIM,NN,NOPEN,NGRID,((RR(I,J),I=1,NOPEN),J=1,NOPEN)
1 ,(XGRID(I),I=1,NGRID),((R(I,J),I=1,NN),J=1,NOPEN)

In the above, parameters presented in the WRITE statement have the following meaning:

• NDIM is the number of radial equations.
• NGRID is the number of finite-element grid points.
• NN = NGRID * NDIM.
• NROOT is the number of roots (energy levels).
• NOPEN is the number of open channels.
• Array EIGV contains the energy values calculated.
• Array RR contains the reaction matrix values calculated.
• Array XGRID contains the values of the finite-element grid points.
• Array R contains NROOT or NOPEN eigenfunctions each per NN elements in length stored in the following way: for each of

the NGRID mesh points per NDIM elements of eigenfunction (see scheme below):
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1-st root 2-nd root ... last root

1 1 1
2 2 2

1-st point . 1-st point . ... 1-st point .
. . .
. . .

NDIM NDIM NDIM

1 1 1
2 2 2

2-nd point . 2-nd point . ... 2-nd point .
. . .
. . .

NDIM NDIM NDIM
. . .
. . .
. . .
1 1 1
2 2 2

last point . last point . ... last point .
. . .
. . .

NDIM NDIM NDIM

5. Description of subprogram units

A flow diagram for the KANTBP program is presented in Fig. 1. The function of each subroutine is briefly described below.
Additional details may be found in COMMENT cards within the program.

• Subroutine ADDVEC assembles the element stiffness and mass matrices into the corresponding global vector using a compact
storage form.

• Subroutine ASSMBL controls the calculation of element stiffness and mass matrices and assembles them into the corresponding
global matrices.

• User-supplied subroutine ASYMEV calculates the initial value λ(0)(ρmax) of the bound state problem for the homogeneous
third type boundary condition.

• User-supplied subroutine ASYMSC calculates the regular, irregular asymptotic matrix-solutions Φreg(ρ), Φ irr(ρ) and their
derivatives at ρ = ρmax of the scattering problem.

• Subroutine BOUNDC sets the Dirichlet or Neumann boundary conditions.
• Subroutine COLMHT calculates column heights in banded matrix.
• Subroutine CHECKD prints error messages when input data are incorrect and stops the execution of program KANTBP.
• Subroutine DECOMP calculates LDLT factorization of stiffness matrix. This factorization is used in subroutine REDBAK to

reduce and back-substitute the iteration vectors.
• Subroutine EMASSD calculates an element mass matrix.
• Subroutine ERRDIM prints error messages when high-speed storage requested by a user is exceeded and stops the execution

of program KANTBP.
• Subroutine ESTIFD calculates a diagonal part of the local on element stiffness matrix.
• Subroutine ESTIFN calculates a nondiagonal part of the local on element stiffness matrix.
• Subroutine EVSOLV prepares all input data for the SSPACE program, prints out the calculated eigensolutions, and writes them

into the file EVWFN, if necessary.
• Subroutine FEGRID calculates nodal points for the finite-element grid.
• Subroutine GAULEG [44] calculates nodes and weights of the Gauss–Legendre quadrature.
• Subroutine GAUSSJ [44] calculates linear equation solution by the Gauss–Jordan matrix inversion method.
• Subroutine HQPOT calculates potential matrix elements of radial coupling in the Gaussian nodes of the finite-element mesh.
• Subroutine JACOBI solves the generalized eigenproblem in subspace using the generalized Jacobi iteration.
• Subroutine MAXHT calculates addresses of diagonal elements in banded matrix.
• Subroutine MULT evaluates a product of the two vectors stored in compact form.
• Subroutine NODGEN generates a nodal point distribution for the finite-element grid.
• User-supplied subroutine POTCAL calculates the potential matrices V(ρ) and Q(ρ) of dimension MDIM × MDIM.
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• Subroutine SCHECK evaluates shift for Sturm sequence check (called only if SHIFT = 0).
• Subroutine SCSOLV calculates the reaction matrix and radial function, and writes them into the file EVWFN, if necessary.
• Subroutine SHAPEF calculates shape functions of the given order and their derivatives with respect to the master element

coordinate η at a specified value of ρ.
• Subroutine SSPACE [41] finds the smallest eigenvalues and the corresponding eigenvectors in the generalized eigenproblem

using the subspace iteration method [41]. We have added to this program the possibility of finding the eigensolutions closest to
the energy spectrum shift given and also the possibility of using the previously calculated eigenvectors as the starting vectors
for inverse iterations. The list of arguments for this program is adequately commented in the routine; so, the interested reader
is referred to the program listing for further details. Warning messages will be issued if the requested accuracy RTOL is not
obtained after NITEM iterations or if the stiffness matrix A is not positively defined.

6. Test deck

The KANTBP program has been used and tested for a variety of physical problems [13,22,32,38,45–47]. Below we present exact
solvable three-body benchmark for which the needed analytical expressions for the potential matrix elements and first-derivative
coupling terms, their asymptotics and asymptotics of radial solutions of the boundary problems for coupled differential equations
have been produced with help of a MAPLE computer algebra system.

We consider three identical particles in the center-of-mass reference frame (CMRF) described by the Jacobi coordinates,

(64)η =
√

1

2
(x1 − x2), ξ =

√
2

3

(
x1 + x2

2
− x3

)
,

in the plane R2, where {{x1, x2, x3} ∈ R3 | x1 + x2 + x3 = 0} are the Cartesian coordinates of the particles on a line. In polar
coordinates

(65)η = ρ cos θ, ξ = ρ sin θ, −π

6
< θ � 2π − π

6
, 0 � ρ < ∞,

the Schrödinger equation for the wave function Ψ (ρ, θ) takes the form

(66)−1

2

(
1

ρ

∂

∂ρ
ρ

∂

∂ρ
+ 1

ρ2

∂2

∂θ2

)
Ψ (ρ, θ) + U(ρ, θ)Ψ (ρ, θ) = EΨ (ρ, θ),

where E is the relative energy in the CMRF. To obtain an exact solution which can be used below for a comparison with the
numerical results, we involve the sum of delta-functions for describing the pair interactions with identical finite strengths. Thus,
U(ρ, θ) assumes the form

(67)U(ρ, θ) = g

1∑
l=−1

δ

(√
2ρ

∣∣∣∣cos

(
θ − 2π

3
l

)∣∣∣∣
)

,

where g = √
2cκ̄ , and κ̄ = π/6 is the effective strength of the pair potential [31,48–50]. For the attractive case c < 0, we have

the bound pair state φ0(η) = √
κ̄ exp(−κ̄|η|) with the energy −ε

(0)
0 = c2κ̄2, so that 2E = q2 + ε

(0)
0 , where q is proportional to the

relative momentum of the third particle with respect to the bound pair [31,32,49,50].
Using a six-fold symmetric representation compatible with (67), we formulate the following boundary problem corresponding

to equation (66) for regular and bounded solution by the radial variable ρ [31]:

(68)−
(

1

ρ

∂

∂ρ
ρ

∂

∂ρ
+ 1

ρ2

∂2

∂θ2

)
Ψ (ρ, θ) = 2EΨ (ρ, θ),

with boundary conditions by the angle variable θn � θ < θn+1

1

ρ

∂Ψ (ρ, θi)

∂θ
= (−1)i−ncκ̄Ψ (ρ, θi),

(69)Ψ (ρ, θn+1 − 0) = Ψ (ρ, θn+1 + 0), i = n,n + 1,

where θn = κ̄(2n − 1), n = 0,5.

Remark. Problem (66), (67) is exactly solvable model. For the discrete spectrum in attractive case we have exact energies for a
ground state and a half-bound state

(70)2Eb
exact = −4c2κ̄2 = −c2 π2

9
, 2Ehb

exact = −c2κ̄2 = −c2 π2

36
.

For the continuous spectrum in both the attractive and repulsive cases we have exact scattering matrix S [30,31] that connected with
reaction matrix K = KT by the conventional formulae K = ı(I + S)−1(I − S) or S = (I + ıK)(I − ıK)−1.



Author's personal copy

O. Chuluunbaatar et al. / Computer Physics Communications 177 (2007) 649–675 665

We consider here a formal expansion of the solution of Eqs. (66), (67) using a set of one-dimensional orthonormal basis functions
Bj (θ;ρ) ∈ W 1

2 (−π/6,2π − π/6):

(71)Ψ (ρ, θ) =
N∑

j=1

Bj (θ;ρ)χj (ρ),

where the functions Bj (θ;ρ) are determined as solutions of the following one-dimensional parametric eigenvalue problem:

− 1

ρ2

∂2Bj (θ;ρ)

∂θ2
= εj (ρ)Bj (θ;ρ),

1

ρ

∂Bj (θi;ρ)

∂θ
= (−1)i−ncκ̄Bj (θi;ρ), i = n,n + 1,

(72)Bj (θn+1 − 0;ρ) = Bj (θn+1 + 0;ρ).

After substituting the expansion (71) into the Rayleigh–Ritz variational functional and minimizing the functional, the solution of
Eq. (68) is reduced to a solution of the finite set of N ordinary second-order differential equations (5).

As was shown in paper [48] the boundary problem (72) has the analytical solutions for the attractive case

(73)B1(θ;ρ) =
√

y2
1 − x2

π(y2
1 − x2) − x

cosh

[
6y1

(
θ − nπ

3

)]
, ε1(ρ) = −36y2

1(ρ)

ρ2
,

(74)Bj (θ;ρ) =
√√√√ y2

j + x2

π(y2
j + x2) + x

cos

[
6yj

(
θ − nπ

3

)]
, εj (ρ) = 36y2

j (ρ)

ρ2
, j � 2,

and for the repulsive case the index j stats from 1 in Eq. (74). The transcendental equations for the attractive case

y1(ρ) tanh
(
πy1(ρ)

)= −x, 0 � y1(ρ) < ∞, x = c
π

36
ρ,

(75)yj (ρ) tan
(
πyj (ρ)

)= x, j − 3

2
< yj (ρ) < j − 1,

and for the repulsive case

(76)yj (ρ) tan
(
πyj (ρ)

)= x, x = c
π

36
ρ, j − 1 < yj (ρ) < j − 1

2
,

follow from problems (72). Roots yj (ρ) of these equations are calculated numerically with a given accuracy for fixed values ρ from
the considering interval � = [0, ρmax]. The potential matrices V(ρ) and Q(ρ) are defined by formulas (6) and calculated by the
analytical expressions using yj (ρ) and parameter x.

For the attractive case needed matrix elements Hij (ρ) and Qij (ρ) for i, j = 1,N read as follows:

H11(ρ) = −
(

cπ

36

)2 1

ỹ6
1

[
4π2y4

1 − ỹ4
1

4ỹ2
1

+ π2y2
1

3

(
ỹ2

1 + 4x
)]

,

H1j (ρ) = Hj1(ρ) =
(

cπ

36

)2 (−1)1+j y1yj

ỹ3
1 ỹ3

j

[
2π(πx2 + x)

(
1

ỹ2
1

− 1

ỹ2
j

)
+ π + 2π2x + 4(y2

1 ỹ2
j + ỹ2

1y2
j )

(y2
1 + y2

j )2

]
,

Q1j (ρ) = −Qj1(ρ) = −cπ

18

(−1)1+j y1yj

(y2
1 + y2

j )ỹ1ỹj

,

(77)ỹ1 =
√

π(y2
1 − x2) − x,

and

Hjj (ρ) = −
(

cπ

36

)2 1

ỹ6
j

[4π2y4
j − ỹ4

j

4ỹ2
j

− π2y2
j

3

(
ỹ2
j − 4x

)]
,

Hij (ρ) = Hji(ρ) =
(

cπ

36

)2 (−1)i+j yiyj

ỹ3
i ỹ3

j

[
2π(πx2 + x)

(
1

ỹ2
i

+ 1

ỹ2
j

)
− π − 2π2x + 4(y2

i ỹ2
j + ỹ2

i y2
j )

(y2
i − y2

j )2

]
,

Qij (ρ) = −Qji(ρ) = −cπ

18

(−1)i+j yiyj

(y2
i − y2

j )ỹi ỹj

,
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(78)ỹj =
√

π(y2
j + x2) + x, i, j = 2,N.

For the repulsive case one will be used only the formula (78) but with i, j starting from 1, i.e., i, j = 1,N .

Comments: The above matrix potentials are included in the subroutine POTCAL by default. Interaction constant c is accessed
via general common block COMMON/IPROB/CCONST.

We consider a reduction of the boundary problem from semi-axis to finite interval using known asymptotic behavior of variable
coefficients Hij (ρ), Qij (ρ) and εj (ρ) and solutions χj (ρ) for a large value of radial variable ρ [31,32]. For the attractive case the
first threshold value ε1 is equal to −c2κ̄2, other threshold values are equal to zero and for the repulsive case all threshold values εj

are equal to zero. In the left boundary point we have used Neumann boundary condition (12).

6.1. Bound state problem with the attractive interaction

In case of the attractive interaction, the above problem has the bound state energies and corresponded wave functions χj (ρ) that
satisfy the following asymptotics for large ρ [32]

(79)χ1(ρ) → exp (−q̄ρ)√
ρ

, χj (ρ) → Cj

exp (−q̄ρ)

ρ3
.

Here q̄2 = −2E + ε1 � 0, and Cj is the independent constant in ρ. For the calculation of the ground state energy, we have used the
right boundary condition

(80)χj (ρmax) = 0.

The following values of numerical parameters and characters have been used in the test run via the supplied input file 3DDGSS.INP

&PARAM TITLE=’ Ground state energy level of the 2D problem ’,
IPTYPE=0,NROOT=1,MDIM=6,IDIM=2,NPOL=4,RTOL=1.D-15,
NITEM=20,SHIFT=-1.1D0,IPRINT=0,IPRSTP=100,
NMESH=5,RMESH=0.0D0,100.D0,10.D0,150.D0,50.D0,
NDIR=2, NDIL=1,6, NMDIL=0,
IBOUND=3,
FNOUT=’3DNGSS.LPR’,IOUT=7,POTEN=’3DNGSS.PTN’,IOUP=10,
FMATR=’3DNGSS.MAT’,IOUM=11,EVWFN=’3DNGSS.WFN’,IOUF=0

&END

6.2. Half-bound state problem with the attractive interaction

From formula (79) we obtain the homogeneous third type boundary condition at ρ = ρmax

lim
ρ→ρmax

dχ1(ρ)

dρ
= −

(
1

2ρmax
+ q̄

)
χ1(ρmax),

(81)lim
ρ→ρmax

dχj (ρ)

dρ
= −

(
3

ρmax
+ q̄

)
χj (ρmax).

In this case we choose initial value λ(0) = −(1/(2ρmax) + q̄), which is corrected during calculations. This function is included in
the subroutine ASYMEV by default. The following values of numerical parameters and characters have been used in the test run
via the supplied input file 3DDHSS.INP

&PARAM TITLE=’ Half bound state energy level of the 2D problem ’
IPTYPE=0,NROOT=1,MDIM=6,IDIM=2,NPOL=4,RTOL=1.D-13,
NITEM=100,SHIFT=-0.2742D0,IPRINT=0,IPRSTP=100,
NMESH=5,RMESH=0.0D0,100.D0,10.D0,1500.D0,500.D0,
NDIR=2, NDIL=1,6, NMDIL=0,
IBOUND=8,
FNOUT=’3DNHBS.LPR’,IOUT=7,POTEN=’3DNHBS.PTN’,IOUP=10,
FMATR=’3DNHBS.MAT’,IOUM=11,EVWFN=’3DNHBS.WFN’,IOUF=0

&END
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6.3. Scattering problem with the attractive interaction

For scattering problem we have used the following two independent fundamental asymptotic solutions χ
(reg)

j i (ρ), χ
(irr)
j i (ρ) for

large ρ: for i = 1

χ
(reg)

11 (ρ) = 1√
qρ

sin(qρ),

χ
(irr)
11 (ρ) = 1√

qρ
cos(qρ),

χ
(reg)

j1 (ρ) = + 1√
q

cos(qρ)
c
(3)
j1

ρ3
,

(82)χ
(irr)
j1 (ρ) = − 1√

q
sin(qρ)

c
(3)
j1

ρ3
,

for i �= 1, j = 1

χ
(reg)

1i (ρ) = + (−1)1+i

√
k

cos(kρ + δ(0))
c
(3)
1i

ρ3
,

(83)χ
(irr)
1i (ρ) = − (−1)1+i

√
k

sin(kρ + δ(0))
c
(3)
1i

ρ3
,

and for i �= 1, j �= 1

χ
(reg)

ii (ρ) = (−1)i+1

√
kρ

(
sin(kρ + δ(0))

(
1 + s

(2)
ii

ρ2

)
+ cos(kρ + δ(0))

(
c
(1)
ii

ρ
+ c

(2)
ii

ρ2

))
,

χ
(irr)
ii (ρ) = (−1)i+1

√
kρ

(
cos(kρ + δ(0))

(
1 + s

(2)
ii

ρ2

)
− sin(kρ + δ(0))

(
c
(1)
ii

ρ
+ c

(2)
ii

ρ2

))
,

χ
(reg)

j i (ρ) = (−1)i+1

√
kρ

(
sin(kρ + δ(0))

(
s
(1)
j i

ρ
+ s

(2)
j i

ρ2

)
+ cos(kρ + δ(0))

c
(2)
j i

ρ2

)
,

(84)χ
(irr)
j i (ρ) = (−1)i+1

√
kρ

(
cos(kρ + δ(0))

(
s
(1)
j i

ρ
+ s

(2)
j i

ρ2

)
− sin(kρ + δ(0))

c
(2)
j i

ρ2

)
.

Here k1 ≡ q = √
2E − ε1, kj ≡ k = √

2E, j = 2,N and

c
(3)
j1 = −q

72

c2π2
Q

(5/2)

j1 , c
(3)
1i = k

72

c2π2
Q

(5/2)

1i ,

s
(2)
ii = − (4ε

(2)
i − 1)(4ε

(2)
i − 9)

128k2
+ 1

2

N∑
l=2,l �=i

Q
(2)
il Q

(2)
li , i �= 1,

c
(1)
ii = 4ε

(2)
i − 1

8k
, c

(2)
ii = ε

(3)
i

4k
,

s
(1)
j i = −Q

(2)
j i , s

(2)
j i = 1

2

(
N∑

l=2,l �=j,l �=i

Q
(2)
j l Q

(2)
li − Q

(3)
j i

)
, j �= 1, i �= 1,

c
(2)
j i = − (2ε

(2)
j + 2ε

(2)
i − 1)Q

(2)
j i

8k
,

Q
(5/2)

j1 = −216(−1)j+1(2j − 3)

|c|3/2π2
, Q

(5/2)

1i = 216(−1)1+i (2i − 3)

|c|3/2π2
,

Q
(2)
ij = 18(−1)i+j (2i − 3)(2j − 3)

cπ2(i − j)(i + j − 3)
, Q

(3)
ij = − 36

cπ2
Q

(2)
ij ,

(85)ε
(2)
i = (6i − 9)2, ε

(3)
i = − 72

cπ2
ε
(2)
i .
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In order to compare with results [31], δ(0) = π/4, and 2E = 0.085844322191962 (q = 0.6) have been chosen. The above matrix-
solutions are included in the subroutine ASYMSC by default for c < 0. The following values of numerical parameters and characters
have been used in the test run via the supplied input file 3DDSCM.INP

&PARAS TITLE=’ Reaction matrix of the 2D problem - I ’,
IPTYPE=1,MDIM=6,IDIM=2,NPOL=4,
SHIFT=0.858443221919622D-1,IPRINT=0,IPRSTP=150,
NMESH=5,RMESH=0.0D0,2000.D0,100.D0,4000.D0,2000.D0,
NDIR=2, NDIL=1,6, NMDIL=0,
THRSHL=-0.274155677808037D0,0.D0,0.D0,0.D0,0.D0,0.D0,
IBOUND=8,
FNOUT=’3DNSCM.LPR’,IOUT=7,POTEN=’3DNSCM.PTN’,IOUP=10,
FMATR=’3DNSCM.MAT’,IOUM=11,EVWFN=’3DNSCM.WFN’,IOUF=0

&END

6.4. Scattering problem with the repulsive interaction

In case of the repulsive interaction, we have used asymptotic solutions (84) with

s
(2)
ii = − (4ε

(2)
i − 1)(4ε

(2)
i − 9)

128k2
+ 1

2

N∑
l �=i,l=1

Q
(2)
il Q

(2)
li ,

c
(1)
ii = 4ε

(2)
i − 1

8k
, c

(2)
ii = ε

(3)
i

4k
,

s
(1)
j i = −Q

(2)
j i , s

(2)
j i = 1

2

(
N∑

l=1,l �=j,l �=i

Q
(2)
j l Q

(2)
li − Q

(3)
j i

)
,

c
(2)
j i = − (2ε

(2)
j + 2ε

(2)
i − 1)Q

(2)
j i

8k
,

Q
(2)
ij = 18(−1)i+j (2i − 1)(2j − 1)

cπ2(i − j)(i + j − 1)
, Q

(3)
ij = − 36

cπ2
Q

(2)
ij ,

(86)ε
(2)
i = (6i − 3)2, ε

(3)
i = − 72

cπ2
ε
(2)
i ,

and indexes i, j start from 1. In order to compare with results [31], δ(0) = π/4, and 2E = 0.01 (k = 0.1) have been chosen.
The matrix-solutions (84), (86) are included in the subroutine ASYMSC by default for c > 0. The following values of numerical
parameters and characters have been used in the test run via the supplied input file 3DDSCP.INP

&PARAS TITLE=’ Reaction matrix of the 2D problem - II ’,
IPTYPE=1,MDIM=6,IDIM=2,NPOL=4,
SHIFT= 0.01D0,IPRINT=0,IPRSTP=150,
NMESH=7,RMESH=0.0D0,2000.D0,100.D0,4000.D0,2000.D0,
2000.D0,11000.D0,
NDIR=2, NDIL=1,6, NMDIL=0,
THRSHL= 0.D0,0.D0,0.D0,0.D0,0.D0,0.D0,
IBOUND=8,
FNOUT=’3DNSCP.LPR’,IOUT=7,POTEN=’3DNSCP.PTN’,IOUP=10,
FMATR=’3DNSCP.MAT’,IOUM=11,EVWFN=’3DNSCP.WFN’,IOUF=0

&END

These four tests run approximately for 1.01 s, 11.01 s, 7.06 s and 9.39 s without calculation of matrix potentials on the Intel
Pentium IV 2.4 GHz, respectively. Total run time is 28.48 s.
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Appendix A. Test run output

PROBLEM: Ground state energy level of the 2D problem
********

C O N T R O L I N F O R M A T I O N
------------------------------------

NUMBER OF DIFFERENTIAL EQUATIONS...... (MDIM ) = 6
NUMBER OF ENERGY LEVELS REQUIRED...... (NROOT ) = 1
NUMBER OF FINITE ELEMENTS............. (NELEM ) = 250
NUMBER OF GRID POINTS................. (NGRID ) = 1001
ORDER OF SHAPE FUNCTIONS............. (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE... (NGQ ) = 5
NUMBER OF SUBSPACE ITERATION VECTORS.. (NC ) = 2
DIMENSION OF ENVELOPE SPACE........... (IDIM ) = 2
BOUNDARY CONDITION CODE............... (IBOUND) = 3
SHIFT OF DOUBLE ENERGY SPECTRUM....... (SHIFT ) = -1.10000
CONVERGENCE TOLERANCE................. (RTOL ) = 0.100000E-14

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- --------- -------- --------- -------- --------

1 100 0.000 0.10000 0.02500 10.000
2 150 10.000 0.26667 0.06667 50.000

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS.... (NN ) = 1000
TOTAL NUMBER OF MATRIX ELEMENTS........ (NWK) = 3496
MAXIMUM HALF BANDWIDTH................. (MK ) = 5
MEAN HALF BANDWIDTH................. (MMK) = 3

NDIM, MDIM= 1 6

THERE ARE 0 ROOTS LOWER THEN SHIFT
CONVERGENCE REACHED FOR RTOL 0.1000E-14
I T E R A T I O N N U M B E R 6
RELATIVE TOLERANCE REACHED ON EIGENVALUES
0.3955E-18

********************************************************************************

R O O T N U M B E R E I G E N V A L U E
----------------------- ---------------------

1 -0.5482213063633842

********************************************************************************

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS.... (NN ) = 6000
TOTAL NUMBER OF MATRIX ELEMENTS........ (NWK) = 110856
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MAXIMUM HALF BANDWIDTH................. (MK ) = 30
MEAN HALF BANDWIDTH................. (MMK) = 18

NDIM, MDIM= 6 6

THERE ARE 0 ROOTS LOWER THEN SHIFT
CONVERGENCE REACHED FOR RTOL 0.1000E-14
I T E R A T I O N N U M B E R 6
RELATIVE TOLERANCE REACHED ON EIGENVALUES
0.2729E-16

********************************************************************************

R O O T N U M B E R E I G E N V A L U E
----------------------- ---------------------

1 -0.5483113526413836

********************************************************************************

PROBLEM: Half bound state energy level of the 2D problem
********

C O N T R O L I N F O R M A T I O N
------------------------------------

NUMBER OF DIFFERENTIAL EQUATIONS...... (MDIM ) = 6
NUMBER OF ENERGY LEVELS REQUIRED...... (NROOT ) = 1
NUMBER OF FINITE ELEMENTS............. (NELEM ) = 1600
NUMBER OF GRID POINTS................. (NGRID ) = 6401
ORDER OF SHAPE FUNCTIONS............. (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE... (NGQ ) = 5
NUMBER OF SUBSPACE ITERATION VECTORS.. (NC ) = 2
DIMENSION OF ENVELOPE SPACE........... (IDIM ) = 2
BOUNDARY CONDITION CODE............... (IBOUND) = 8
SHIFT OF DOUBLE ENERGY SPECTRUM....... (SHIFT ) = -0.274200
CONVERGENCE TOLERANCE................. (RTOL ) = 0.100000E-12

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- --------- -------- --------- -------- --------
1 100 0.000 0.10000 0.02500 10.000
2 1500 10.000 0.32667 0.08167 500.000

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS.... (NN ) = 6401
TOTAL NUMBER OF MATRIX ELEMENTS........ (NWK) = 22401
MAXIMUM HALF BANDWIDTH................. (MK ) = 5
MEAN HALF BANDWIDTH................. (MMK) = 3

NDIM, MDIM= 1 6
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THERE ARE 1 ROOTS LOWER THEN SHIFT
CONVERGENCE REACHED FOR RTOL 0.1000E-12
I T E R A T I O N N U M B E R 9
RELATIVE TOLERANCE REACHED ON EIGENVALUES
0.6835E-14

I T E R A T I O N N U M B E R 22
RELATIVE TOLERANCE REACHED ON LAMBDA
0.4462E-13

********************************************************************************

R O O T N U M B E R E I G E N V A L U E L A M B D A
----------------------- --------------------- ----------------

1 -0.1370771705679387 -0.6232569850201794E-03

********************************************************************************

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS.... (NN ) = 38406
TOTAL NUMBER OF MATRIX ELEMENTS........ (NWK) = 710421
MAXIMUM HALF BANDWIDTH................. (MK ) = 30
MEAN HALF BANDWIDTH................. (MMK) = 18

NDIM, MDIM= 6 6

THERE ARE 1 ROOTS LOWER THEN SHIFT
CONVERGENCE REACHED FOR RTOL 0.1000E-12
I T E R A T I O N N U M B E R 9
RELATIVE TOLERANCE REACHED ON EIGENVALUES
0.1629E-13

I T E R A T I O N N U M B E R 15
RELATIVE TOLERANCE REACHED ON LAMBDA
0.7793E-13

********************************************************************************

R O O T N U M B E R E I G E N V A L U E L A M B D A
----------------------- --------------------- ----------------

1 -0.1370777081621216 -0.1131640030879691E-02

********************************************************************************

PROBLEM: Reaction matrix of the 2D problem - I
********

C O N T R O L I N F O R M A T I O N
------------------------------------

NUMBER OF DIFFERENTIAL EQUATIONS..... (MDIM ) = 6
NUMBER OF FINITE ELEMENTS............ (NELEM ) = 6000
NUMBER OF GRID POINTS................ (NGRID ) = 24001
ORDER OF SHAPE FUNCTIONS............. (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE... (NGQ ) = 5
DIMENSION OF ENVELOPE SPACE.......... (IDIM ) = 2
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BOUNDARY CONDITION CODE.............. (IBOUND) = 8
DOUBLE ENERGY SPECTRUM............... (SHIFT ) = 0.858443E-01

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- --------- -------- --------- -------- --------
1 2000 0.000 0.05000 0.01250 100.000
2 4000 100.000 0.47500 0.11875 2000.000

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS.... (NN ) = 24001
TOTAL NUMBER OF MATRIX ELEMENTS........ (NWK) = 84001
MAXIMUM HALF BANDWIDTH................. (MK ) = 5
MEAN HALF BANDWIDTH................. (MMK) = 3

NDIM, MDIM= 1 6

NUMBER OF OPEN CHANNELS......... (NOPEN) = 1
VALUE OF I-TH MOMENTUM.......... (I,QR ) = 1 0.6000E+00

C H E C K W R O N S K I A N
------------------------------

1.00000

********************************************************************************

R E A C T I O N M A T R I X
-------------------------------

-.224884

********************************************************************************

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS.... (NN ) = 144006
TOTAL NUMBER OF MATRIX ELEMENTS........ (NWK) = 2664021
MAXIMUM HALF BANDWIDTH................. (MK ) = 30
MEAN HALF BANDWIDTH................. (MMK) = 18

NDIM, MDIM= 6 6

NUMBER OF OPEN CHANNELS........ (NOPEN) = 6
VALUE OF I-TH MOMENTUM......... (I,QR ) = 1 0.6000E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 2 0.2930E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 3 0.2930E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 4 0.2930E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 5 0.2930E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 6 0.2930E+00

C H E C K W R O N S K I A N
------------------------------
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1.00000 -.497999E-09 -.320749E-07 -.160361E-06 -.466201E-06 -.105346E-05
0.202460E-08 1.00000 0.722264E-07 0.141761E-06 -.134774E-07 -.153784E-05
-.512979E-07 0.843397E-07 1.00002 0.907839E-06 0.516355E-07 -.528737E-05
-.289234E-06 0.190461E-06 0.121896E-05 1.00046 0.399782E-05 -.107733E-04
-.876239E-06 0.116431E-06 0.602785E-06 0.616311E-05 1.00545 -.838095E-06
-.203693E-05 -.125993E-05 -.427531E-05 -.816296E-05 0.764553E-05 1.03840

********************************************************************************

R E A C T I O N M A T R I X
-------------------------------

-.126136 0.500076E-07 0.947352E-08 0.623779E-07 0.254430E-06 0.646967E-06
0.488556E-07 0.594057 0.329502E-01 0.643311E-02 0.227628E-02 0.102439E-02
-.731879E-09 0.329500E-01 0.633301 0.416376E-01 0.972776E-02 0.378363E-02
0.126927E-09 0.643288E-02 0.416358E-01 0.634932 0.430101E-01 0.103123E-01
0.647861E-08 0.227596E-02 0.972623E-02 0.429971E-01 0.625075 0.422897E-01
0.163590E-07 0.102391E-02 0.378175E-02 0.103055E-01 0.422177E-01 0.583695

********************************************************************************

PROBLEM: Reaction matrix of the 2D problem - II
********

C O N T R O L I N F O R M A T I O N
------------------------------------

NUMBER OF DIFFERENTIAL EQUATIONS..... (MDIM ) = 6
NUMBER OF FINITE ELEMENTS............ (NELEM ) = 8000
NUMBER OF GRID POINTS................ (NGRID ) = 32001
ORDER OF SHAPE FUNCTIONS............. (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE... (NGQ ) = 5
DIMENSION OF ENVELOPE SPACE.......... (IDIM ) = 2
BOUNDARY CONDITION CODE.............. (IBOUND) = 8
DOUBLE ENERGY SPECTRUM............... (SHIFT ) = 0.100000E-01

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- --------- -------- --------- -------- --------

1 2000 0.000 0.05000 0.01250 100.000
2 4000 100.000 0.47500 0.11875 2000.000
3 2000 2000.000 4.50000 1.12500 11000.000

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS.... (NN ) = 32001
TOTAL NUMBER OF MATRIX ELEMENTS........ (NWK) = 112001
MAXIMUM HALF BANDWIDTH................. (MK ) = 5
MEAN HALF BANDWIDTH................. (MMK) = 3

NDIM, MDIM= 1 6

NUMBER OF OPEN CHANNELS......... (NOPEN) = 1
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VALUE OF I-TH MOMENTUM.......... (I,QR ) = 1 0.1000E+00

C H E C K W R O N S K I A N
------------------------------

1.00000

********************************************************************************

R E A C T I O N M A T R I X
-------------------------------

-2.56560

********************************************************************************

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS.... (NN ) = 192006
TOTAL NUMBER OF MATRIX ELEMENTS........ (NWK) = 3552021
MAXIMUM HALF BANDWIDTH................. (MK ) = 30
MEAN HALF BANDWIDTH................. (MMK) = 18

NDIM, MDIM= 6 6

NUMBER OF OPEN CHANNELS........ (NOPEN) = 6
VALUE OF I-TH MOMENTUM......... (I,QR ) = 1 0.1000E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 2 0.1000E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 3 0.1000E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 4 0.1000E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 5 0.1000E+00
VALUE OF I-TH MOMENTUM......... (I,QR ) = 6 0.1000E+00

C H E C K W R O N S K I A N
------------------------------

1.00000 0.567061E-08 0.102062E-07 0.138098E-07 0.108079E-07 -.191238E-07
0.586799E-08 1.00000 0.349612E-07 0.436920E-07 0.312694E-07 -.679934E-07
0.110412E-07 0.401423E-07 1.00002 0.113035E-06 0.551983E-07 -.152542E-06
0.160442E-07 0.529045E-07 0.147761E-06 1.00037 0.277508E-06 -.279382E-06
0.154999E-07 0.479263E-07 0.963258E-07 0.404796E-06 1.00291 0.206195E-06
-.106373E-07 -.399516E-07 -.946524E-07 -.160079E-06 0.524729E-06 1.01472

********************************************************************************

R E A C T I O N M A T R I X
-------------------------------

-2.56205 -.615521E-01 -.127812E-01 -.462205E-02 -.218770E-02 -.121841E-02
-.615521E-01 -2.63648 -.789722E-01 -.196070E-01 -.805618E-02 -.418943E-02
-.127812E-01 -.789723E-01 -2.64465 -.825942E-01 -.217596E-01 -.945895E-02
-.462208E-02 -.196071E-01 -.825940E-01 -2.65580 -.850115E-01 -.231961E-01
-.218774E-02 -.805632E-02 -.217598E-01 -.850074E-01 -2.69374 -.891220E-01
-.121843E-02 -.418952E-02 -.945904E-02 -.231949E-01 -.890963E-01 -2.80482

********************************************************************************
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Abstract

A FORTRAN 77 program is presented which calculates with the relative machine precision potential curves and matrix elements of the cou-
pled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field. The potential curves are eigenvalues corresponding
to the angular oblate spheroidal functions that compose adiabatic basis which depends on the radial variable as a parameter. The matrix ele-
ments of radial coupling are integrals in angular variables of the following two types: product of angular functions and the first derivative of
angular functions in parameter, and product of the first derivatives of angular functions in parameter, respectively. The program calculates also
the angular part of the dipole transition matrix elements (in the length form) expressed as integrals in angular variables involving product of a
dipole operator and angular functions. Moreover, the program calculates asymptotic regular and irregular matrix solutions of the coupled adia-
batic radial equations at the end of interval in radial variable needed for solving a multi-channel scattering problem by the generalized R-matrix
method. Potential curves and radial matrix elements computed by the POTHMF program can be used for solving the bound state and multi-
channel scattering problems. As a test desk, the program is applied to the calculation of the energy values, a short-range reaction matrix and
corresponding wave functions with the help of the KANTBP program. Benchmark calculations for the known photoionization cross-sections are
presented.

Program summary

Program title: POTHMF
Catalogue identifier: AEAA_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEAA_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 8123
No. of bytes in distributed program, including test data, etc.: 131 396
Distribution format: tar.gz
Programming language: FORTRAN 77
Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel Pentium IV
Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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RAM: Depends on

1. the number of radial differential equations;
2. the number and order of finite elements;
3. the number of radial points.

Test run requires 4 MB
Classification: 2.5
External routines: POTHMF uses some Lapack routines, copies of which are included in the distribution (see README file for details).
Nature of problem: In the multi-channel adiabatic approach the Schrödinger equation for a hydrogen-like atom in a homogeneous magnetic field
of strength γ (γ = B/B0, B0 ∼= 2.35 × 105 T is a dimensionless parameter which determines the field strength B) is reduced by separating the
radial coordinate, r , from the angular variables, (θ,ϕ), and using a basis of the angular oblate spheroidal functions [3] to a system of second-order
ordinary differential equations which contain first-derivative coupling terms [4]. The purpose of this program is to calculate potential curves and
matrix elements of radial coupling needed for calculating the low-lying bound and scattering states of hydrogen-like atoms in a homogeneous
magnetic field of strength 0 < γ � 1000 within the adiabatic approach [5]. The program evaluates also asymptotic regular and irregular matrix
radial solutions of the multi-channel scattering problem needed to extract from the R-matrix a required symmetric shortrange open-channel
reaction matrix K [6] independent from matching point [7]. In addition, the program computes the dipole transition matrix elements in the length
form between the basis functions that are needed for calculating the dipole transitions between the low-lying bound and scattering states and
photoionization cross sections [8].
Solution method: The angular oblate spheroidal eigenvalue problem depending on the radial variable is solved using a series expansion in the
Legendre polynomials [3]. The resulting tridiagonal symmetric algebraic eigenvalue problem for the evaluation of selected eigenvalues, i.e.
the potential curves, is solved by the LDLT factorization using the DSTEVR program [2]. Derivatives of the eigenfunctions with respect to
the radial variable which are contained in matrix elements of the coupled radial equations are obtained by solving the inhomogeneous algebraic
equations. The corresponding algebraic problem is solved by using the LDLT factorization with the help of the DPTTRS program [2]. Asymptotics
of the matrix elements at large values of radial variable are computed using a series expansion in the associated Laguerre polynomials [9].
The corresponding matching points between the numeric and asymptotic solutions are found automatically. These asymptotics are used for the
evaluation of the asymptotic regular and irregular matrix radial solutions of the multi-channel scattering problem [7]. As a test desk, the program
is applied to the calculation of the energy values of the ground and excited bound states and reaction matrix of multi-channel scattering problem
for a hydrogen atom in a homogeneous magnetic field using the KANTBP program [10].
Restrictions: The computer memory requirements depend on:

1. the number of radial differential equations;
2. the number and order of finite elements;
3. the total number of radial points.

Restrictions due to dimension sizes can be changed by resetting a small number of PARAMETER statements before recompiling (see Introduction
and listing for details).
Running time: The running time depends critically upon:

1. the number of radial differential equations;
2. the number and order of finite elements;
3. the total number of radial points on interval [rmin, rmax].

The test run which accompanies this paper took 7 s required for calculating of potential curves, radial matrix elements, and dipole transition matrix
elements on a finite-element grid on interval [rmin = 0, rmax = 100] used for solving discrete and continuous spectrum problems and obtaining
asymptotic regular and irregular matrix radial solutions at rmax = 100 for continuous spectrum problem on the Intel Pentium IV 2.4 GHz. The
number of radial differential equations was equal to 6. The accompanying test run using the KANTBP program took 2 s for solving discrete and
continuous spectrum problems using the above calculated potential curves, matrix elements and asymptotic regular and irregular matrix radial
solutions. Note, that in the accompanied benchmark calculations of the photoionization cross-sections from the bound states of a hydrogen atom
in a homogeneous magnetic field to continuum we have used interval [rmin = 0, rmax = 1000] for continuous spectrum problem. The total number
of radial differential equations was varied from 10 to 18.
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1. Introduction

Nowadays the dynamics of transitional processes such as atomic scattering in the presence of an external confinement [1], chan-
neling of light nuclei in a thin film with impurities [2], excitation, deexcitation [3], ionization and recombination of atoms and ions
in magnetic traps is a subject of the experimental, theoretical and computational studies [4]. With the help of additional electric
or laser pulse fields one can operate on transition rates and control the population of states in a quantum system for the above
mentioned processes [5]. It is worth mentioning a recent study [6] of a new enhancement mechanism of a laser-stimulated recom-
bination of antihydrogen in cold antiproton–positron plasma in a laboratory magnetic field B of order of few T via quasistationary
states embedded in the continuum. To study optimal parameters of the laser and magnetic fields in complex cases such as when
the Coulomb energy of an electron is comparable with energy of the magnetic field of strength γ in the axial gauge, one needs to
develop really stable, inexpensive, highly efficient and accurate numerical methods and schemes required for calculations of the
optical transitions between the bound and autoionization states of discrete and continuous spectra similar to the well known ones
developed for the doubly-excited states of the Helium atom [7].

For an optimal account of correlations between the longitude and confined by the magnetic field transverse electron motion
in cylindrical coordinates (z, ρ,ϕ) at fixed energy and azimuthal quantum number m, it is convenient to use transformation to
the radial and angular variables, r = √

z2 + ρ2, cos θ = z/r [8]. Such transformation corresponds to the well-known change of

coordinates (r1, r2) of the first and second electrons to hyperradius r =
√

r2
1 + r2

2 and hyperangle α = arctan(r1/r2). This allows
for an adequate account of radial correlations of electrons below the threshold for the Helium atom within the multi-channel
hyperspherical adiabatic approach [9]. Main problems with the known approaches for solving the above problem are related to the
necessity of constructing high accurate stable numerical schemes and solving ill-conditioned and/or large-scale algebraic problems
that arise as a result of applying different approximations for the singular boundary problems in the two-dimensional region [10]. In
order to provide a sufficiently high accuracy of calculations, most of popular methods require a large number of basis functions and
often numerical integration over a large interval [11–18]. Bound state and continuum functions are usually calculated separately by
different methods and the accuracy of these functions depends strongly on the accuracy of radial matrix elements used. Hence it is
important to develop numerical methods for calculating potential matrix elements for the bound state and scattering problems that
combine high accuracy with calculational scheme stability and high efficiency.

In this paper we present program POTHMF that realizes the multi-channel adiabatic approach in spherical coordinates for a
hydrogen-like atom problem in a homogeneous magnetic field. An attractive feature of the adiabatic approach in spherical co-
ordinates is that the electron wave function is accurately represented near the origin irrespective of the value of field strength.
However, the problem here is how to match the spherically symmetric wave functions near the origin with the wave functions of
the cylindrical symmetry which are more appropriate for areas located far enough from the origin [19]. In order to lower a dimen-
sion of the algebraic problem and improve its ill-condition property we use method suggested in [20]. It is based on (i) suitable
analytic parameterizations of basis functions that satisfy boundary conditions and provide reasonable convergence and accuracy of
expansion for a required solution, and (ii) constructing of proper asymptotic expansions of a solution in each of two independent
variables to match analytic and numerical solutions after reduction of the singular boundary problem to a regular one (in a finite
two-dimensional region).

From the mathematical point of view adiabatic approach is the Kantorovich method [21] which reduces a singular boundary
problem for an elliptic partial differential equation in a two-dimensional region to a regular boundary problem for a system of the
close-coupled ordinary second-order differential equations of a general type (with a skew-symmetric coefficient matrix of variable
coefficients at the first derivatives) for calculating the bound and regular solutions for discrete and continuous spectra [10]. For a
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given azimuthal quantum number m and z-parity, a solution depending on the radial variable r and angular variable η = cos θ =
z/r is expanded over the oblate angular spheroidal functions [22] in the angular variable that compose an orthogonal adiabatic
basis parametrically depending on p = γ r2/2. The most challenging part in realization of the Kantorovich method consists of
the calculation of the coefficient matrices with the same given (machine precision) accuracy with which the eigenfunctions are
computed.

In order to achieve this, the derivatives of angular functions with respect to parameter r are calculated as solutions of the
nonhomogeneous boundary problem which is obtained by differentiating in parameter r the ordinary differential equation of the
second order for the angular oblate spheroidal functions [22]. The corresponding algebraic eigenvalue problems (that arise as a
result of the conventional representation of a solution at fixed magnetic quantum number m and z-parity by its expansion over
normalized generalized Legendre polynomials [22]) are solved with the given accuracy at finite values of r by a stable symbolic–
numerical algorithm [23]. Stability and economy of the numerical scheme is achieved due to the fact that for a small value of
parameter r the angular functions become Legendre’s polynomials while for a large value of r in the vicinities η = ±1 the angular
functions become the associated Laguerre’s functions in variables y = 2(γ r2/2)(1 ∓ η), symmetrized in accordance to the z-parity
property of angular oblate spheroidal functions for all values of parameter r [24]. The latter means that the sum and difference
of these functions correspond to the z-even and z-odd solutions if one replaces η by −η. Therefore, for large r one could build
asymptotic expansions in the inverse powers of r needed for calculation with a given accuracy of the required set of basis functions
for all values of parameter r [23]. As a consequence, at large values of the radial variable r the potential curves, radial matrix
elements and dipole transition matrix elements are calculated using asymptotic formulae and matching points rmatch < rmax that
are found automatically from the interval of integration 0 � r � rmax. It allows us to build a more economic algorithm for solving
partial algebraic eigenvalue problem depending on parameter r with automatical choice of Wilkinson’s shift [25].

Essential economy of computer resources for numerical solution of a boundary problem for a system of the radial second-order
differential equations of general type (with matrix variable coefficients at the first derivative) is achieved by reducing the interval
of integration 0 � r � rmax. In the present work, in order to do that we construct at large r (r � rmax) an asymptotic expansion
of fundamental solutions of a system of radial equations. A linear combination of Coulomb regular and irregular functions and
their first derivatives is used here as a basis set. A choice of appropriate value of matching point r = rmax of the numerical regular
solution for the radial problem on interval 0 � r � rmax with the constructed asymptotic expansions is controlled by satisfying (with
the optimal computer-dependent precision) of the conservation condition for the Wronskian with a long derivative. In the present
work the KANTBP program [26] is used to calculate short-range reaction matrix K in open channels. The same matrix can be
used for construction of solution of the auxiliary spectral problem in closed channels by applying the multi-channel quantum-defect
theory (MQDT) [12,27], including additional (with respect to direct KANTBP calculations) eigenfunctions, eigenvalues and widths
of closed channels.

The POTHMF program calculates potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-
like atom in a homogeneous magnetic field. It also computes the angular part of the dipole transition matrix elements (in the length
form) between the angular functions and the asymptotic regular and irregular matrix solutions of a multi-channel scattering problem.
Potential curves and radial matrix elements computed by the POTHMF program are used for solving the bound state and multi-
channel scattering problems with the help of the KANTBP program [26]. As a test problem, the program is applied to the calculation
of the energy values, short-range reaction matrix K and corresponding wave functions for a hydrogen-like atom in a homogeneous
magnetic field. Benchmark calculations for the known photoionization cross-sections from the bound states (1s0, 2p−1 and 3s0) of
a hydrogen atom in a homogeneous magnetic field [12,15–17] are presented.

Efficiency of the elaborated program is demonstrated here by calculating photoionization cross-sections from the ground and
low-lying excited states for a hydrogen atom to continuous state with m = 0. Note, that examples of application the proposed
approach for calculation the low-lying excited states of a hydrogen atom in a homogeneous magnetic field 0 < γ � 1000 together
with analysis of convergence rate of the method using 10 radial equation are considered in [10]. Another application for calculation
of continuous spectrum states and photoionization from 3d0 and 3s0 states to continuum at γ = 2.595×10−5 together with analysis
of convergence rate of the method using 35 radial equation are given in [28]. The results of high-accurate calculation of a hydrogen
atom photoionization cross-sections in a strong magnetic field using the POTHMF program are discussed in details in [29].

The paper is organized as follows. In Section 2 we give a brief overview of the problem. A description of the POTHMF algorithms
are in Section 3. A description of the POTHMF program is given in Section 4. The subroutine units are briefly described in Section 5.
The test problem is discussed in Section 6. Benchmark calculations for the photoionization cross-sections are given in Section 7.

2. Statement of the problem

The Schrödinger equation for the hydrogen atom in an axially symmetric homogeneous magnetic field B = (0,0,B) in spherical
coordinates (r, θ,ϕ) can be written as the 2D-equation [8]

(1)

(
− 1

r2

∂

∂r
r2 ∂

∂r
+ A(0)(r, θ)

r2
− 2Z

r
− ε

)
Ψ (r, θ) = 0
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in the region Ω : 0 < r < ∞ and 0 < θ < π . The operator A(0)(r, θ) is given by

(2)A(0)(r, θ) = − 1

sin θ

∂

∂θ
sin θ

∂

∂θ
+ m2

sin2 θ
+ γmr2 + 1

4
γ 2r4 sin2 θ,

where m = 0,±1, . . . is the magnetic quantum number, γ = B/B0, B0 ∼= 2.35 × 105 T is a dimensionless parameter which deter-
mines the field strength B , and the atomic units (a.u.) h̄ = me = e = 1 are used under the assumption of infinite mass of the nucleus
with a charge Z. In these expressions, ε = 2E is the doubled energy (in Rydbergs, 1 Ry = (1/2) a.u.) of the bound state |mσ 〉 at
fixed values of m and z-parity; σ = ±1; and Ψ ≡ Ψmσ (r, θ) = (Ψm(r, θ)+σΨm(r,π − θ))/

√
2 is the corresponding wave function.

Here the sign of z-parity σ = (−1)Nθ is defined by the number (even or odd) of nodes Nθ ≡ Nη in solution Ψ with respect to the
angular variable θ in the interval 0 < θ < π . We will use also the scaled variable r̂ = r

√
γ , the effective charge Ẑ = Z/

√
γ and the

scaled energy ε̂ = ε/γ . It means that one can use unit cyclotron frequency and renormalize the initial charge Z by factor
√

1/γ and
initial energy ε by factor 1/γ only. The wave function satisfies the following boundary conditions in each Hmσ subspace of the full
Hilbert space:

(3)lim
θ→0,π

sin θ
∂Ψ

∂θ
(r, θ) = 0, if m = 0, and Ψ (r,0) = Ψ (r,π) = 0, if m 
= 0,

(4)lim
r→0

r2 ∂Ψ

∂r
(r, θ) = 0.

The discrete spectrum wave function satisfies the asymptotic boundary condition approximated at large r = rmax by a boundary
condition of the first type

(5)lim
r→∞ r2Ψ (r, θ) = 0 → Ψ (rmax, θ) = 0.

Here the energy ε ≡ ε(rmax) plays the role of eigenvalues of the boundary problem (1)–(5) on a finite interval 0 � r � rmax with
additional normalization condition

(6)

rmax∫
0

π∫
0

r2 sin θ
∣∣Ψ (r, θ)

∣∣2
dr dθ = 1.

In the Fano–Lee R-matrix theory [30,31] the continuum wave function Ψ (r, θ) satisfies the boundary condition of the third type at
fixed values of energy ε and radial variable r = rmax

(7)
∂Ψ (r, θ)

∂r
− μΨ (r, θ) = 0.

Here the parameters μ ≡ μ(rmax, ε), determined by the variational principle, play the role of eigenvalues of the logarithmic normal
derivative matrix of the solution of the boundary problem (1)–(4), (7).

2.1. The KM reduction to a set of the radial differential equations

In the close coupling approximation, known in mathematics as the KM [21] the partial wave function Ψi(r, θ) is expanded over
the one-parametric basis functions {Φmσ

j (θ; r)}Nj=1

(8)Ψi(r, θ) =
N∑

j=1

Φmσ
j (θ; r)χ(i)

j (r).

In Eq. (8), the vector-function χ (i)(r) = (χ
(i)
1 (r), . . . , χ

(i)
N (r))T is unknown, and the surface functions Φmσ (θ; r) = (Φmσ

1 (θ; r), . . . ,
Φmσ

N (θ; r))T form an orthonormal basis with respect to the angular variable θ for each value of radius r which is treated here as
a parameter. In the Kantorovich approach [21], the functions Φj(θ; r) ≡ Φmσ

j (θ; r) are determined as solutions of the following
parametric eigenvalue problem:

(9)A(0)(r, θ)Φj (θ; r) = εj (r)Φj (θ; r).
The eigenfunctions of this problem satisfy the same boundary conditions in angular variable θ for Ψi(r, θ) and are normalized as
follows

(10)
〈
Φi(θ; r)∣∣Φj(θ; r)〉

θ
=

π∫
0

sin θ Φi(θ; r)Φj (θ; r) dθ = δij ,

where δij is the Kronecker symbol.
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After minimizing the Rayleigh–Ritz variational functional (see [32]) and using the expansion (8), Eq. (1) is reduced to a finite
set of N ordinary second-order differential equations for the χ(r) ≡ χ (i)(r)

(11)

(
− 1

r2
I

d

dr
r2 d

dr
+ V(r) + Q(r)

d

dr
+ 1

r2

dr2Q(r)

dr
− 2EI

)
χ(r) = 0.

Here I, V(r) and Q(r) are N × N matrices whose elements are given by the relation

Vij (r) = Hij (r) +
(

εi(r) + εj (r)

2r2
− 2Z

r

)
δij , Iij = δij ,

Hij (r) = Hji(r) =
〈
∂Φi(θ; r)

∂r

∣∣∣∣∂Φj (θ; r)
∂r

〉
θ

,

(12)Qij (r) = −Qji(r) = −
〈
Φi(θ; r)

∣∣∣∣∂Φj (θ; r)
∂r

〉
θ

.

The wave function χ(r) satisfies the following boundary conditions at r → 0

(13)lim
r→0

r2
(

I
d

dr
− Q(r)

)
χ(r) = 0,

and at r = rmax

(14)χ(r) = 0, for the discrete spectrum,

(15)

(
I

d

dr
− Q(r)

)
χ(r) = μ(r)χ(r), for the continuous spectrum.

3. Description of the POTHMF algorithms

3.1. Calculation of the angular oblate spheroidal functions

Note, that the solutions of the problem (9), (2) with the shifted eigenvalues λj (p) = εj (r) − γmr2 correspond to the solutions
of the eigenvalue problem for the angular oblate spheroidal functions [22] with respect to a variable η = cos θ :

(16)− ∂

∂η
(1 − η2)

∂Φj (η;p)

∂η
+

(
m2

1 − η2
+ p2(1 − η2)

)
Φj(η;p) = λj (p)Φj (η;p),

where p = r̂2/2 = γ r2/2, and eigenfunctions Φj(η;p) satisfy the orthogonality conditions (10). We obtain eigenfunctions
Φj(η; r) ≡ Φj(η;p) in the form of a series expansion at fixed values σ = ±1 and m,

(17)Φj(η; r) =
smax∑

s=(1−σ)/2

cmσ
sj (r)P

|m|
|m|+s(η).

Here s is the even (odd) integer at σ = (−1)s = ±1 up to smax = 2(Nmax − 1) + (1 − σ)/2, where Nmax is number of even or
odd terms of expansion, P

|m|
|m|+s(η) are the normalized associated Legendre polynomials [22]. The coefficients cmσ

sj (r) satisfy the
relation

(18)
smax∑

s=(1−σ)/2

cmσ
sj (r)cmσ

sj ′ (r) = δjj ′ .

The eigenvalue problem for eigenvectors cj = {cmσ
sj (r)}smax

(1−σ)/2, and eigenvalues λj ≡ λj (p) take the form

(19)A(0)cj = λj cj ,

(20)cT
j cj = I,

where matrix A(0) ≡ A(0)(p) is the symmetric tridiagonal Nmax × Nmax matrix:

A
(0)
ss−2 = A

(0)
s−2s = −p2

(2s + 2|m| − 1)

√
(s − 1)s(s + 2|m| − 1)(s + 2|m|)
(2s + 2|m| − 3)(2s + 2|m| + 1)

,

(21)A(0)
ss = (

s + |m|)(s + |m| + 1
) + 2p2 (s2 + s + 2s|m| + 2m2 + |m| − 1)

(2s + 2|m| − 1)(2s + 2|m| + 3)
.
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The expansion (17) was used which provides stability of numerical calculation with the double precision arithmetic (the relative
machine precision is eps = 2−52 ≈ 2 · 10−16) with the help of the subroutine DSTEVR from the LAPACK Fortran Library [33].
The orthogonality relations (18) were fulfilled with an accuracy of the order of eps.

3.2. Evaluation of parametric derivative of the angular functions and matrix elements

Radial matrix elements in notations of coefficient cj of decomposition (17) have the following form

(22)Qij (r) = −cT
i c(1)

j , Hij (r) = (
c(1)
i

)Tc(1)
j ,

where c(1)
j = dcj /dr .

Step 1. As follows from (19), we should solve the following linear set of algebraic equations

(23)A(1)c(0) − c(0)λ(1) = −(A(0)c(1) − c(1)λ(0)), A(1) ≡ dA(0)

dr
,

where c(0) ≡ cj , λ(0) ≡ λj , c(1) ≡ c(1)
j and λ(1) ≡ dλj/dr .

Step 2. Taking into account that λ(0) is an eigenvalue of the operator defined in (19), the problem (23) has a solution if and only if
the right-hand side term is orthogonal to the eigenfunction c(0). Multiplying (23) by (c(0))T and using the normalization condition
(20), we obtain the expression for λ(1)

(24)λ(1) = (c(0))TA(1)c(0)

and the set of the inhomogeneous algebraic equations for unknown vector c(1)

(25)Lc(1) ≡ A(0)c(1) − c(1)λ(0) = b(1), b(1) = −A(1)c(0) + c(0)λ(1).

Now the problem (25) has a solution, but it is not unique. From the normalization condition (20) we obtain the required additional
equality

(26)(c(1))Tc(0) = 0,

providing the uniqueness of the solution (25). Since λ(0) is an eigenvalue of (19), the matrix L in (25) is degenerate.
Note, if matrix A(0) is diagonal, then the solution of system (25)–(26) can be evaluated analytically. The algorithm for numerical

solution of (25) in a case of nondiagonal matrix A(0) can be written in three steps as follows:

Step 3. Calculate solutions v(1) and w of the auxiliary inhomogeneous set algebraic equations

(27)L̄v(1) = b̄(1), L̄w = d,

with nondegenerate matrix L̄ and right-hand sides b̄(1) and d

(28)L̄ss′ =
{

Lss′ , (s − S)(s′ − S) 
= 0,

δss′ , (s − S)(s′ − S) = 0,

(29)b̄(1)
s =

{
b

(1)
s , s 
= S,

0, s = S,
ds =

{
LsS, s 
= S,

0, s = S,

where S is the number of the greatest absolute value element of vector c(0).

Step 4. Evaluate coefficient γ (1)

(30)γ (1) = − γ
(1)
1

(c
(0)
S − γ2)

, γ
(1)
1 = (v(1))Tc(0), γ2 = wTc(0).

Step 5. Evaluate vector c(1)

(31)c(1)
s =

{
v

(1)
s − γ (1)ws, s 
= S,

γ (1), s = S.

The above algorithm for calculation of matrix elements was implemented in the MAPLE and FORTRAN (general algorithms
for evaluation of high-order derivatives of the eigenvalues, eigenvectors and corresponding matrix elements are discussed in [23]).
The algorithm provides stability of numerical calculation with double precision arithmetic (the relative machine precision is eps =
2−52 ≈ 2 · 10−16) with help of the subroutine DPTTRS from the LAPACK Fortran Library [33].
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3.3. Asymptotics of oblate angular spheroidal functions and matrix elements

At small r , asymptotic values of matrix elements εj (r), Hjj ′(r) and Qjj ′(r) characterized by l = |m| + s = 2j − 2 + |m| for
even states (σ = (−1)l−|m| = +1) and l = |m| + s = 2j − 1 + |m| for odd states (σ = (−1)l−|m| = −1) are the series expansion by
the power of r at some finite values ll , lr [23]

εj (r) = ε̄
(0)
j + ε̄

(2)
j r2 +

kmax∑
k=1

r4kε̄
(4k)
j , Hjj ′(r) =

kmax∑
k=2

r4k−2H̄
(4k−2)

jj ′ ,

(32)Qjj ′(r) =
kmax∑
k=1

r4k−1Q̄
(4k−1)

jj ′ .

The above matrix elements have been calculated analytically using the algorithm implemented in MAPLE up to kmax = 4. Below
we present the first few coefficients of matrix elements:

ε̄
(0)
j = λmσ

s (0) = l(l + 1), ε̄
(2)
j = γm, ε̄

(4)
j = γ 2

2

l2 + l − 1 + m2

(2l − 1)(2l + 3)
,

Q̄
(3)
jj+2 = γ 2

2

√
(l + 1)2 − m2

√
(l + 2)2 − m2

√
2l + 1(2l + 3)2

√
2l + 5

,

H̄
(6)
jj = γ 4

2

(
(16l4 + 32l3 + 248l2 + 232l + 201)m4

+ (−10l2 − 224l4 − 96l5 + 118l − 288l3 − 32l6 − 195)m2

+ 16l8 + 64l7 + 46l + 40l6 − 127l4 − 104l5 + 71l2 − 6l3 − 6
)

/
(
(2l − 3)(2l − 1)4(2l + 3)4(2l + 5)

)
,

(33)H̄
(6)
jj+4 = −γ 4

√
(l + 1)2 − m2

√
(l + 2)2 − m2

√
(l + 3)2 − m2

√
(l + 4)2 − m2

4
√

2l + 1(2l + 3)2(2l + 5)(2l + 7)2
√

2l + 9
.

This asymptotic behavior of effective potentials allows us to use the above boundary conditions (13) at r → 0 to find regular and
bounded solutions. Note, that these asymptotic expansions have a finite radius of convergence because the parameter r has branch
points in the complex plane [34–36].

Matrix elements at large r can be evaluated as series expansions by the inverse power of p up to the order of kmax without taking
into account the exponential small terms. For this we use the eigenfunctions Φm←(η; r) and Φm→(η; r) localized at large r in
vicinity of η = ±1

(34)Φmσ=±1(η; r) = Φm→(η; r) ± Φm←(η; r)√
2

.

These functions have Nρ ≡ n = 0,1,2, . . . , nodes in the subintervals 0 < η < 1 and −1 < η < 0, respectively, i.e. Nρ = Nη/2 for
the even z-parity states, σ = +1, and Nρ = (Nη −1)/2 for the odd z-parity states, σ = −1, where Nη is number of nodes Φmσ (η; r)
in the interval −1 < η < 1 with parity σ = (−1)Nη . Note, that Φm←(η; r) = Φm→(−η; r) and Φm←(η < 0; r) = Φm→(η > 0; r) =
O(exp(−p(1 + |η|))) at r → ∞ and |η| ∼ 1 and will be used in a construction of the scattering wave functions defined in (73).

Matrix elements are represented as the series expansion by the inverse power of r without the exponential terms in accordance
with [23]

r−2εj (r) = ε
(0)
j +

kmax∑
k=1

r−2kε
(2k)
j , Hjj ′(r) =

kmax∑
k=1

r−2kH
(2k)

jj ′ ,

(35)Qjj ′(r) =
kmax∑
k=1

r1−2kQ
(2k−1)

jj ′ .

Here εth
mj (γ ) = ε

(0)
j is an energy of the thresholds (in Ry) that corresponds to the double energy of the Landau thresholds (in a.u.).

In the present work, the calculation was performed by the algorithm implemented in MAPLE up to the kmax = 8. Below we
display the first several coefficients of potential curves εj (r) at fixed m

ε
(0)
j = γ

(
2n + m + |m| + 1

)
,

(36)ε
(2)
j = −2n2 − 2n|m| − 2n − |m| − 1,
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and matrix elements Qjj ′(r), Hjj ′(r)

Q
(1)

jj ′ = (nr − nl)
√

n + 1
√

n + |m| + 1δ|nl−nr |1,

Q
(3)

jj ′ = (4γ )−1(nr − nl)
√

n + 1
√

n + |m| + 1

× (
2(2n + |m| + 2)δ|nl−nr |1 + √

n + 2
√

n + |m| + 2 δ|nl−nr |2
)
,

(37)

H
(2)

jj ′ = (
2n2 + 2n + 2|m|n + |m| + 1

)
δ|nl−nr |0

− √
n + 1

√
n + |m| + 1

√
n + 2

√
n + |m| + 2δ|nl−nr |2.

In these formulas asymptotic quantum number n = min(nl, nr) denote transversal quantum number that is connected with the
unified numbers j and j ′ by the formulas nl = j − 1 and nr = j ′ − 1. Note, that ε

(2)
j +H

(2)
jj = 0, i.e. at large r the centrifugal terms

are eliminated in Eq. (11). It means that the leading terms of radial solutions χjio (r) have the same asymptotics as the Coulomb
functions with a zero angular momentum and the effective charge Ẑ in terms of the scaled radial variable r̂ . The convergence of
expansion (35) is shown in [23]. Note, that evaluating the exponential small corrections (for improving the convergence) can be
done using additional series expansion of the solution in the region D2 = [0,1 − η2], η2 < η1, η2 = o(p−1/2−ε) in accordance
with [37].

3.4. Longitudinal and transversal dipole matrix elements

The longitudinal dipole matrix elements D(mσσ ′)(r) with photon linearly polarized along z axis and transversal ones P(mm′σ)(r)

with photon circularly polarized in XOY plane are expressed as

(38)D
(mσσ ′)
jj ′ (r) = 〈

Φmσ
j (η; r)∣∣rη∣∣Φmσ ′=−σ

j ′ (η; r)〉
η
,

(39)P
(mm′σ)

jj ′ (r) =
〈
Φmσ

j (η; r)
∣∣∣∣r

√
1 − η2
√

2

∣∣∣∣Φm′=m±1σ
j ′ (η; r)

〉
η

.

Using expression (17) the above matrix elements can be written in the form

(40)

D
(mσσ ′)
jj ′ (r) = r

smax∑
s=(1−σ)/2

smax∑
s′=(1−σ ′)/2

cmσ
sj (r)cmσ ′

s′j ′ (r)

1∫
−1

ηP
|m|
|m|+s(η)P

|m|
|m|+s′(η) dη

= δ|σ+σ ′|0r
smax∑

s=(1−σ)/2

smax∑
s′=(1−σ ′)/2

cmσ
sj (r)cmσ ′

s′j ′ (r)δ|s−s′|1
√

s>
√

s> + 2|m|√
4(s> + |m|)2 − 1

,

(41)

P
(mm′σ)

jj ′ (r) = r√
2

smax∑
s=(1−σ)/2

smax∑
s′=(1−σ)/2

cmσ
sj (r)cm′σ

s′j ′ (r)

1∫
−1

√
1 − η2P

|m|
|m|+s(η)P

|m′|
|m′|+s′(η) dη

= δ|m−m′|1
r√
2

smax∑
s=(1−σ)/2

smax∑
s′=(1−σ)/2

cmσ
sj (r)cm′σ

s′j ′ (r)

×
[
δss′+2

√
s(s − 1)

(2s + 2m< − 1)(2s + 2m< + 1)
− δss′

√
(s + 2m< + 1)(s + 2m< + 2)

(2s + 2m< + 1)(2s + 2m< + 3)

]
,

where s> = max(s, s′) and m< = min(|m|, |m′|).

3.5. Asymptotics of longitudinal and transversal dipole matrix elements

We find longitudinal and transversal dipole matrix elements as the series expansion by the inverse power of r without the
exponential terms

(42)D
(mσσ ′)
jj ′ (r) = r

kmax∑
k=0

r−2kD
(2k)

jj ′ , P
(mm′σ)

jj ′ (r) = −
kmax∑
k=0

r−2kP
(2k)

jj ′ .

In these formulas asymptotic quantum number n denotes transversal quantum number connected with the unified numbers j and j ′
by the formulas nl = j − 1 and nr = j ′ − 1.
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The calculation was performed using the algorithm implemented in MAPLE up to kmax = 8. Below we display the first few
coefficients of the longitudinal dipole matrix D(mσσ ′)(r) at fixed m

D
(0)

jj ′ = δ|nl−nr |0,

(43)D
(2)

jj ′ = γ −1(−(
2n + |m| + 1

)
δ|nl−nr |0 + √

n
√

n + |m|δ|nl−nr |1
)
,

and the transversal dipole matrix P(mm′σ)(r) at fixed |m′| = |m| + 1

P
(0)

jj ′ = γ −1/2(√nl + |m| + 1δnlnr − √
nlδnlnr+1

)
,

(44)

P
(2)

jj ′ = 2−1γ −3/2(−√
nl

√
nl − 1

√
nl + |m|δnlnr+2

+ √
nl + 1

√
nl + |m| + 1

√
nl + |m| + 2δnlnr−1

)
,

where n = min(nl, nr). Note, that the asymptotic longitudinal dipole matrix D(mσσ ′)(r) is symmetric for σ and σ ′, and the asymp-

totic transversal dipole matrix P(mm′σ)(r) is nonsymmetric but satisfies the relation P
(mm′σ)

jj ′ (r) = P
(m′mσ)

j ′j (r).

3.6. Finding optimal value of smax and matching point rmatch of numerical and asymptotic solutions

At large s elements of matrix A(0) (21) take form

A(0)
ss = (2s + 2|m| + 1)2 − 1

4
+ p2

2
+ O(s−2),

(45)A
(0)
ss+2 = A

(0)
ss−2 = −p2

4
+ O(s−2).

On intervals s ∈ (sb, se) at sb, se � 1, we suppose that the elements of matrix A(0) have slow dependence on s. Therefore, for a
given value of λ solution of algebraic problem (19), (45) will be represented in the form

(46)cs = xcs+2, cs−2 = xcs.

From (46), (19), (45) we have algebraic equation with respect to factor x

(47)x + 1

x
= d ≡ (2s + 2|m| + 1)2 − 1 − 4λ + 2p2

p2
.

For s > s2, where s2 is determined from Eq. (47) at d = 2,

(48)s2 =
√

4λ + 1 − 2|m| − 1

2
,

Eq. (47) has two real solutions. One of them,

(49)xs = (
√

(s − s2)(s + s2 + 2|m| + 1) + √
p2 + (s − s2)(s + s2 + 2|m| + 1) )2

p2
,

is greater by absolute value then unity and the other, 1/xs , is smaller one. It means that the solution of (46) with decreased
coefficients cs at increased s exists. For s < s2 we have two solutions with oscillating coefficients cs . Then solution of Eq. (47),
allows us to determine algorithm for evaluation smax:

(50)
smax−1∏
s=s2

xs < 1/eps,
smax∏
s=s2

xs > 1/eps,

where eps = 2−52 ≈ 2 · 10−16 is the relative machine precision.
We need an approximate value of the eigenvalue λ for the above calculation. If we use the fact all diagonal elements A

(0)
ss of

the tridiagonal matrix A(0) and eigenvalues εj (p) or λj (p) increased by number j , then we can obtain the upper bound of the
eigenvalue λN with the help of Wilkinson’s shift [25]

(51)shift = G + A(0)
sN sN

+
√

G2 + (A
(0)
sN sN−2)

2, G = A
(0)
sN−2sN−2 − A

(0)
sN sN

2
,

where sN = 2(N − 1) + (1 − σ)/2. But shift � λN at p � 1. It this case we use asymptotic expression of the eigenvalue (35) at
p � 2sN , since the asymptotic expression gives an upper bound of the eigenvalue.
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The matching point rmatch of the numerical and asymptotic solution is calculated as follows

rmatch = max(rε, rh, rq),

(52)rε = 18

√
|ε(18)

N |
eps

, rh = 18

√
|H(18)

NN |
eps

, rq = 17

√
|Q(17)

NN−1|
eps

,

since |ε(2k)
j | < γ |ε(2k+2)

j |, |Q(2k−1)

jj ′ | < γ |Q(2k+1)

jj ′ |, |H(2k)

jj ′ | < γ |H(2k+2)

jj ′ | and |Q(17)

jj ′ | � |Q(17)
NN−1|, |H(18)

jj ′ | � |H(18)
NN |.

The matching points rmatch = rd and rmatch = rp of the numerical and asymptotic solution are calculated follows

(53)rd = 17

√
|D(18)

NN |
eps

, rp = 18

√
max(|P (18)

N−1N |, |P (18)
NN−1|)

eps
,

since |D(2k)

jj ′ | < γ |D(2k+2)

jj ′ |, |P (2k)

jj ′ | < γ |P (2k+2)

jj ′ |, |D(18)

jj ′ | � |D(18)
NN |, |P (18)

jj ′ | � max(|P (18)
N−1N |, |P (18)

NN−1|).

3.7. Construction of regular and irregular matrix-solutions

Now let us consider the asymptotic solution following [38]

(54)χjio (r) = R(pio , r)φjio (r) + dR(pio , r)

dr
ψjio (r),

(55)φjio (r) =
kmax∑
k=0

φ
(k)
jio

r−k, ψjio (r) =
kmax∑
k=0

ψ
(k)
jio

r−k,

where R(pio , r) = p
−1/2
io

r−1(ı F0(pio , r) + G0(pio , r))/2, F0(pio , r) and G0(pio , r) are the Coulomb regular and irregular func-
tions, respectively [22]. These functions satisfy the condition

(56)G0(pio , r)
dF0(pio , r)

dr
− dG0(pio , r)

dr
F0(pio , r) = pio .

After substituting the expansions (55) into Eq. (11) and equating the coefficients at the same powers of r we arrive at the set of
recurrence relations with respect to the unknown coefficients φ

(k)
jio

and ψ
(k)
jio

:(
p2

io
− 2E + ε

(0)
j

)
φ

(k)
jio

− 2p2
io
(k − 1)ψ

(k−1)
j io

− (k − 2)(k − 3)φ
(k−2)
j io

− 2Z(2k − 3)ψ
(k−2)
j io

+
k∑

k′=1

(
ε
(k′)
j + H

(k′)
jj

)
φ

(k−k′)
j io

=
N∑

j ′=1,j ′ 
=j

k∑
k′=1

[(
(2k − k′ − 3)Q

(k′−1)

jj ′ − H
(k′)
jj ′

)
φ

(k−k′)
j ′io

(57)+ (
2p2

io
Q

(k′)
jj ′ + 4ZQ

(k′−1)

jj ′
)
ψ

(k−k′)
j ′io

]
,

(
p2

io
− 2E + ε

(0)
j

)
ψ

(k)
jio

+ 2(k − 1)φ
(k−1)
j io

− k(k − 1)ψ
(k−2)
j io

+
k∑

k′=1

(
ε
(k′)
j + H

(k′)
jj

)
ψ

(k−k′)
j io

(58)=
N∑

j ′=1,j ′ 
=j

k∑
k′=1

[(
(2k − k′ + 1)Q

(k′−1)

jj ′ − H
(k′)
jj ′

)
ψ

(k−k′)
j ′io − 2Q

(k′)
jj ′ φ

(k−k′)
j ′io

]
.

We get the leading terms of the eigenfunction, the eigenvalue p2
io

, i.e. the initial data for solving the above recurrence equations
from (57) and (58), as shown in [23]

(59)φ
(0)
j0io

= δj0io , ψ
(0)
j0io

= 0, p2
io

= 2E − ε
(0)
io

,

that correspond to the leading term of χjio (r) satisfying the asymptotic expansion at large r

(60)χjio (r) = exp(ıpior + ıζ ln(2pior) + ıδc
io
)

2r
√

pio

δjio , ζ = Z

pio

,

where ζ is the Sommerfeld parameter and δc
io

= arg�(1 − ıζ ) is the Coulomb phase. Open channels have p2
io

� 0, and close

channels have p2 < 0. Suppose that there are No � N open channels, i.e. p2 � 0 for io = 1, . . . ,No and p2 < 0 for io = No + 1,
io io io
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. . . ,N . Using the explicit asymptotic expressions of the matrix elements (35) we get the explicit expression of the coefficients φ
(k)
jio

and ψ
(k)
jio

via the number of the state (or of the channel) io = no + 1 and the number of the current equation j = 1, . . . ,N . The
calculation was performed by the algorithm implemented in MAPLE up to kmax = 15. For example, at N � io + k and k = 0,1,2
such elements take the form

φ
(0)
ioio

= 1, ψ
(0)
ioio

= 0,

φ
(1)
io−1io

= 0, ψ
(1)
io−1io

=
√

no

√
no + |m|
γ

,

φ
(1)
ioio

= 0, ψ
(1)
ioio

= −2no + |m| + 1

γ
,

φ
(1)
io+1io

= 0, ψ
(1)
io+1io

=
√

no + 1
√

no + |m| + 1

γ
,

φ
(2)
io−2io

= −√
no − 1

√
no + |m| − 1

√
no

√
no + |m|

(
p2

io

2γ 2
+ 1

4γ

)
,

ψ
(2)
io−2io

= 0,

φ
(2)
io−1io

= √
no

√
no + |m|

(
p2

io
(2no + |m|)

γ 2
+ 1

2γ

)
,

ψ
(2)
io−1io

= 0,

φ
(2)
ioio

= −p2
io
(6n2

o + 6no + 2 + |m|(6no + 3) + |m|2)
2γ 2

− 2no + |m| + 1

2γ
,

ψ
(2)
ioio

= Z(2no + |m| + 1)

2p2
io
γ

,

φ
(2)
io+1io

= √
no + 1

√
no + |m| + 1

(
p2

io
(2no + |m| + 2)

γ 2
+ 1

2γ

)
,

ψ
(2)
io+1io

= 0,

φ
(2)
io+2io

= −√
no + 1

√
no + |m| + 1

√
no + 2

√
no + |m| + 2

(
p2

io

2γ 2
− 1

4γ

)
,

(61)ψ
(2)
io+2io

= 0.

In addition, one should mention that at large r the linearly independent function (54) satisfy the Wronskian-type relation

(62)Wr
(
Q(r);χ∗(r),χ(r)

) = ı

2
Ioo,

where Wr(•;a(r), b(r)) is a generalized Wronskian with a long derivative defined as

(63)Wr
(•;a(r), b(r)

) = r2
[
aT(r)

(
db(r)

dr
− •b(r)

)
−

(
da(r)

dr
− •a(r)

)T

b(r)

]
.

Here “∗” denotes the complex conjugate and Ioo is the unit matrix of dimension No × No. These relations will be used to examine
the desirable accuracy of the above expansion. Note, that in each kth order, recurrences (57) and (58) include implicitly only the
factor Z/pio . Expansion (55) holds for rmax � max(|Z/pio |, (2io + |m| − 1))/

√
γ .

4. Description of the POTHMF program

In order to solve radial bound state or scattering problem one needs to calculate radial matrix elements on interval � =
[rmin, rmax]. The POTHMF program calculates potential matrix elements (12) in Gaussian–Legendre nodes of order k + 1 in
each subinterval �j = [rj−1, rj ] where � = ⋃n

j=1 �j . In each subinterval �j the nodes of a finite-elements grid are determined
by

(64)rk
j,i = rj−1 + hj

k
i, hj = rj − rj−1, i = 0, k,
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where k order of finite-element shape functions (interpolating Lagrange polynomials) of the radial solution χ(r). Dipole matrix
elements (38)–(39) are calculated in nodes (64), because of they are multiplied by χ(r) given the same nodes in calculation of
integral (75)–(76).

Note, that potential curves and matrix elements of radial coupling calculated by the POTHMF program can be used for solving
bound state and scattering problems using appropriate programs from CPC or other available program libraries. In this paper, we
use the finite-element KANTBP program [26] to solve the above mentioned problems.

Fig. 5 presents a flow diagram for the POTHMF program. The function of each subroutine is described in Section 5. The
POTHMF program is called from the main routine (supplied by a user) which sets dimensions of the arrays and is responsible for
the input data. In the present code each array declarator is written in terms of the symbolic names of constants. These constants are
defined in the following PARAMETER statement in the main routine:

PARAMETER (MTOT=600 000,MITOT=70 000,NMESH1=7)

where

• MTOT is the dimension of the working DOUBLE PRECISION array TOT.
• MITOT is the dimension of the working INTEGER array ITOT.
• NMESH1 is the dimension of the DOUBLE PRECISION array RMESH containing the information about the subdivision of

the adial interval [rmin, rmax] on subintervals and number of elements on each one of them. NMESH1 is always odd and � 3.

A more concrete assignment of these dimensions is discussed below. In order to change the dimensions of the code, all one has to
do is to modify the single PARAMETER statement defined above in the main program unit.

The calling sequence for the subroutine POTHMF is:

CALL POTHMF(TITLE,IMATRX,IDIPOL,IFUNAS,WC,CHARGE,MDIM,NPOL,
1 SHIFTS,TOT,MTOT,ITOT,MITOT,IPRINT,IPRSTP,RMESH,
2 NMESHL,IPARTL,MQNL,POTENL,IOUPL,
3 NMESHR,IPARTR,MQNR,POTENR,IOUPR,
4 FNOUTP,IOUTP,DIPOLD,IOUDD,WFUNAS,IOUWF)

Input data

TITLE CHARACTER title of the run to be printed on the output listing. The title should be no longer than 70 characters.

IMATRX INTEGER flag for performing the calculation of the potential matrix elements:
= 0—calculation of potential matrices elements is not carried out;
= 1—calculation of potential matrices elements is carried out only for the first atomic state, i.e.
for continuum state;
= 2—calculation of potential matrices elements is carried out only for the second atomic state,
i.e. for bound state;
= 3—calculation of potential matrices elements is carried out for both atomic states.

IDIPOL INTEGER flag for performing the calculation of the longitudinal/transversal dipole matrix elements:
= 0—calculation of longitudinal/transversal dipole matrix elements is not carried out;
= 1—calculation of longitudinal/transversal dipole matrix elements is carried out, i.e. between
first and second atomic states.

IFUNAS INTEGER flag for performing the calculation of the asymptotic matrix solutions of the scattering problem:
< 0—calculation of asymptotic matrix solutions is not carried out;
� 0 and � 15—calculation of regular and irregular asymptotic solutions and their derivatives are
carried out with order IFUNAS at RMESH(NMESHL).

WC REAL*8 cyclotron frequency > 0.

CHARGE REAL*8 nuclear charge.

MDIM INTEGER number of coupled differential equations.

NPOL INTEGER order of finite-element shape functions (interpolating Lagrange polynomials). Usually set to 6.
This is parameter corresponding to a number of nodes k of subinterval (64) using in KANTBP
program [26]. In case of NPOL = 0 POTHMF program calculates the matrix elements in the
endpoints of subintervals and user cannot use KANTBP program [26].
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SHIFTS REAL*8 SHIFTS contains the given double energy spectrum value ε = 2E (in a.u.) for scattering
problem. This value should be greater than the first threshold and not equals to the open
threshold values εth

mj (γ ) from (36). Else the message about an error is printed and the execution
of the program is aborted. The number of open channels No is calculated in the program by
formula 1 � No = max2E>εth

mj
j < N .

IPRINT INTEGER level of print:
= 0—minimal level of print. The initial data, short information about the numerical scheme
parameters, main flags and keys are printed out;
= 1—matrix elements calculated are printed out in corresponding point r with step IPRSTP
additionally;
= 2—optimal numbers Nmax of the terms of expansion (17) calculated by the algorithm (50) are
printed out in corresponding point r with step IPRSTP additionally.

IPRSTP INTEGER step with which the calculated matrix elements are printed out.

RMESH REAL*8 array RMESH contains information about subdivision of interval [rmin, rmax] of radius r on
subintervals. The whole interval [rmin, rmax] is divided as follows: RMESH(1) = rmin,
RMESH(NMESHL) = rmax, and the values of RMESH(I) set the number of elements for each
subinterval [RMESH(I-1), RMESH(I+1)], where I = 2,4, . . . , NMESHL–1.

NMESHL
INTEGER

dimensions of array RMESH of the first and second atomic states, respectively. For the
calculation of longitudinal/transversal dipole matrix elements used NMESHR. These
dimensions always should be odd and NMESHL � NMESHR � 3.

NMESHR

IPARTL
INTEGER

parities of the first and second atomic states calculated by formula (1 − σ)/2, respectively:
IPARTR = 0, for even parity;

=1, for odd parity.

MQNL
INTEGER

magnetic quantum numbers of the first and second atomic states, respectively.
MQNR

POTENL
CHARACTER

names of the output files (up to 55 characters) containing potential matrix elements of radial
coupling for first and second atomic states calculated for a Gaussian nodes from the interval
[RMESH(1),RMESH(NMESHL)] and [RMESH(1),RMESH(NMESHR)], respectively.

POTENR

IOUPL
INTEGER

number of the logical device for storing data into files POTENL and POTENR, respectively.
IOUPR

FNOUTP CHARACTER name of the output file (up to 55 characters) for printing out the results of the calculation. It is
system specific and may include a complete path to the file location.

IOUTP INTEGER number of the output logical device for printing out the results of the calculation (usually set
to 7).

DIPOLD CHARACTER name of the output file (up to 55 characters) containing longitudinal/transversal dipole matrix
elements of radial coupling for first and second atomic states calculated for a given set of radial
points from the interval [RMESH(1),RMESH(NMESHR)].

IOUDD INTEGER number of the logical device for storing data into file DIPOLD.

WFUNAS CHARACTER name of the output file (up to 55 characters) containing regular and irregular asymptotic
solutions and their derivatives for the scattering problem.

IOUWF INTEGER number of the logical device for writing data from file WFUNAS.

TOT REAL*8 working vector of the DOUBLE PRECISION type.

ITOT INTEGER working vector of the INTEGER type.

MTOT INTEGER dimension of the DOUBLE PRECISION working array ITOT. The last address ILAST of array
TOT is calculated and then compared with the given value of MTOT. If ILAST > MTOT the
message about an error is printed and the execution of the program is aborted. In the last case, in
order to carry out the required calculation it is necessary to increase the dimension MTOT of
array TOT to the ILAST value taken from the message.
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MITOT INTEGER dimension of the INTEGER working array ITOT. The last address ILAST of array ITOT is
calculated and then compared with the given value of MITOT. If ILAST > MITOT the message
about an error is printed and the execution of the program is aborted. In the last case, in order to
carry out the required calculation it is necessary to increase the dimension MITOT of array ITOT
to the ILAST value taken from the message.

Output data

The results of the calculation of potential matrix elements in the Gauss–Legendre nodes from the interval [RMESH(1),
RMESH(NMESHL/NMESHR)] are written using unformatted segmented records into file POTENL/POTENR with number IOUP
(IOUPL/IOUPR), according to the following operator:

WRITE(IOUP) L,(((UPOT(I,J,IG),J=I,MDIM),I=1,MDIM),IG=1,NGQ),
1 (((QPOT(I,J,IG),J=I+1,MDIM),I=1,MDIM),IG=1,NGQ)

The results of the calculation of potential matrix elements in the RMESH (NMESHL / NMESHR) are written using unformatted
segmented records into the above file, according to the following operator:

WRITE(IOUP) NGRID,((H(I,J),J=I,MDIM),I=1,MDIM),
1 ((Q(I,J),J=I+1,MDIM),I=1,MDIM)

The results of the calculation of longitudinal/transversal dipole matrix elements for the given set of radial points from the inter-
val [RMESH(1),RMESH (NMESHR)] are written using unformatted segmented records into file DIPOLE with number IOUDD,
according to the following operator:

WRITE(IOUDD) IG,((DD(I,J),J=1,MDIM),I=1,MDIM)

The results of the calculation of regular and irregular asymptotic matrix-solutions and their derivatives are written using unformatted
segmented records into file WFUNAS with number IOUWF, according to the following operator:

WRITE(IOUWF) MDIM,NOPEN,(QR(I),I=1,NOPEN),
1 (( PREG(I,J),J=1,NOPEN),I=1,MDIM),
2 (( PIRR(I,J),J=1,NOPEN),I=1,MDIM),
3 ((DPREG(I,J),J=1,NOPEN),I=1,MDIM),
4 ((DPIRR(I,J),J=1,NOPEN),I=1,MDIM)

In the above, parameters presented in the WRITE statement have the following meaning:

• L is number of finite element.
• NGRID is the number of grid points.
• IG is the number of grid point.
• NGQ = NPOL + 1.
• NOPEN is the number of open channels.
• Arrays UPOT and QPOT contain the potential matrices values calculated.
• Array DD contains the longitudinal/transversal dipole matrix values calculated.

• Array QR contains the values of the momentums, QR(J) =
√

2E − εth
mj (γ ).

• Arrays PREG, PIRR and DPREG, DPIRR contain the values of the regular and irregular asymptotic matrix-solutions and their
derivatives, respectively.

5. Description of subprogram units

A flow diagram for the POTHMF program is presented in Fig. 5. The function of each subroutine is briefly described below.
Additional details may be found in COMMENT cards within the program.

• Subroutine ERRMDM prints error messages when high-speed storage requested by a user is exceeded and stops the execution
of program POTHMF.

• Subroutine GAULEG [39] calculates nodes and weights of the Gauss–Legendre quadrature. This subroutine is included in main
body program.
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• Subroutine FEGRID [26] calculates nodal points for the finite-element uniform grid. This subroutine is included in main body
program.

• Subroutine HQPOTM calculates the potential matrix elements V(r), Q(r) of dimension MDIM × MDIM of radial coupling in
the Gaussian nodes and storing using unformatted segmented records into file POTEN.

• Subroutine MAGNET calculates the potential matrix elements V(r), Q(r) of dimension MDIM × MDIM.
• Subroutine SPECTR evaluates the potential matrix elements H(r), Q(r) of dimension MDIM × MDIM and the potential

curves ε(r) of dimension MDIM calculated via solutions of the algebraic problems (19) and (25) of dimension Nmax × Nmax.
• INTEGER function NOPTIM calculates the optimal number Nmax for the calculation of the algebraic eigenvalue problem (19)

with the relative machine precision.
• Subroutine SOLUTN solves the algebraic eigenvalue problem (19) and sets of inhomogeneous algebraic equations (25).
• DOUBLE PRECISION function AMKANT prepares matrix A(0) in the eigenvalue problem (19) and its derivatives.
• DOUBLE PRECISION function SIN2 prepares coefficients of p2 of matrix A(0) in the eigenvalue problem (19).
• Subroutine DSTEVR [33] solves the first MDIM eigenvalues and corresponding eigenvectors of the algebraic eigenvalue prob-

lem for the real symmetric tridiagonal matrix.
• Subroutine DBANDM calculates LDLT factorization of the tridiagonal matrix. This factorization is used in subroutine

DPTTRS.
• Subroutine DPTTRS [33] solves sets of inhomogeneous algebraic equations for the real symmetric tridiagonal matrix.
• DOUBLE PRECISION function QASINF calculates the terms of the potential matrix elements Q(r) in expansion (35).
• DOUBLE PRECISION function HASINF calculates the terms of the potential matrix elements H(r) in expansion (35).
• DOUBLE PRECISION function SPEINF calculates the terms of the potential curve ε(r) in expansion (35).
• Subroutine DIPPOT calculates the longitudinal/transversal dipole matrices elements D(mσσ ′)(r)/P(mm′σ)(r) of dimension

MDIM × MDIM of radial coupling in the given set of radial points and stores them using unformatted segmented records
into file DIPOLD.

• Subroutine DIPOLE evaluates the longitudinal dipole matrix elements D(mσσ ′)(r) of dimension MDIM × MDIM.
• Subroutine SPECTD evaluates the longitudinal dipole matrix elements D(m−1+1)(r) of dimension MDIM × MDIM calculated

via solutions of the algebraic eigenvalue problem (19) of dimension Nmax × Nmax.
• DOUBLE PRECISION function DASINF calculates the terms of the longitudinal dipole matrix elements D(mσσ ′)(r) of expan-

sion (42).
• Subroutine CPOLAR evaluates the transversal dipole matrix elements P(mm′σ)(r) of dimension MDIM × MDIM.
• Subroutine SPECTP evaluates the transversal dipole matrix elements P(m<m>σ)(r) at m< = min(|m|, |m′|), m> = max(|m|,

|m′|) of dimension MDIM × MDIM calculated via solutions of the algebraic eigenvalue problem (19) of dimension Nmax ×
Nmax.

• DOUBLE PRECISION function CASINF calculates the terms of the transversal dipole matrix elements P(m<m>σ)(r) of ex-
pansion (42).

• Subroutine ASYMFN calculates the regular and irregular asymptotic matrix-solutions χ s(r), χc(r) and their derivatives and
writes them using unformatted segmented records into file WFUNAS. Also this subroutine calculates the generalized Wron-
skian relation by the formula (69) using DOUBLE PRECISION function QASINF.

• Subroutine MAGASC calculates the regular and irregular asymptotic matrix-solutions χ s(r), χ c(r) and their derivatives of the
scattering problem.

• Subroutine FUNINF calculates of terms of expansion (54), (55) of asymptotics of regular and irregular solutions and their
derivatives and prints a message about recommended right bound of interval rmax and value of the matching point rmatch from
Eq. (52) with the given accuracy epsc = 10−14.

• Subroutine RCWFNN calculates the Coulomb regular and irregular solutions and their derivatives with the given accuracy
epsc = 10−14. This subroutine is the modified version of the subroutine RCWFN [40] for DOUBLE PRECISION type. This
subroutine is included in main body program.

6. Test desk

The test run which accompanies the POTHMF program computes the potential and longitudinal dipole matrix elements for the
given atomic states (for the initial state σ = +1 and for the final state σ = −1) with Z = 1, γ = 1 and m = 0. After that, we applied
the calculated matrix elements to the calculation of the ground state energy and reaction matrix for initial and final atomic states
with help of the KANTBP program [26], respectively.

File ‘INITIAL.INP’ contains the initial data NAMELIST POTDAT for the calculation of the potential and longitudinal dipole
matrix elements for the given atomic states for the POTHMF program. Also this file contains the initial data NAMELIST PARDIS
and NAMELIST PARSCP for the calculation of the ground state energy and reaction matrix for the KANTBP program (see details
in [26]), respectively. File ‘INITIAL.INP’ contains the following data:



O. Chuluunbaatar et al. / Computer Physics Communications 178 (2008) 301–330 317
&POTDAT TITLE=’ Potential and dipole matrices elements ’,
IMATRX=3,IDIPOL=1,IFUNAS=15,WC=0.1D1,CHARGE=1.D0,MDIM=6,
NPOL=4,SHIFTS=3.4D0,IPRINT=1,IPRSTP=1501,
RMESH=0.0D0,200.D0,3.D0,200.D0,20.D0,200.D0,100.D0,
FNOUTP=’FNOUTP.LPR’,IOUTP=7,
NMESHL=7,IPARTL=1,MQNL=0,POTENL=’POTENL.PTN’,IOUPL=8,
NMESHR=7,IPARTR=0,MQNR=0,POTENR=’POTENR.PTN’,IOUPR=9,
DIPOLD=’DIPOLP.PTN’,IOUDD=10,WFUNAS=’WFUNAS.PTN’,IOUWF=1

&END
&PARDIS TITLE1=’ Bound state energy levels ’,

IPTYPE=0,NROOT=1,IDIM=3,RTOL=1.D-15,
NITEM=150,SHIFT=-0.7D0,IPRINT=2,IPRSTP=480,
NDIR=1, NDIL=6, NMDIL=1,IBOUND=3,
FNOUTR=’3DNSAS.LPR’,IOUT=11,FMATRR=’3DNSAS.MAT’,IOUM=12,
EVWFNR=’3DNSAS.WFN’,IOUF=0

&END
&PARSCP TITLE2=’ Reaction matrix ’,

IPTYPE=1,NROOT=1,SHIFT=3.4D0,IPRINT=2,IPRSTP=480,IBOUND=8,
THRSHL=1.D0,3.D0,5.D0,7.D0,9.D0,11.D0,
FNOUTL=’3DNSSC.LPR’,NOUT=14,FMATRL=’3DNSSC.MAT’,NOUM=15,
EVWFNL=’3DNSSC.WFN’,NOUF=0

&END

Physical parameters CHARGE, WC, MQNL and order of asymptotic solutions IFUNAS are accessed via general common block
COMMON /CHARGE/ CHARGE, WC, MQNL, IFUNAS. The user subroutine ASYMSC should contain this common block and
could be written as follows:

SUBROUTINE ASYMSC(RMAX,NDIM,NOPEN,QR,PREG,PIRR,DREG,DIRR,IOUT)
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C . .
C . P R O G R A M .
C . TO CALCULATE THE REGULAR, IRREGULAR .
C . ASYMPTOTIC MATRIX SOLUTIONS PREG, PIRR .
C . AND THEIR DERIVATIVES DREG, DIRR AT RMAX .
C . .
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IMPLICIT REAL*8 (A-H,O-Z)
PARAMETER (NWOR=3000)
DIMENSION QR(NOPEN),PREG(NDIM,NOPEN),PIRR(NDIM,NOPEN),
1 DREG(NDIM,NOPEN),DIRR(NDIM,NOPEN)
DIMENSION WORK(NWOR)
COMMON /CHARGE/ CHARGE,WC,MQNL,IFUNAS
CALL MAGASC(RMAX,NDIM,NOPEN,QR,PREG,PIRR,DREG,DIRR,IFUNAS,
1 WORK,NWOR,CHARGE,WC,MQNL,IOUT)
RETURN
END

The test run which accompanies this paper took 7 s for calculation of potential curves, matrix elements and dipole transition
matrix elements, and 2 s for calculation of discrete and continuous spectrum problems using the obtained potential curves and matrix
elements on the Intel Pentium IV 2.4 GHz, respectively. The potential curves εj (r), matrix elements Qij (r), Hij (r), longitudinal

dipole matrix elements D
(mσσ ′)
ij (r) and corresponding wave functions of continuum spectrum of this test run are presented in

Figs. 1–4, 6. The finite element grid in r has been chosen as 0 (200) 3 (200) 20 (200) 100 from the initial data list (see description of
array RMESH). The numbers in parentheses are the numbers of finite elements of order k = 4 on each subinterval (see description
value NPOL).

7. Benchmark calculations of the photoionization cross-sections

In this section we present calculation of photoionization cross-sections with the help of the KANTBP program using potential
curves, radial matrix elements and dipole matrix elements computed by the POTHMF program. Eigenfunction of the continuum
spectrum Ψ Emσ (r, η) with the energy ε = 2E describing the ejected electron above the first threshold εth (γ ) = γ (|m| + m + 1) is
i m1
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Fig. 1. Potential curves εj (r), at m = 0 and γ = 1. Full line—odd state; dashed line—even state. Dotted lines display the asymptotic behavior at large r .

Fig. 2. Radial matrix elements Qjj+1(r), Qjj+2(r) at m = 0 and γ = 1. Full line—odd state; dashed line—even state. Dotted lines display the asymptotic behavior
at large r .

Fig. 3. Radial matrix elements Hjj (r), Hjj+1(r) at m = 0 and γ = 1. Full line—odd state; dashed line—even state. Dotted lines display the asymptotic behavior at
large r .

expressed as follows:

(65)Ψ Emσ
i (r, η) =

N∑
j=1

Φmσ
j (η; r)χ̂ (mσ)

ji (E, r), i = 1, . . . ,No,

where solution χ̂ (mσ)
(E, r) is the radial part of the “incoming” or eigenchannel wave function. In this case the eigenfunction

Ψ Emσ
i (r, η) is normalized by

(66)

〈
Ψ Emσ

i (r, η)
∣∣Ψ E′m′σ ′

i′ (r, η)
〉 = N∑

j=1

∞∫
0

r2 dr
(
χ̂

(mσ)
ji (E, r)

)∗
χ̂

(m′σ ′)
j i′ (E′, r)

= δ(E − E′)δmm′δσσ ′δii′ .
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Fig. 4. Longitudinal dipole matrix elements D
(mσσ ′)
jj

(r), D
(mσσ ′)
jj+1 (r) at m = 0, σ = −1, σ ′ = 1 and γ = 1. Dotted lines display the asymptotic behavior at large r .

Fig. 5. Flow diagram of the POTHMF program.

The radial eigenchannel function χ̂ (mσ)
(E, r) is calculated by formula

(67)χ̂ (mσ)
(E, r) =

√
2

π
χ (p)(r)B cos δ.

Here, χ (p)(r) is the numerical solution of Eq. (11) that satisfies the “standing” wave boundary conditions (15) and has the standard
asymptotic form [26]
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Fig. 6. The wave functions Ψ1 and Ψ2 of the first (a) and second (b) open channels of the continuum spectrum states having asymptotic (67) in the zx plane for
σ = −1, Z = 1, γ = 1 and m = 0 with energy E = 1.7 a.u. above the second threshold 1/2εth

m2 = 1.5.

(68)χ (p)(r) = χ s(r) + χc(r)K, K B = B tan δ, BBT = BTB = Ioo,

where χ s(r) = 2�(χ(r)) and χ c(r) = 2�(χ(r)), K is the numerical short-range reaction matrix, tan δ and B are the eigenvalue
and the orthogonal matrix of a set of the corresponding eigenvectors. In the latter the regular and irregular functions satisfy the
generalized Wronskian relation (63) at large r

(69)Wr
(
Q(r);χ c(r),χ s(r)

) = Ioo.

The radial part of the “incoming” wave function is expressed via the numerical “standing” wave function and short-range reaction
matrix K by the relation

(70)χ̂ (mσ)
(E, r) =

√
2

π
χ−(r) = ı

√
2

π
χ (p)(r)(Ioo + ıK)−1

and has the asymptotic form

(71)χ̂ (mσ)
(E, r) =

√
2

π

(
χ(r) − χ∗(r)S†),

where S is the short-range scattering matrix and

(72)S†S = SS† = Ioo, K = ı(Ioo + S)−1(Ioo − S), S = (Ioo + ı K)(Ioo − ıK)−1.

The total wave function having the asymptotic form “waves going into the center + outgoing wave” [28],

(73)Ψ
(−)

Em
→←(r, η) = Ψ Emσ=+1(r, η) ± Ψ Emσ=−1(r, η)√

2
exp(−ıδc).

In terms of the above definitions the cross section of photoionization σd
mσσ ′(ω) by the light linearly polarized along z-axis and

σ
p

mm′σ (ω) by the light circularly polarized in the plane XOY are expressed as

(74)σd
mσσ ′(ω) = Cω

No∑
i=1

∣∣D̂mσσ ′
i,i′,v′ (E)

∣∣2
, σ

p

mm′σ (ω) = Cω

No∑
i=1

∣∣P̂ mm′σ
i,i′,v′ (E)

∣∣2
.

Here D̂mσσ ′
i,i′,v′ (E) and P̂ mm′σ

i,i′,v′ (E) are the matrix elements of the longitudinal and transversal dipole moment, respectively:

(75)

D̂mσσ ′
i,i′,v′ (E) = 〈

Ψ Emσ
i (r, η)

∣∣rη∣∣Ψ m′=m,σ ′=−σ
i′v′ (r, η)

〉
=

N∑
j=1

N∑
j ′=1

rmax∫
0

r2 dr
(
χ̂

(mσ)
ji (E, r)

)∗
D

(mσσ ′)
jj ′ (r)χ

(m′=m,σ ′=−σ)

j ′i′v′ (r),

(76)

P̂ mm′σ
i,i′,v′ (E) =

〈
Ψ Emσ

i (r, η)

∣∣∣∣r
√

1 − η2
√

2

∣∣∣∣Ψ m′=m±1,σ ′=σ
i′v′ (r, η)

〉

=
N∑

j=1

N∑
j ′=1

rmax∫
r2 dr

(
χ̂

(mσ)
ji (E, r)

)∗
P

(mm′σ)

jj ′ (r)χ
(m′=m±1,σ ′=σ)

j ′i′v′ (r),
0
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Fig. 7. Photoionization cross-sections σd
mσσ ′ (ω) (a) and σ

p

mm′σ (ω) (b). (a) The photoionization is from the ground state 1s0 with γ = 0.1, σ ′ = 1 and m = 0 to final

state with σ = −1. (b) The photoionization is from the excited state 2p−1 with γ = 0.05, σ = 1 and m′ = −1 to final state with m = 0. The arrows indicate the
successive Landau thresholds 1/2εth

mj
from (35), where j runs from 1 to 2 in (a) and runs from 1 to 5 in (b).

where longitudinal D(mσσ ′)(r) and transversal P(mm′σ)(r) dipole matrix elements are calculated by formulae (38) and (39). The
cross sections (74) in terms of the D̂mσσ ′

i,i′,v′ (Ê) and P̂ mm′σ
i,i′,v′ (Ê) expressed via D(mσσ ′)(r̂) and transversal P(mm′σ)(r̂) in scaled variable r̂

and the parameters Ê, Ẑ reads as

(77)σd
mσσ ′(ω) = Cω

γ 2

No∑
i=1

∣∣D̂mσσ ′
i,i′,v′ (Ê)

∣∣2
, σ

p

mm′σ (ω) = Cω

γ 2

No∑
i=1

∣∣P̂ mm′σ
i,i′,v′ (Ê)

∣∣2
.

In the above expressions, ω = E − Em′σ ′i′v′ is the frequency of radiation, Enlm ≡ Em′σ ′i′v′ < εth
mi′(γ )/2 is the energy of the ini-

tial bound state Ψ m′σ ′
i′,v′ (r, η) with i′ = 1 and vibration number v′ = 0,1, . . . ,N − 1, E is the energy of the final continuum state

Ψ Emσ
i (r, η) such that No is the number of the open channels, C = 4π2αa2

0 is a constant, α is the fine-structure constant, and a0 is
the Bohr radius. The continuum spectrum solution χ (p)(r) having asymptotic of “standing” wave conditions and reaction matrix K
required for calculation of (67) or (71), and discrete spectrum solution χm′σ ′

i′v′ (r) and eigenvalue Em′σ ′i′v′ have been calculated with
the help of the program KANTBP [26]. One can see that using (67) or (71) for calculating the absolute value in formula (74) yields
the same result. Therefore, (67) is preferable for using real arithmetics. Note, that using physical function constructed via (67) with
mixed parity that has an appropriate asymptotic of the incoming wave in cylindrical coordinates on the whole axis z leads to the
same result [28].

Fig. 7 displays the photoionization cross-sections σd
mσσ ′(ω) and σ

p

mm′σ (ω) calculated by programs POTHMF and KANTBP. The
finite element grids of r̂ have been chosen as 0 (200) 3 (200) 20 (200) 100 for the discrete spectrum and 0 (200) 3 (200) 20 (200)
100 (1000) 1000 for the continuum one. The numbers in parentheses are the numbers of finite elements of order k = 4 on each
interval. In the calculations we have used the following values of physical constants [41]: the Bohr radius a0 = 5.29177 × 10−11 m,
the fine-structure constant α = 7.29735 × 10−3 and 1 cm−1 = 4.55633 × 10−6 a.u.

Fig. 7(a) shows the photoionization cross section from the ground state 1s0 with γ = 0.1, σ ′ = 1 and m = 0 to final state
with σ = −1. The number of open channels is equal to 1 and 2 and dimension of the truncated system (11) is equal to N = 10.
In the whole energy interval the results are in good agreement with those of R-matrix calculations within the MQDT [12]. We
also compared our result with those of the complex-rotation method combined with a basic set of the 10 000 complex spherical
Sturmian-type expansion (CSSTE) [15] and of the 450 mixed Slater–Landau basis (MSLB) [17]. In this case the agreement is
good between the thresholds, but not near them. Fig. 7(b) shows the photoionization cross section from the excited state 2p−1 with
γ = 0.05, σ = 1 and m′ = −1 to final state with m = 0. The number of the open channels varied from 1 to 5 and dimension of
the truncated system (11) is equal to N = 18. We compared our result with those of the complex-rotation method combined with a
basic set of the 10 000 CSSTE [16] and of the 288 MSLB [17]. In this case we have the some agreement between the thresholds,
but not near them. So, the calculated photoionization cross sections have the true behavior above the thresholds that is one of the
goal of the elaborated approach.

Fig. 8(a) displays the cross-section of photoionization by the light linearly polarized along the axis z from the rotational state
3s0 at B0 = 6.10 T (γ = 2.595 × 10−5) in the energy interval between E = 6.0 cm−1 and E = 8.0 cm−1. In this case we increased
N up to 35 and the finite element grids of r̂ = √

γ r were chosen as 0 (200) 0.03 (200) 0.2 (200) 1 for the discrete spectrum and 0
(200) 0.03 (200) 0.2 (200) 1 (2000) 100 (4000) 1000 for the continuous one. The number of nodes in these grids is 2400 and 26 401,
respectively. The corresponding maximal number of unknowns in Eqs. (11) is 84 000 and 924 035. Fig. 8(b) shows the absolute
maximum values of the continuum wave functions χ̂

(01)
(E, r̂) at E = 6.0 cm−1. We calculated the cross-sections with the energy
j1
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Fig. 8. (a) Cross-section of photoionization from the state 3s0 versus the energy for γ = 2.595×10−5 and for the final state with σ = −1, Z = 1, m = 0. (b) Absolute

maximum values of the continuum wave functions χ̂
(01)
j1 (E, r̂) at E = 6.0 cm−1 and N = 35 using for calculation in figure (a).

step 5 × 10−4 cm−1 in all the region except the vicinity of peaks, where the step was 5 × 10−6 cm−1. Note, that states 3d0, 3p0 and
3s0 with energies E320 = −0.055 555 552 07 a.u., E310 = −0.055 555 549 49 a.u. and E300 = −0.055 555 542 37 a.u., respectively,
are nearly degenerate. In this case we have a good agreement [15] used a basic set of the 62 500 CSSTE. More detailed discussion
of results of calculation of a hydrogen atom in a strong magnetic field using the POTHMF program for calculating potential curves
and matrix elements of radial coupling and dipole matrix elements is given in paper [29] where a good agreement with the results
of calculations performed by other methods has been demonstrated.

8. Conclusions

A new efficient method of calculating both discrete and continuum spectrum wave functions of a hydrogen atom in a strong
magnetic field is developed based on the Kantorovich approach to the parametric eigenvalue problems in spherical coordinates. The
two-dimensional spectral problem for the Schrödinger equation with fixed magnetic quantum number and parity is reduced to a
one-dimensional spectral parametric problem for the angular variable and a finite set of ordinary second-order differential equations
in the radial variable. The rate of convergence of the method is examined numerically and is illustrated with a number of typical
examples. The main advantage of the elaborated approach lies in the fact that calculations on all steps of the Kantorovich approach
are realized with the help of stable calculation schemes and with a prescribed accuracy. The economy of computer resources is
achieved with the help of calculated asymptotics for a set of adaptive basis functions, matrix elements of radial coupling and radial
solutions in analytic form by means of the MAPLE computer algebra algorithms [23]. This allows one to significantly reduce the
interval of integration of the corresponding boundary problems. It is shown that the calculated photoionization cross-sections has
the true threshold behavior while recombination cross-sections can be recalculated using the corresponding relations presented
in [6]. The approach developed provides a useful tool for calculations of threshold phenomena in the formation and ionization of
(anti)hydrogen-like atoms and ions in magnetic traps.
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Appendix A

****** BEGIN OF THE POTHMF RUN ******

PROBLEM: Potential and dipole matrices elements
********

C O N T R O L I N F O R M A T I O N
------------------------------------



O. Chuluunbaatar et al. / Computer Physics Communications 178 (2008) 301–330 323
NUMBER OF DIFFERENTIAL EQUATIONS. . . . . (MDIM ) = 6
ORDER OF SHAPE FUNCTIONS. . . . . . . . . (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE. . . . (NGQ ) = 5
VALUE OF NUCLEAR CHARGE . . . . . . . . . (CHARGE) = 1.00000
VALUE OF CYCLOTRON FREQUENCY. . . . . . . (WC ) = 1.00000
VALUE OF THE RELATIVE MACHINE PRECISION . (EPSY ) = 0.222045E-15

SPECIFICATIONS OF THE FIRST ATOMIC STATE
----------------------------------------

NUMBER OF FINITE ELEMENTS . . . . . . . . (NELEM ) = 600
NUMBER OF GRID POINTS . . . . . . . . . . (NGRID ) = 2401
PARITY OF STATE . . . . . . . . . . . . . (IPARTL) = 1
MAGNETIC QUANTUM NUMBER . . . . . . . . . (MQNL ) = 0
VALUE OF MATCHING POINT FOR EPSY. . . . . (RMATCH) = 39.0953

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- --------- -------- --------- -------- --------

1 200 0.000 0.01500 0.00375 3.000
2 200 3.000 0.08500 0.02125 20.000
3 200 20.000 0.40000 0.10000 100.000

LAST ADDRESS OF ARRAY ITOT USED = 3763

LAST ADDRESS OF ARRAY TOT USED = 9728

POTENTIAL MATRICES V(I,J) AND Q(I,J):

V-MATRIX AT THE POINT NO = 1 AND RADIUS RHO = 0.00070
0.4037D+07 0.1102D-37 -.4472D-22 -.1240D-37 -.5652D-53 -.8437D-69
0.1102D-37 0.2423D+08 0.2229D-37 -.1652D-22 -.5592D-38 -.9780D-54
-.4472D-22 0.2229D-37 0.6059D+08 0.7030D-38 -.8664D-23 -.2173D-38
-.1240D-37 -.1652D-22 0.7030D-38 0.1131D+09 0.3990D-38 -.5343D-23
-.5652D-53 -.5592D-38 -.8664D-23 0.3990D-38 0.1818D+09 -.4761D-39
-.8437D-69 -.9780D-54 -.2173D-38 -.5343D-23 -.4761D-39 0.2666D+09

Q-MATRIX AT THE POINT NO = 1 AND RADIUS RHO = 0.00070
0.0000D+00 0.9123D-11 0.2248D-26 0.2423D-42 0.2522D-57 -.6243D-73
-.9123D-11 0.0000D+00 0.4902D-11 0.5284D-27 0.3385D-42 -.8045D-58
-.2248D-26 -.4902D-11 0.0000D+00 0.3370D-11 0.8637D-27 -.1858D-42
-.2423D-42 -.5284D-27 -.3370D-11 0.0000D+00 0.2571D-11 -.4205D-27
-.2522D-57 -.3385D-42 -.8637D-27 -.2571D-11 0.0000D+00 0.2079D-11
0.6243D-73 0.8045D-58 0.1858D-42 0.4205D-27 -.2079D-11 0.0000D+00

POTENTIAL MATRICES V(I,J) AND Q(I,J):

V-MATRIX AT THE POINT NO = 1502 AND RADIUS RHO = 11.51962
0.8265D+00 0.1209D-03 -.1543D-01 -.3686D-03 -.9037D-05 -.2528D-06
0.1209D-03 0.2827D+01 0.6268D-03 -.4704D-01 -.1537D-02 -.4837D-04
-.1543D-01 0.6268D-03 0.4829D+01 0.1953D-02 -.9569D-01 -.4014D-02
-.3686D-03 -.4704D-01 0.1953D-02 0.6833D+01 0.4612D-02 -.1623D+00
-.9037D-05 -.1537D-02 -.9569D-01 0.4612D-02 0.8840D+01 0.9217D-02
-.2528D-06 -.4837D-04 -.4014D-02 -.1623D+00 0.9217D-02 0.1085D+02

Q-MATRIX AT THE POINT NO = 1502 AND RADIUS RHO = 11.51962
0.0000D+00 0.8748D-01 0.6854D-03 0.8256D-05 0.1360D-06 0.2879D-08
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-.8748D-01 0.0000D+00 0.1764D+00 0.2124D-02 0.3501D-04 0.7408D-06
-.6854D-03 -.1764D+00 0.0000D+00 0.2668D+00 0.4396D-02 0.9302D-04
-.8256D-05 -.2124D-02 -.2668D+00 0.0000D+00 0.3589D+00 0.7592D-02
-.1360D-06 -.3501D-04 -.4396D-02 -.3589D+00 0.0000D+00 0.4528D+00
-.2879D-08 -.7408D-06 -.9302D-04 -.7592D-02 -.4528D+00 0.0000D+00

SPECIFICATIONS OF THE SECOND ATOMIC STATE
-----------------------------------------

NUMBER OF FINITE ELEMENTS . . . . . . . . (NELEM ) = 600
NUMBER OF GRID POINTS . . . . . . . . . . (NGRID ) = 2401
PARITY OF STATE . . . . . . . . . . . . . (IPARTR) = 0
MAGNETIC QUANTUM NUMBER . . . . . . . . . (MQNR ) = 0
VALUE OF MATCHING POINT FOR EPSY. . . . . (RMATCH) = 39.0953

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- --------- -------- --------- -------- --------
1 200 0.000 0.01500 0.00375 3.000
2 200 3.000 0.08500 0.02125 20.000
3 200 20.000 0.40000 0.10000 100.000

LAST ADDRESS OF ARRAY ITOT USED = 3773

LAST ADDRESS OF ARRAY TOT USED = 9773

POTENTIAL MATRICES V(I,J) AND Q(I,J):

V-MATRIX AT THE POINT NO = 1 AND RADIUS RHO = 0.00070
-.2842D+04 0.4927D-37 -.1101D-21 -.4812D-37 -.7324D-53 -.4207D-68
0.4927D-37 0.1212D+08 0.1381D-36 -.2539D-22 -.4899D-38 -.2117D-53
-.1101D-21 0.1381D-36 0.4039D+08 0.7232D-38 -.1164D-22 -.3356D-38
-.4812D-37 -.2539D-22 0.7232D-38 0.8482D+08 0.4288D-38 -.6703D-23
-.7324D-53 -.4899D-38 -.1164D-22 0.4288D-38 0.1454D+09 0.2719D-38
-.4207D-68 -.2117D-53 -.3356D-38 -.6703D-23 0.2719D-38 0.2222D+09

Q-MATRIX AT THE POINT NO = 1 AND RADIUS RHO = 0.00070
0.0000D+00 0.1731D-10 0.7747D-26 0.1209D-41 0.1293D-57 0.1062D-65
-.1731D-10 0.0000D+00 0.6359D-11 0.9926D-27 0.7835D-43 0.9405D-58
-.7747D-26 -.6359D-11 0.0000D+00 0.3993D-11 0.3152D-27 0.2018D-42
-.1209D-41 -.9926D-27 -.3993D-11 0.0000D+00 0.2916D-11 0.6590D-27
-.1293D-57 -.7835D-43 -.3152D-27 -.2916D-11 0.0000D+00 0.2298D-11
-.1062D-65 -.9405D-58 -.2018D-42 -.6590D-27 -.2298D-11 0.0000D+00

POTENTIAL MATRICES V(I,J) AND Q(I,J):

V-MATRIX AT THE POINT NO = 1502 AND RADIUS RHO = 11.51962
0.8265D+00 0.1209D-03 -.1543D-01 -.3686D-03 -.9037D-05 -.2528D-06
0.1209D-03 0.2827D+01 0.6268D-03 -.4704D-01 -.1537D-02 -.4837D-04
-.1543D-01 0.6268D-03 0.4829D+01 0.1953D-02 -.9569D-01 -.4014D-02
-.3686D-03 -.4704D-01 0.1953D-02 0.6833D+01 0.4612D-02 -.1623D+00
-.9037D-05 -.1537D-02 -.9569D-01 0.4612D-02 0.8840D+01 0.9217D-02
-.2528D-06 -.4837D-04 -.4014D-02 -.1623D+00 0.9217D-02 0.1085D+02

Q-MATRIX AT THE POINT NO = 1502 AND RADIUS RHO = 11.51962
0.0000D+00 0.8748D-01 0.6854D-03 0.8256D-05 0.1360D-06 0.2879D-08
-.8748D-01 0.0000D+00 0.1764D+00 0.2124D-02 0.3501D-04 0.7408D-06
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-.6854D-03 -.1764D+00 0.0000D+00 0.2668D+00 0.4396D-02 0.9302D-04
-.8256D-05 -.2124D-02 -.2668D+00 0.0000D+00 0.3589D+00 0.7592D-02
-.1360D-06 -.3501D-04 -.4396D-02 -.3589D+00 0.0000D+00 0.4528D+00
-.2879D-08 -.7408D-06 -.9302D-04 -.7592D-02 -.4528D+00 0.0000D+00

SPECIFICATIONS OF THE DIPOLE MATRICES
-------------------------------------

NUMBER OF FINITE ELEMENTS . . . . . . . . (NELEM ) = 600
NUMBER OF GRID POINTS . . . . . . . . . . (NGRID ) = 2401
PARITY OF STATE . . . . . . . . . . . . . (IPARTL) = 1
MAGNETIC QUANTUM NUMBER . . . . . . . . . (MQNL ) = 0
PARITY OF STATE . . . . . . . . . . . . . (IPARTR) = 0
MAGNETIC QUANTUM NUMBER . . . . . . . . . (MQNR ) = 0
VALUE OF MATCHING POINT FOR EPSY. . . . . (RMATCH) = 41.4000

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- --------- -------- --------- -------- --------

1 200 0.000 0.01500 0.00375 3.000
2 200 3.000 0.08500 0.02125 20.000
3 200 20.000 0.40000 0.10000 100.000

LAST ADDRESS OF ARRAY ITOT USED = 3419

LAST ADDRESS OF ARRAY TOT USED = 9293

DIPOLE MATRICES D(I,J):

D-MATRIX AT THE POINT NO = 1 AND RADIUS RHO = 0.00000
0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00
0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00
0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00
0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00
0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00
0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00 0.0000D+00

DIPOLE MATRICES D(I,J):

D-MATRIX AT THE POINT NO = 1502 AND RADIUS RHO = 17.89625
0.1784D+02 0.5605D-01 0.1778D-03 0.8543D-06 0.5527D-08 0.4514D-10
0.5605D-01 0.1773D+02 0.1125D+00 0.5403D-03 0.3496D-05 0.2855D-07
0.1778D-03 0.1125D+00 0.1761D+02 0.1692D+00 0.1095D-02 0.8944D-05
0.8543D-06 0.5403D-03 0.1692D+00 0.1750D+02 0.2264D+00 0.1849D-02
0.5527D-08 0.3496D-05 0.1095D-02 0.2264D+00 0.1738D+02 0.2839D+00
0.4514D-10 0.2855D-07 0.8944D-05 0.1849D-02 0.2839D+00 0.1726D+02

SPECIFICATIONS OF THE ASYMPTOTIC SOLUTION
-----------------------------------------

NUMBER OF DIFFERENTIAL EQUATIONS. . . . . (MDIM ) = 6
NUMBER OF OPEN CHANNEL. . . . . . . . . . (NOPEN ) = 2
ORDER OF CALCULATION. . . . . . . . . . . (IFUNAS) = 15
PARITY OF STATE . . . . . . . . . . . . . (IPARTL) = 1
MAGNETIC QUANTUM NUMBER . . . . . . . . . (MQNL ) = 0
CHARGE OF NUCLEAR . . . . . . . . . . . . (CHARGE) = 1.00000
MAGNETIC PARAMETER. . . . . . . . . . . . (WC ) = 1.00000
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DOUBLE ENERGY SPECTRUM. . . . . . . . . . (SHIFT ) = 3.40000
VALUE OF CALCULATED POINT . . . . . . . . (RMAX ) = 100.000

LAST ADDRESS OF ARRAY TOT USED = 1166

VALUE OF I-TH THRESHOLD ENERGY (IN RY). (I,THR) = 1 0.1000E+01
VALUE OF I-TH THRESHOLD ENERGY (IN RY). (I,THR) = 2 0.3000E+01
VALUE OF I-TH MOMENTUM. . . . . . . . . (I,QR ) = 1 0.1549E+01
VALUE OF I-TH MOMENTUM. . . . . . . . . (I,QR ) = 2 0.6325E+00

TO HAVE REQUIRED EPSC=1.D-14
VALUE OF MATCHING POINT (RMATCH) = 31.6417
RECOMMENDED RIGHT BOUND OF
INTERVAL IS NOT LESS THAN (RMAX ) = 33

CHECK WRONSKIAN
-----------------

1.00000 -.102478E-17
0.197052E-17 1.00000

REGULAR SOLUTIONS
-------------------

0.778672E-02 -.277717E-04
-.281771E-04 0.117197E-01
-.150402E-05 -.535513E-04
0.243486E-08 0.289640E-06
-.518989E-10 -.109459E-07
0.515806E-12 -.195459E-09

IRREGULAR SOLUTIONS
---------------------

-.190795E-02 -.755766E-04
-.121508E-03 -.411903E-02
0.331762E-06 -.151932E-03
0.112340E-07 -.725747E-07
0.699426E-11 -.330613E-07
0.307317E-11 0.718648E-10

DERIVATIVE OF REGULAR SOLUTIONS
---------------------------------

-.304607E-02 -.484243E-04
-.188492E-03 -.278605E-02
0.561492E-06 -.974143E-04
0.173828E-07 -.550720E-07
0.134532E-10 -.210016E-07
0.475254E-11 0.566044E-10

DERIVATIVE OF IRREGULAR SOLUTIONS
-----------------------------------

-.120955E-01 0.195204E-04
0.462741E-04 -.755679E-02
0.233031E-05 0.377738E-04
-.424123E-08 -.186102E-06
0.804558E-10 0.841921E-08
-.987484E-12 0.123011E-09

****** END OF THE POTHMF RUN ******

****** BEGIN OF THE KANTBP RUN ******
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PROBLEM: Bound state energy levels
********

C O N T R O L I N F O R M A T I O N
------------------------------------

NUMBER OF DIFFERENTIAL EQUATIONS. . . . . (MDIM ) = 6
NUMBER OF ENERGY LEVELS REQUIRED. . . . . (NROOT ) = 1
NUMBER OF FINITE ELEMENTS . . . . . . . . (NELEM ) = 600
NUMBER OF GRID POINTS . . . . . . . . . . (NGRID ) = 2401
ORDER OF SHAPE FUNCTIONS . . . . . . . . (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE . . . (NGQ ) = 5
NUMBER OF SUBSPACE ITERATION VECTORS. . . (NC ) = 2
DIMENSION OF ENVELOPE SPACE . . . . . . . (IDIM ) = 3
BOUNDARY CONDITION CODE . . . . . . . . . (IBOUND) = 3
SHIFT OF DOUBLE ENERGY SPECTRUM . . . . . (SHIFT ) = -0.700000
CONVERGENCE TOLERANCE . . . . . . . . . . (RTOL ) = 0.100000E-14

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- --------- -------- --------- -------- --------

1 200 0.000 0.01500 0.00375 3.000
2 200 3.000 0.08500 0.02125 20.000
3 200 20.000 0.40000 0.10000 100.000

LAST ADDRESS OF ARRAY ITOT USED = 64222

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS. . . . (NN ) = 14400
TOTAL NUMBER OF MATRIX ELEMENTS. . . . . . (NWK) = 266256
MAXIMUM HALF BANDWIDTH . . . . . . . . . . (MK ) = 30
MEAN HALF BANDWIDTH . . . . . . . . . . (MMK) = 18

LAST ADDRESS OF ARRAY TOT USED = 538201

NDIM, MDIM= 6 6

LAST ADDRESS OF ARRAY TOT USED = 593029

THERE ARE 0 ROOTS LOWER THEN SHIFT
CONVERGENCE REACHED FOR RTOL 0.1000E-14
I T E R A T I O N N U M B E R 9
RELATIVE TOLERANCE REACHED ON EIGENVALUES
0.1781E-15

********************************************************************************

R O O T N U M B E R E I G E N V A L U E
----------------------- ---------------------

1 -0.3311688955144392
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********************************************************************************
R R A D I A L E I G E N F U N C T I O N S
- -----------------------------------------

0.0000 0.2406D+01 0.2984D-12 -.4758D-15 0.6931D-18 0.3585D-23 0.2470D-28
1.8000 0.3050D+00 -.1487D-01 0.5042D-03 0.1610D-04 0.4848D-06 0.1190D-07
6.4000 0.3819D-03 -.8983D-04 0.2920D-04 -.1130D-04 0.4997D-05 -.3193D-05
16.6000 0.5146D-09 -.4291D-10 0.4720D-11 -.5886D-12 0.8179D-13 -.1266D-13
52.0000 0.7291D-15 0.6787D-18 0.1469D-18 0.1157D-20 0.1846D-21 0.1947D-22

********************************************************************************

PROBLEM: Reaction matrix
********

C O N T R O L I N F O R M A T I O N
------------------------------------

NUMBER OF DIFFERENTIAL EQUATIONS. . . . . (MDIM ) = 6
NUMBER OF FINITE ELEMENTS . . . . . . . . (NELEM ) = 600
NUMBER OF GRID POINTS . . . . . . . . . . (NGRID ) = 2401
ORDER OF SHAPE FUNCTIONS. . . . . . . . . (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE. . . . (NGQ ) = 5
DIMENSION OF ENVELOPE SPACE . . . . . . . (IDIM ) = 3
BOUNDARY CONDITION CODE . . . . . . . . . (IBOUND) = 8
DOUBLE ENERGY SPECTRUM. . . . . . . . . . (SHIFT ) = 3.40000

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- --------- -------- --------- -------- --------
1 200 0.000 0.01500 0.00375 3.000
2 200 3.000 0.08500 0.02125 20.000
3 200 20.000 0.40000 0.10000 100.000

LAST ADDRESS OF ARRAY ITOT USED = 64222

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS. . . . (NN ) = 14406
TOTAL NUMBER OF MATRIX ELEMENTS. . . . . . (NWK) = 266421
MAXIMUM HALF BANDWIDTH . . . . . . . . . . (MK ) = 30
MEAN HALF BANDWIDTH . . . . . . . . . . (MMK) = 18

LAST ADDRESS OF ARRAY TOT USED = 272110

NDIM, MDIM= 6 6

LAST ADDRESS OF ARRAY TOT USED = 384669

NUMBER OF OPEN CHANNELS. . . . . . . . . (NOPEN) = 2
VALUE OF I-TH MOMENTUM . . . . . . . . . (I,QR ) = 1 0.1549E+01
VALUE OF I-TH MOMENTUM . . . . . . . . . (I,QR ) = 2 0.6325E+00
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TO HAVE REQUIRED EPSC=1.D-14
VALUE OF MATCHING POINT (RMATCH) = 31.6417
RECOMMENDED RIGHT BOUND OF
INTERVAL IS NOT LESS THAN (RMAX ) = 33

C H E C K W R O N S K I A N
------------------------------

1.00000 -.102478E-17
0.197052E-17 1.00000

********************************************************************************

R E A C T I O N M A T R I X
-------------------------------

-1.46347 2.19626
2.19626 -8.72933

********************************************************************************

R R A D I A L E I G E N F U N C T I O N S
- -----------------------------------------

0.0000 0.6464D-13 0.1723D-11 0.4879D-12 -.1955D-11 -.3150D-13 0.7927D-13
0.6148D-18 -.2533D-17 0.1684D-22 -.6326D-22 0.4306D-27 -.1633D-26

1.8000 -.2666D-01 0.6352D+00 -.8888D+00 0.2455D+01 0.1111D-01 -.4781D-01
0.4547D-02 -.1653D-01 0.3372D-03 -.1260D-02 0.1491D-04 -.5729D-04

6.4000 -.2597D+00 0.4054D+00 0.1543D+00 -.4776D+00 -.8057D-01 0.3852D+00
-.3576D-02 0.1317D-01 -.1418D-02 0.7051D-02 -.1987D-02 0.7691D-02

16.6000 0.5866D-01 -.1008D+00 -.1550D+00 0.6160D+00 -.4496D-02 0.1061D-01
0.9199D-04 -.2742D-03 -.4298D-04 0.1278D-03 0.6092D-05 -.2478D-04

52.0000 0.2643D-01 -.2289D-01 -.1825D-01 0.9443D-01 -.1258D-02 0.4726D-02
-.5400D-06 0.3805D-05 -.9910D-06 0.3781D-05 0.4891D-08 -.2518D-07

100.0000 0.1041D-01 -.3558D-02 -.8897D-02 0.4741D-01 -.3357D-03 0.1273D-02
-.1734D-06 0.9478D-06 -.7267D-07 0.2777D-06 0.1539D-09 -.8160D-09

********************************************************************************

****** END OF THE KANTBP RUN ******
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second-order ordinary differential equations on a finite interval with homogeneous boundary conditions:
(i) the Dirichlet, Neumann and third type at the left and right boundary points for continuous spectrum
problem, (ii) the Dirichlet and Neumann type conditions at left boundary point and Dirichlet, Neumann
and third type at the right boundary point for the discrete spectrum problem. The resulting system of
radial equations containing the potential matrix elements and first-derivative coupling terms is solved
using high-order accuracy approximations of the finite element method. As a test desk, the program is
applied to the calculation of the reaction matrix and radial wave functions for 3D-model of a hydrogen-
like atom in a homogeneous magnetic field. This version extends the previous version 1.0 of the KANTBP
program [O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen, S.I.
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Pentium IV
Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP
RAM: This depends on

1. the number of differential equations;
2. the number and order of finite elements;
3. the number of hyperradial points; and
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separating radial coordinate ρ from the angular variables to a system of the second-order ordinary
differential equations containing the potential matrix elements and first-derivative coupling terms. The
purpose of this paper is to present the finite element method procedure based on the use of high-order
accuracy approximations for calculating approximate eigensolutions of the continuum spectrum for such
systems of coupled differential equations on finite intervals of the radial variable ρ ∈ [ρmin,ρmax]. This
approach can be used in the calculations of effects of electron screening on low-energy fusion cross
sections [10–12].
Solution method: The boundary problems for the coupled second-order differential equations are solved
by the finite element method using high-order accuracy approximations [13]. The generalized algebraic
eigenvalue problem AF = EBF with respect to pair unknowns (E,F) arising after the replacement of the
differential problem by the finite-element approximation is solved by the subspace iteration method
using the SSPACE program [14]. The generalized algebraic eigenvalue problem (A − EB)F = λDF with
respect to pair unknowns (λ,F) arising after the corresponding replacement of the scattering boundary
problem in open channels at fixed energy value, E , is solved by the LDLT factorization of symmetric
matrix and back-substitution methods using the DECOMP and REDBAK programs, respectively [14]. As a
test desk, the program is applied to the calculation of the reaction matrix and corresponding radial wave
functions for 3D-model of a hydrogen-like atom in a homogeneous magnetic field described in [9] on
finite intervals of the radial variable ρ ∈ [ρmin,ρmax]. For this benchmark model the required analytical
expressions for asymptotics of the potential matrix elements and first-derivative coupling terms, and also
asymptotics of radial solutions of the boundary problems for coupled differential equations have been
produced with help of a MAPLE computer algebra system.
Restrictions: The computer memory requirements depend on:

1. the number of differential equations;
2. the number and order of finite elements;
3. the total number of hyperradial points; and
4. the number of eigensolutions required.

Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see
Section 3 and [1] for details). The user must also supply subroutine POTCAL for evaluating potential
matrix elements. The user should also supply subroutines ASYMEV (when solving the eigenvalue
problem) or ASYMS0 and ASYMSC (when solving the scattering problem) which evaluate asymptotics
of the radial wave functions at left and right boundary points in case of a boundary condition of the
third type for the above problems.
Running time: The running time depends critically upon:

1. the number of differential equations;
2. the number and order of finite elements;
3. the total number of hyperradial points on interval [ρmin,ρmax]; and
4. the number of eigensolutions required.

The test run which accompanies this paper took 2 s without calculation of matrix potentials on the Intel
Pentium IV 2.4 GHz.
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1. Introduction

In our previous paper [1] we have described the finite element method procedure based on the use of high-order accuracy approxima-
tions for calculating approximate eigensolutions of the discrete and continuum spectrum for systems of coupled differential equations on
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a finite interval of the radial variable ρ ∈ [ρmin,ρmax] with homogeneous boundary conditions: the Dirichlet, Neumann type at ρ = ρmin;
the Dirichlet, Neumann and third type at ρ = ρmax.

The purpose of this paper is to extend the framework of work [1] for calculating approximate eigensolutions of the continuum spec-
trum for systems of coupled differential equations on finite intervals of the radial variable ρ ∈ [ρmin,ρmax] using a general homogeneous
boundary condition of the third type at ρ = ρmin. The third-type boundary conditions at ρ = ρmin are formulated by using known asymp-
totics for a set of linear independent regular solutions for problems under consideration [2–9]. This approach can be used in calculations
of effects of electron screening on low-energy fusion cross sections [10–13], channeling processes [14,15], threshold phenomena in the for-
mation and ionization of (anti)hydrogen-like atoms and ions in magnetic traps [16], quantum dots in magnetic field [17–19] and potential
scattering with confinement potentials [20].

The paper is organized as follows. In Section 2 we give a brief overreview of the problem. A description of the new version of the
KANTBP program is given in Section 3. Example of the asymptotic expansions of matrix elements and regular solutions at small ρ together
with Test desk are discussed in Section 4.

2. Statement of the problem

In the Kantorovich approach [21], the d-dimensional Schrödinger equation is reduced to a finite set of N ordinary second-order differ-
ential equations on the finite interval [ρmin,ρmax] for the partial solution χ(ρ) ≡ χ (i)(ρ) = (χ

(i)
1 (ρ), . . . ,χ

(i)
N (ρ))T

(L − 2EI)χ(ρ) ≡
(

− 1

ρd−1
I

d

dρ
ρd−1 d

dρ
+ V(ρ) + Q(ρ)

d

dρ
+ 1

ρd−1

dρd−1Q(ρ)

dρ
− 2EI

)
χ(ρ) = 0. (1)

Here I, V(ρ) and Q(ρ) are the unit, symmetric and antisymmetric matrices of dimension N × N , respectively.
In the present work, scattering problem is solved using the homogeneous third type boundary conditions at ρ = ρmin > 0 and ρ =

ρmax � 1:

dΦ(ρ)

dρ
= R(ρ)Φ(ρ), (2)

where Φ(ρ) = {χ (i)(ρ)}No
i=1 is the required matrix-solution of dimension N × No and No is the number of open channels. Suppose that

a set of linear independent regular solutions Φ̃reg(ρ) = {χ̃ (i)
reg(ρ)}N

i=1 for a problem under consideration with components χ̃ (i)
reg(ρ) =

(χ̃
reg
1i (ρ), . . . , χ̃

reg
Ni (ρ))T is known at small ρ (see, e.g., [2–9,16,22]).

Using a linear combination of these regular solutions, χ̃ (i)
reg(ρ), we can find required matrix solution Φ(ρ) at ρ = ρmin > 0:

Φ(ρ) = Φ̃reg(ρ)C, (3)

where C is the unknown nonzero constant matrix of dimension N × No . Using identity CC−1 = I, the R(ρ) matrix at ρ = ρmin can be
easily found via the known set of linear independent regular solutions Φ̃reg(ρ)

R(ρ) ≡ dΦ̃reg(ρ)

dρ
Φ̃

−1
reg(ρ) = dΦ(ρ)

dρ
Φ−1(ρ). (4)

From this we obtain the quadratic functional (compare with Eq. (23) in [1])

Ξ(Φ, E,ρmin,ρmax) ≡
ρmax∫

ρmin

ΦT(ρ)(L − 2E I)Φ(ρ)ρd−1 dρ

= Π(Φ, E,ρmin,ρmax) − ρd−1
maxΦT(ρmax)G(ρmax)Φ(ρmax), (5)

where Π(Φ, E,ρmin,ρmax) is the symmetric functional

Π(Φ, E,ρmin,ρmax) =
ρmax∫

ρmin

[
dΦT(ρ)

dρ

dΦ(ρ)

dρ
+ ΦT(ρ)V(ρ)Φ(ρ)

+ ΦT(ρ)Q(ρ)
dΦ(ρ)

dρ
− dΦ(ρ)T

dρ
Q(ρ)Φ(ρ) − 2EΦT(ρ)Φ(ρ)

]
ρd−1dρ

+ ρd−1
min ΦT(ρmin)G(ρmin)Φ(ρmin), (6)

and G(ρ) = R(ρ) − Q(ρ) is the matrix of dimension N × N which should be symmetric according to the conventual R-matrix theory. The
matrix G(ρmax) is calculated by a procedure in the framework of the FEM described in our previous paper [1].

After numerical calculation of solution Φ(ρ) in the nodes of the finite element grid Ω on interval [ρmin,ρmax] using scheme imple-
mented in [1] which takes into account Eqs. (2)–(6), matrix C can be evaluated by the formula

C = Φ̃
−1
reg(ρmin)Φ(ρmin). (7)

The matrix C is applied for analysis of the matrix-solution Φ(ρ) in the vicinity of ρ = 0. For example, constant matrix C satisfies ratio

Φ̃
−1
reg(0)Φ(0) even if Φ(0) ≡ 0 or is very close to zero. To extract required matrix C in later case, a user can use known asymptotics of the

regular solutions at ρmin. Value ρmin is defined on the asymptotic domain of the Φ̃reg(ρ).
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Fig. 1. Flow diagram of the new version of the KANTBP program.

3. Description of the program

Fig. 1 presents a flow diagram for the new version of the KANTBP program. The function of each subroutine except for a new user-
supplied subroutine ASYMS0 is described in [1]. KANTBP program is called from the main routine (supplied by a user) which sets
dimensions of the arrays and is responsible for the input data. In the present code each array declarator is written in terms of the
symbolic names of constants. These constants are defined in the following PARAMETER statement in the main routine:

PARAMETER (MTOT=9000000,MITOT=900000,NMESH1=7,MDIM1=6)

where

• MTOT is the dimension of the working DOUBLE PRECISION array TOT.
• MITOT is the dimension of the working INTEGER array ITOT.
• NMESH1 is the dimension of the DOUBLE PRECISION array RMESH containing the information about the subdivision of the hyperradial

interval [0,ρmax] on subintervals and number of elements on each one of them. NMESH1 is always odd and � 3.
• MDIM1 is the dimension of the DOUBLE PRECISION array THRSHL and INTEGER array NDIL containing information about a set of

threshold values and numbers of coupled differential equations, respectively.

A more concrete assignment of these dimensions is discussed below. In order to change the dimensions of the code, all one has to do is
to modify the single PARAMETER statement defined above in the main program unit.
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The calling sequence for the subroutine KANTBP is:

CALL KANTBP(TITLE,IPTYPE,NROOT,MDIM,IDIM,NPOL,RTOL,NITEM,
1 SHIFT,IPRINT,IPRSTP,NMESH,RMESH,NDIR,NDIL,NMDIL,
2 THRSHL,IBOUND,FNOUT,IOUT,POTEN,IOUP,FMATR,IOUM,
3 EVWFN,IOUF,TOT,ITOT,MTOT,MITOT)

A new user-supplied subroutine ASYMS0 for calculating the regular asymptotic matrix-solution and its derivative at ρ = ρmin has been
added to the scattering problem solver program. It should be written as follows:

SUBROUTINE ASYMS0(RMIN,NDIM,SHIFT,NOPEN,QR,PREG,DREG,IOUT)
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C . .
C . P R O G R A M .
C . TO CALCULATE THE REGULAR ASYMPTOTIC MATRIX .
C . SOLUTION PREG AND ITS DERIVATIVE DREG .
C . AT RMIN .
C . .
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION QR(NOPEN),PREG(NDIM,NDIM),DREG(NDIM,NDIM)
RETURN
END

Here array QR contains a set of momentum values, SHIFT contains the given double energy spectrum value, and NOPEN is the number
of open channels. To set the third type boundary conditions at both points ρmin and ρmax, flag IBOUND always should be 8. Other
parameters used in the ASYMS0 and also input and output data for the KANTBP program are described in [1].

4. Test desk

4.1. Asymptotic expansions of the matrix elements at small ρ

The test run which accompanies the KANTBP program computes the reaction matrix and corresponding radial wave functions for
3D-model of a hydrogen-like atom in a homogeneous magnetic field [22]. According to [16], asymptotic values of the potential curves
E j(ρ), radial matrix elements H jj′ (ρ) and Q jj′ (ρ) at small ρ in Eq. (1) describing a hydrogen atom in a homogeneous magnetic field
characterized by l = 2 j − 2 + |m| for even states (σ = +1) and l = 2 j − 1 + |m| for odd states (σ = −1) are given by expansion in powers
of ρ with finite l, l′

E j(ρ) = Ē(0)
j + Ē(2)

j ρ2 +
[kmax/4]∑

k=1

ρ4k Ē(4k)
j , H jj′ (ρ) =

[kmax/4]∑
k=2

ρ4k−2 H̄(4k−2)

j j′ ,

Q jj′ (ρ) =
[kmax/4]∑

k=1

ρ4k−1 Q̄ (4k−1)

j j′ , ρ � min(l, l′)/
√

4γ . (8)

Note, that all

Q̄ (4k−1)

j j′ ≡ 0 and H̄(4k−2)

j j′ ≡ 0 if | j − j′| > 2k. (9)

In this work, the calculations of the above matrix elements were performed using algorithm implemented in MAPLE up to kmax = 16.
Below we present the first several coefficients of the matrix elements expansions:

Ē(0)
j = l(l + 1), Ē(2)

j = γm, Ē(4)
j = γ 2

2

l2 + l − 1 + m2

(2l − 1)(2l + 3)
,

Q̄ (3)
j j+2 = γ 2

2

√
(l + 1)2 − m2

√
(l + 2)2 − m2

√
2l + 1(2l + 3)2

√
2l + 5

,

H̄(6)
j j = γ 4

2

((
16l4 + 32l3 + 248l2 + 232l + 201

)
m4

+ (−10l2 − 224l4 − 96l5 + 118l − 288l3 − 32l6 − 195
)
m2

+ 16l8 + 64l7 + 46l + 40l6 − 127l4 − 104l5 + 71l2 − 6l3 − 6
)
/
(
(2l − 3)(2l − 1)4(2l + 3)4(2l + 5)

)
,

H̄(6)
j j+4 = −γ 4

√
(l + 1)2 − m2

√
(l + 2)2 − m2

√
(l + 3)2 − m2

√
(l + 4)2 − m2

4
√

2l + 1(2l + 3)2(2l + 5)(2l + 7)2
√

2l + 9
. (10)

Such asymptotic behavior of the effective potentials on the interval ρ ∈ [0,ρmin] allows us to find regular and bound solutions at
ρ → 0 that satisfy the homogeneous third type boundary conditions (2) at ρ = ρmin > 0.
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4.2. Asymptotic expansions of the regular solutions at small ρ

The asymptotics of the regular solutions χ̃
(io)
j;reg(ρ) ≡ χ̃ jio (ρ), j = 1, . . . , N , io = 1, . . . , N , of Eq. (1) are sought as expansions in powers

of ρ up to the finite order kmax

χ̃ ji;reg(ρ) =
kmax∑
k=0

χ̃
(k)
ji ρμio +k, χ̃

(0)
ji = δ ji, χ̃

(k<0)
ji ≡ 0, (11)

where μio is the unknown characteristic parameter. Substituting expansion (11) into (1) and taking into account Eqs. (8)–(10), we obtain

the following system of recurrence relations for the set of the unknown coefficients χ̃
(k)
ji

−(l′ + 1 + μio + k)(μio − l′ + k)χ̃
(k)
ji

= 2Z χ̃
(k−1)
ji − (mγ − ε)χ̃

(k−2)
ji −

k∑
s=4

Ē(s)
j χ̃

(k−s)
ji −

k−2∑
s=4

H̄(s)
j j χ̃

(k−s−2)
ji

−
k−1∑
s=3

min( jmax,i+[s/4])∑
j′=max(1,i−[s/4]), j′ 
= j

(2l + 2k − s)Q̄ (s)
j j′ χ̃

(k−s−1)

j′ i −
k−2∑
s=4

min( jmax,i+[s/4])∑
j′=max(1,i−[s/4]), j′ 
= j

H̄(s)
j j′ χ̃

(k−s−2)

j′ i , (12)

where indices l′ and l are defined as

l′ = 2( j − 1) + |m| + (1 − σ)/2, l = 2(i − 1) + |m| + (1 − σ)/2. (13)

As follows from Eqs. (11) and (12) at k = 0, the conventional characteristic equation gives two roots for the unknown μio : μio = −l − 1
and μio = l. Value μio = −l − 1 corresponds to irregular unbound solutions and is not considered here. Value μio = l corresponds to the
required regular and bound solutions and is the one we have used in our calculations.

Note that components of vector {χ̃ (k)
ji }N

j=1 at fixed i in the left-hand side of Eq. (12) equal to zero if 2( j − i) = k. In this case we can

put χ̃
(k)

i+k/2,i = 0 because this term will be determined as the leading term of the asymptotic form of the (i + k/2)th solution. A more

detailed analysis of (12) with the account of (9) shows that the right-hand side of Eq. (12) is equal to zero and all χ̃
(k)
ji are equal to zero

if | j − i| > k/2.
Thus, the system (12) can be solved sequentially for k = 1,2, . . . ,kmax. The calculation was performed using the algorithm implemented

in MAPLE up to kmax = 16. Below we display the first several non-zero coefficients of the regular solutions expansions:

χ̃
(0)
ii = 1, χ̃

(1)
ii = − Z

l + 1
, χ̃

(2)
ii = −−2Z 2 + (ε − mγ )(l + 1)

2(l + 1)(2l + 3)
,

χ̃
(3)
ii = Z(−2Z 2 + (ε − mγ )(3l + 4))

6(l + 1)(l + 2)(2l + 3)
,

χ̃
(4)
i−1i = Q̄ (3)

i−1i(2l + 5)

6(2l + 3)
,

χ̃
(4)
ii = Ē(4)

i

4(2l + 5)
+ (ε − mγ )2

8(2l + 3)(2l + 5)
+ Z 4 − Z 2(ε − mγ )(3l + 5)

6(l + 1)(l + 2)(2l + 3)(2l + 5)
,

χ̃
(4)
i+1i = Q̄ (3)

i+1i(2l + 5)

2(2l + 7)
. (14)

The test run which accompanies the KANTBP program computes the reaction matrix and corresponding radial wave functions for 3D-
model of a hydrogen-like atom in a homogeneous magnetic field with σ = −1, Z = 1, γ = 1 and m = 0 on the finite intervals of the
radial variable ρ ∈ [ρmin = 0.3,ρmax = 100]. All needed potential elements are calculated with the help of the POTHMF program [22]. The
asymptotics from Eq. (11) and needed coefficients of the matrix elements (8) are included in the subroutine ASYMS0 up to kmax = 16.

File ‘INPUT2.INP’ contains the initial data NAMELIST POTDAT for the calculation of the potential matrix elements for the given atomic
state by the POTHMF program. Also this file contains the initial data NAMELIST PARSCP for the calculation of the reaction matrix and
corresponding radial wave functions for the KANTBP program. File ‘INPUT2.INP’ contains the following data:

&POTDAT TITLE=’ Potential and dipole matrices elements ’,
IMATRX=1,IDIPOL=0,IFUNAS=15,WC=0.1D1,CHARGE=1.D0,MDIM=6,
NPOL=4,SHIFTS=3.4D0,IPRINT=1,IPRSTP=1501,
RMESH=0.3D0,180.D0,3.D0,200.D0,20.D0,200.D0,100.D0,
FNOUTP=’FNOUTP.LPR’,IOUTP=7,NMESHR=7,NMESHL=7,
IPARTL=1,MQNL=0,POTENL=’POTENL.PTN’,IOUPL=8,
WFUNAS=’WFUNAS.PTN’,IOUWF=0

&END
&PARSCP TITLE2=’ Reaction matrix ’,

IPTYPE=1,NROOT=1,IDIM=3,SHIFT=3.4D0,IPRINT=2,IPRSTP=400,
IBOUND=8,NDIR=1, NDIL=6, NMDIL=1,
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THRSHL=1.D0,3.D0,5.D0,7.D0,9.D0,11.D0,
FNOUTL=’3DNSSC.LPR’,NOUT=14,FMATRL=’3DNSSC.MAT’,NOUM=15,
EVWFNL=’3DNSSC.WFN’,NOUF=2

&END

Physical parameters CHARGE, WC, MQNL, IPARTL and order of asymptotic solutions IFUNAS are accessed via general common block
COMMON /CHARGE/ CHARGE, WC, MQNL, IPARTL, IFUNAS. As an example, calculation of matrix C is performed by means of Eq. (7) and
presented in output file. Note, that values of the partial solutions χ

(i)
j (ρ) at ρ = 0.3 presented in the TEST RUN OUTPUT are equal to the

corresponding results presented in the TEST RUN OUTPUT of [22] which verifies and confirms the accuracy of the developed calculation
scheme.
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Appendix A. TEST RUN OUTPUT

PROBLEM: Reaction matrix
********

C O N T R O L I N F O R M A T I O N
------------------------------------

NUMBER OF DIFFERENTIAL EQUATIONS. . . . . (MDIM ) = 6
NUMBER OF FINITE ELEMENTS . . . . . . . . (NELEM ) = 580
NUMBER OF GRID POINTS . . . . . . . . . . (NGRID ) = 2321
ORDER OF SHAPE FUNCTIONS. . . . . . . . . (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE. . . . (NGQ ) = 5
DIMENSION OF ENVELOPE SPACE . . . . . . . (IDIM ) = 3
BOUNDARY CONDITION CODE . . . . . . . . . (IBOUND) = 8
DOUBLE ENERGY SPECTRUM. . . . . . . . . . (SHIFT ) = 3.40000

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- --------- -------- --------- -------- --------

1 180 0.300 0.01500 0.00375 3.000
2 200 3.000 0.08500 0.02125 20.000
3 200 20.000 0.40000 0.10000 100.000

LAST ADDRESS OF ARRAY ITOT USED = 62082

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS. . . . (NN ) = 13926
TOTAL NUMBER OF MATRIX ELEMENTS. . . . . . (NWK) = 257541
MAXIMUM HALF BANDWIDTH . . . . . . . . . . (MK ) = 30
MEAN HALF BANDWIDTH . . . . . . . . . . (MMK) = 18

LAST ADDRESS OF ARRAY TOT USED = 263150

NDIM, MDIM= 6 6

LAST ADDRESS OF ARRAY TOT USED = 371869
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NUMBER OF OPEN CHANNELS. . . . . . . . . (NOPEN) = 2
VALUE OF I-TH MOMENTUM . . . . . . . . . (I,QR ) = 1 0.1549E+01
VALUE OF I-TH MOMENTUM . . . . . . . . . (I,QR ) = 2 0.6325E+00

TO HAVE REQUIRED EPSC=1.D-14
VALUE OF MATCHING POINT (RMATCH) = 31.6417
RECOMMENDED RIGHT BOUND OF
INTERVAL IS NOT LESS THAN (RMAX ) = 33

C H E C K W R O N S K I A N
------------------------------

1.00000 -.102478E-17
0.197052E-17 1.00000

********************************************************************************

R E A C T I O N M A T R I X
-------------------------------

-1.46347 2.19626
2.19626 -8.72933

********************************************************************************

R R A D I A L E I G E N F U N C T I O N S
- -----------------------------------------

0.3000 0.6533D-01 0.1740D+01 -.1153D-01 0.3368D-01 -.1256D-04 0.3139D-04
0.2082D-07 -.8510D-07 0.7188D-10 -.2697D-09 0.1034D-12 -.3923D-12

1.8000 -.2666D-01 0.6352D+00 -.8888D+00 0.2455D+01 0.1111D-01 -.4781D-01
0.4547D-02 -.1653D-01 0.3372D-03 -.1260D-02 0.1491D-04 -.5729D-04

4.7000 0.2964D+00 -.3511D+00 0.4099D+00 -.1755D+01 0.1383D+00 -.5735D+00
-.4163D-01 0.1528D+00 0.8703D-02 -.2809D-01 -.8857D-03 0.4631D-02

13.2000 -.1068D-01 -.4437D-01 0.1694D+00 -.6822D+00 -.7173D-02 0.3852D-01
-.1107D-03 0.5968D-03 -.3290D-04 0.2413D-03 -.2221D-04 0.8926D-04

28.0000 0.5274D-01 -.5965D-01 -.8324D-02 -.1117D-01 0.4526D-02 -.1857D-01
-.1015D-04 0.3768D-04 0.1217D-04 -.4945D-04 0.2971D-07 0.4214D-07

68.0000 0.2000D-01 -.1611D-01 0.3989D-01 -.1601D+00 0.6037D-04 0.8285D-04
0.1750D-05 -.7186D-05 0.4147D-07 -.5194D-08 -.3349D-08 0.1340D-07

********************************************************************************

********************************************************************************

C M A T R I X
------------------

0.261805 6.97335
-.468245 1.37416
-.574532E-02 0.144615E-01
0.976111E-04 -.402277E-03
0.382014E-05 -.143464E-04
0.611522E-07 -.231952E-06

********************************************************************************
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A FORTRAN 77 program is presented for calculating with the given accuracy eigenvalues, eigenfunctions
and their first derivatives with respect to the parameter of the parametric self-adjoined Sturm–
Liouville problem with the parametric third type boundary conditions on the finite interval. The
program calculates also potential matrix elements – integrals of the eigenfunctions multiplied by their
first derivatives with respect to the parameter. Eigenvalues and matrix elements computed by the
ODPEVP program can be used for solving the bound state and multi-channel scattering problems for
a system of the coupled second-order ordinary differential equations with the help of the KANTBP
programs [O. Chuluunbaatar, A.A. Gusev, A.G. Abrashkevich, A. Amaya-Tapia, M.S. Kaschiev, S.Y. Larsen,
S.I. Vinitsky, Comput. Phys. Commun. 177 (2007) 649–675; O. Chuluunbaatar, A.A. Gusev, S.I. Vinitsky,
A.G. Abrashkevich, Comput. Phys. Commun. 179 (2008) 685–693]. As a test desk, the program is applied
to the calculation of the potential matrix elements for an integrable 2D-model of three identical particles
on a line with pair zero-range potentials, a 3D-model of a hydrogen atom in a homogeneous magnetic
field and a hydrogen atom on a three-dimensional sphere.

Program summary

Program title: ODPEVP
Catalogue identifier: AEDV_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDV_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 3001
No. of bytes in distributed program, including test data, etc.: 24 195
Distribution format: tar.gz
Programming language: FORTRAN 77
Computer: Intel Xeon EM64T, Alpha 21264A, AMD Athlon MP, Pentium IV Xeon, Opteron 248, Intel
Pentium IV
Operating system: OC Linux, Unix AIX 5.3, SunOS 5.8, Solaris, Windows XP
RAM: depends on

1. the number and order of finite elements;
2. the number of points; and
3. the number of eigenfunctions required.

Test run requires 4 MB
Classification: 2.1, 2.4
External routines: GAULEG [3]
Nature of problem: The three-dimensional boundary problem for the elliptic partial differential equation
with an axial symmetry similar to the Schrödinger equation with the Coulomb and transverse oscillator
potentials is reduced to the two-dimensional one. The latter finds wide applications in modeling

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
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of photoionization and recombination of oppositively charged particles (positrons, antiprotons) in the
magnet-optical trap [4], optical absorption in quantum wells [5], and channeling of likely charged
particles in thin doped films [6,7] or neutral atoms and molecules in artificial waveguides or surfaces
[8,9]. In the adiabatic approach [10] known in mathematics as Kantorovich method [11] the solution of
the two-dimensional elliptic partial differential equation is expanded over basis functions with respect
to the fast variable (for example, angular variable) and depended on the slow variable (for example,
radial coordinate ) as a parameter. An averaging of the problem by such a basis leads to a system of
the second-order ordinary differential equations which contain potential matrix elements and the first-
derivative coupling terms (see, e.g., [12,13,14]). The purpose of this paper is to present the finite element
method procedure based on the use of high-order accuracy approximations for calculating eigenvalues,
eigenfunctions and their first derivatives with respect to the parameter of the parametric self-adjoined
Sturm–Liouville problem with the parametric third type boundary conditions on the finite interval. The
program developed calculates potential matrix elements – integrals of the eigenfunctions multiplied by
their derivatives with respect to the parameter. These matrix elements can be used for solving the
bound state and multi-channel scattering problems for a system of the coupled second-order ordinary
differential equations with the help of the KANTBP programs [1,2].
Solution method: The parametric self-adjoined Sturm–Liouville problem with the parametric third type
boundary conditions is solved by the finite element method using high-order accuracy approxima-
tions [15]. The generalized algebraic eigenvalue problem AF = EBF with respect to a pair of unknown
(E,F) arising after the replacement of the differential problem by the finite-element approximation
is solved by the subspace iteration method using the SSPACE program [16]. First derivatives of the
eigenfunctions with respect to the parameter which contained in potential matrix elements of the
coupled system equations are obtained by solving the inhomogeneous algebraic equations. As a test desk,
the program is applied to the calculation of the potential matrix elements for an integrable 2D-model of
three identical particles on a line with pair zero-range potentials described in [1,17,18], a 3D-model of a
hydrogen atom in a homogeneous magnetic field described in [14,19] and a hydrogen atom on a three-
dimensional sphere [20].
Restrictions: The computer memory requirements depend on:

1. the number and order of finite elements;
2. the number of points; and
3. the number of eigenfunctions required.

Restrictions due to dimension sizes may be easily alleviated by altering PARAMETER statements (see
sections below and listing for details). The user must also supply DOUBLE PRECISION functions POTCCL
and POTCC1 for evaluating potential function U (ρ, z) of Eq. (1) and its first derivative with respect to
parameter ρ . The user should supply DOUBLE PRECISION functions F1FUNC and F2FUNC that evaluate
functions f1(z) and f2(z) of Eq. (1). The user must also supply subroutine BOUNCF for evaluating the
parametric third type boundary conditions.
Running time: The running time depends critically upon:

1. the number and order of finite elements;
2. the number of points on interval [zmin, zmax]; and
3. the number of eigenfunctions required.

The test run which accompanies this paper took 2 s with calculation of matrix potentials on the Intel
Pentium IV 2.4 GHz.
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1. Introduction

Mathematical models of physical processes such as photoionization and laser-stimulated recombination of hydrogen like atoms in a
homogeneous magnetic field under influence of a laser field, axial channeling of the charged particles in thin films, and also excitation,
de-excitation of wave-packet of a hydrogen atom in a homogeneous magnetic field under influence of the sequences with ultra-short laser
pulses (so-called three-dimensional kicked hydrogen atom in a magnetic field) are subjects of recent studies [1–6].

Dynamics of these processes is described in a center of mass system by three-dimensional wave functions of stationary equations of
Schrödinger type. We shall emphasize, that in a vicinity of the origin of a system of coordinates or the pair impact point the attractive or
repulsive Coulomb potentials dominate while in asymptotic regions it is the oscillator potential in transversal variables. Similar problems
arise in quantum well with a hydrogen like impurity in study of photoabsorbsion processes [7].

Mathematical models of these processes used in numerical studies to describe the dynamics of few-body systems are singular spectral,
boundary and evolutionary problems for multi-dimensional equation of Schrödinger type in the coordinate space. We shall emphasize,
that the presence of several interaction potentials between particles or particles with external fields leads to a division of the whole
region to subregions where the relevant boundary problems are solved using the corresponding dominating potential. Hence a singular
problem could be reduced to a regular one on a finite region by defining asymptotic boundary conditions with the help of an appropriate
asymptotic decomposition of solutions on a border of the finite region in the form of conditions of the third type.

For solving a boundary problem in the complex region, in the framework of the projective method one has to construct basic functions
with nonlinear parameters in one of the subregions or in each subregion. For the coordination of compound basic functions on borders
of these regions it is necessary to use conditions of the third type. Hence the amount of nonlinear parameters in a variational functional
essentially increases which requires significant computer resources to calculate them.

The multi-step Kantorovich method enables one to construct an economical algorithm for calculating of parametrical basic functions
which take into account all features of complex regions and conditions of the coordination between them. The use of such basis allows
us to lower the dimension of an initial boundary problem by reducing it to a system of ordinary differential equations with boundary
conditions of the third type [8,9]. Discretization of boundary problems by the finite-element method (FEM) [10,11] results in sequences
of parametrical algebraic problems for the numerical solution of which one needs to develop economical and efficient algorithms and
programs.

In this work we present an ODPEVP program for calculating with a given accuracy eigenvalues, eigenfunctions and their first derivatives
with respect to the parameter of the parametric self-adjoined Sturm–Liouville problem with the parametric third type boundary conditions
on the finite interval. The program calculates also potential matrix elements – integrals of the eigenfunctions multiplied by their derivatives
with respect to the parameter. Eigenvalues and matrix elements computed by the ODPEVP program can be used for solving the bound
state and multi-channel scattering problems for a system of the coupled second-order ordinary differential equations with the help of the
KANTBP programs [8,9].

The FEM is applied to construct numerical schemes for solving the corresponding boundary problem for parametric self-adjoined
ordinary differential equations with an accuracy of order O (hp+1) in grid step h [10,11]. The order of approximation, p, depends on the
smoothness of the required solution.

As a benchmark, we present calculation with a given accuracy of eigenvalues, eigenfunctions and their first derivatives with respect to
the parameter, corresponding matrix elements for Kantorovich reduction of an integrable 2D-model of three identical particles on a line
with the pair zero-range potentials described in [8,12], a 3D-model of a hydrogen atom in a homogeneous magnetic field described in
[1,14] and a hydrogen atom on a three-dimensional sphere [15,16]. The numeric results show that the program developed is very efficient
and allows to obtain numerical solutions of the above problems with the required accuracy using very little computational resources.

The paper is organized as follows. In Section 2 we give a brief overview of the problem. The construction of the finite-element high-
order schemes is discussed in Section 3. A description of the ODPEVP program is given in Section 4. Subroutine units are briefly described
in Section 5. Test desk is discussed in Section 6.

2. Statement of the problem

Let us consider a boundary problem for a parametric self-adjoined second order ordinary differential equation

L(z;ρ)ψ(z;ρ) = ε(ρ)ψ(z;ρ), z ∈ [zmin, zmax],
L(z;ρ) ≡ − 1

f1(z)

d

dz
f2(z)

d

dz
+ U (ρ, z), (1)

with parametric third type boundary conditions

l1
(
ρ,μ1, λ1(ρ),ψ(z;ρ)

) ≡ μ1 f2(z)
dψ(z;ρ)

dz
+ λ1(ρ)ψ(z;ρ) = 0, z = zmin, (2)

l2
(
ρ,μ2, λ2(ρ),ψ(z;ρ)

) ≡ μ2 f2(z)
dψ(z;ρ)

dz
+ λ2(ρ)ψ(z;ρ) = 0, z = zmax. (3)
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Here ρ is a parameter, functions f1(z) > 0, f2(z) > 0 and U (ρ, z) are continuous on finite interval z ∈ (zmin, zmax), and function f2(z)
is differentiable by the variable on finite interval z ∈ (zmin, zmax). Also U (ρ, z), λ1(ρ) and λ2(ρ) are differentiable by parameter ρ . If
μ jλ j(ρ) �= 0, then μ j = 1. The normalization condition reads for eigenfunctions ψi(z;ρ), ψ j(z;ρ)

zmax∫
zmin

f1(z)ψi(z;ρ)ψ j(z;ρ)dz = δi j, (4)

where δi j is the Kronecker symbol, and ε1(ρ) < ε2(ρ) < · · · .
The main goal of this paper is to develop an efficient numerical method that will allow one to calculate ∂ψ j(z;ρ)/∂ρ with the same

accuracy as was achieved for eigenfunctions of the boundary problem (1)–(3) and use it to compute potential matrix elements defined by
formula

Q ij(ρ) = −
zmax∫

zmin

f1(z)ψi(z;ρ)
∂ψ j(z;ρ)

∂ρ
dz,

Hij(ρ) =
zmax∫

zmin

f1(z)
∂ψi(z;ρ)

∂ρ

∂ψ j(z;ρ)

∂ρ
dz. (5)

The calculated eigenvalues and potential matrix elements can be used for solving the bound state and multi-channel scattering problems
for a system of the coupled second-order ordinary differential equations with the help of the KANTBP programs [8,9].

Taking a derivative of the boundary problem (1)–(3) with respect to parameter ρ , we get that ∂ψ j(z;ρ)/∂ρ can be obtained as a
solution of the following boundary problem

(
L(z;ρ) − ε j(ρ)

)∂ψ j(z;ρ)

∂ρ
= −

(
∂U (ρ, z)

∂ρ
− ∂ε j(ρ)

∂ρ

)
ψ j(z;ρ), (6)

∂l1(ρ,μ1, λ1(ρ),ψ j(zmin;ρ))

∂ρ
= 0, (7)

∂l2(ρ,μ2, λ2(ρ),ψ j(zmax;ρ))

∂ρ
= 0. (8)

Multiplying Eq. (6) from the left by eigenfunction ψi(z;ρ) and integrating over the interval z ∈ [zmin, zmax], we obtain

zmax∫
zmin

f1(z)ψi(z;ρ)
(
L(z;ρ) − ε j(ρ)

)∂ψ j(z;ρ)

∂ρ
dz ≡ (

εi(ρ) − ε j(ρ)
) zmax∫

zmin

f1(z)ψi(z;ρ)
∂ψ j(z;ρ)

∂ρ
dz + f i j(ρ, zmin, zmax)

= −
zmax∫

zmin

f1(z)ψi(z;ρ)

(
∂U (ρ, z)

∂ρ
− ∂ε j(ρ)

∂ρ

)
ψ j(z;ρ)dz, (9)

where

f i j(ρ, zmin, zmax) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂λ2(ρ)
∂ρ ψi(zmax;ρ)ψ j(zmax;ρ) − ∂λ1(ρ)

∂ρ ψi(zmin;ρ)ψ j(zmin;ρ), if μ1λ1(ρ) �= 0, μ2λ2(ρ) �= 0,

∂λ2(ρ)
∂ρ ψi(zmax;ρ)ψ j(zmax;ρ), if μ1λ1(ρ) = 0, μ2λ2(ρ) �= 0,

− ∂λ1(ρ)
∂ρ ψi(zmin;ρ)ψ j(zmin;ρ), if μ1λ1(ρ) �= 0, μ2λ2(ρ) = 0,

0, if μ1λ1(ρ) = 0, μ2λ2(ρ) = 0.

(10)

From here we find

∂ε j(ρ)

∂ρ
=

zmax∫
zmin

f1(z)ψ j(z;ρ)
∂U (ρ, z)

∂ρ
ψ j(z;ρ)dz + f j j(ρ, zmin, zmax). (11)

Now the problem (6)–(8) has a solution, but it is not unique. From the normalization condition (4) we obtain the required additional
condition

zmax∫
zmin

f1(z)ψ j(z;ρ)
∂ψ j(z;ρ)

∂ρ
dz = 0. (12)

Thus, problem (6)–(8) with additional conditions (11), (12) has now a unique solution.
In the most of applications the following formulas

Q ij(ρ) = 1

εi(ρ) − ε j(ρ)

zmax∫
zmin

f1(z)ψi(z;ρ)
∂U (ρ, z)

∂ρ
ψ j(z;ρ)dz + f i j(ρ, zmin, zmax)

εi(ρ) − ε j(ρ)
, i �= j,

Q ii(ρ) = 0, (13)
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and

Hij(ρ) = −
∑
l=1

Q il(ρ)Q lj(ρ), (14)

are usually used. Note that Eq. (14) has a rather slow convergence which means that in order to get a high level of accuracy one should
include a sufficiently large number of terms in a sum over l. This circumstance can present a serious problem from the computational
point of view, especially in regard to demands for required computational resources and computation time. An explicit example has been
given in paper [15] and can be examined with the help of Test III benchmark.

The continuity of eigenfunction ψ j(z;ρ) with respect to parameter ρ is very important for calculations of the potential matrix ele-
ments (5) and their further applications for solution of a system of coupled differential equations as considered in [8]. Hence we required
ψ j(z;ρ) > 0 in the vicinity of the right boundary point z = zmax.

3. High order approximations of the finite-element method

Let us consider a numerical algorithm for the calculation of the eigenfunctions ψ(z;ρ) and their derivative with respect to the parame-
ter ρ of the parametric boundary problem (1)–(3). Computational schemes of the high order of accuracy are derived from the Rayleigh–Ritz
variational functional

R(ψ, ε) =
{ zmax∫

zmin

(
f2(z)

(
dψ(z;ρ)

dz

)2

+ f1(z)U (ρ, z)ψ2(z;ρ)

)
dz + g(ρ, zmin, zmax)

}
×

{ zmax∫
zmin

f1(z)ψ2(z;ρ)dz

}−1

, (15)

on the basis of the FEM. Here

g(ρ, zmin, zmax) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λ2(ρ)ψ(zmax;ρ)ψ(zmax;ρ) − λ1(ρ)ψ(zmin;ρ)ψ(zmin;ρ), if μ1λ1(ρ) �= 0, μ2λ2(ρ) �= 0,

λ2(ρ)ψ(zmax;ρ)ψ(zmax;ρ), if μ1λ1(ρ) = 0, μ2λ2(ρ) �= 0,

−λ1(ρ)ψ(zmin;ρ)ψ(zmin;ρ), if μ1λ1(ρ) �= 0, μ2λ2(ρ) = 0,

0, if μ1λ1(ρ) = 0, μ2λ2(ρ) = 0.

(16)

The general idea of the FEM in one-dimensional space is to divide interval [zmin, zmax] into many small domains called elements. The
size of elements can be defined very freely so that physical properties can be taken into account.

The interval � = [zmin, zmax] is covered by a system of n subintervals � j = [z j−1, z j] in such a way that � = ⋃n
j=1 � j . In each

subinterval � j the nodes

zp
j,r = z j−1 + h j

p
r, h j = z j − z j−1, r = 0, p, (17)

and the Lagrange elements {φp
j,r(z)}p

r=0

φ
p
j,r(z) =

p∏
i=0,i �=r

(z − zp
j,i)

(zp
j,r − zp

j,i)
(18)

are determined. By means of the Lagrange elements φ
p
j,r(z), we define a set of local functions Nl(z) as follows:

N p
l (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
φ

p
1,0(z), z ∈ �1,

0, z /∈ �1,
l = 0,

{
φ

p
j,r(z), z ∈ � j,

0, z /∈ � j,
l = r + p( j − 1), r = 1, p − 1,

⎧⎪⎨
⎪⎩

φ
p
j,p(z), z ∈ � j,

φ
p
j+1,0(z), z ∈ � j+1,

0, z /∈ � j ∪ � j+1,

l = jp, j = 1,n − 1,

{
φ

p
n,p(z), z ∈ �n,

0, z /∈ �n,
l = np.

(19)

The functions {N p
l (z)}L

l=0, L = np, form a basis in the space of polynomials of the pth order. Now, each function ψ(z;ρ) is approximated
by a finite sum of local functions N p

l (z)

ψ(z;ρ) =
L∑

l=0

ψ l(zp
j,r,ρ

)
N p

l (z). (20)

After substituting expansion (20) into the variational functional (15) and minimizing it [10,11] we obtain the generalized eigenvalue
problem

Apψh = εhBpψh, Ap = Âp + M. (21)
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Here Ap is the stiffness matrix; Bp is the mass matrix and positive definite; M is the diagonal matrix with zero elements, except the
first and last elements that are equal λ2(ρ) (or zero) and −λ1(ρ) (or zero), respectively; ψh is the vector approximating solution on the
finite-element grid; and εh is the corresponding eigenvalue. The matrices Âp and Bp have the following form

Âp =
n∑

j=1

ap
j , Bp =

n∑
j=1

bp
j , (22)

where the local matrices ap
j and bp

j are calculated as

(
ap

j

)qr =
+1∫

−1

{
f2(z)

4

h2
j

dφ
p
j,q(z)

dz

dφ
p
j,r(z)

dz
+ f1(z)U (ρ, z)φp

j,q(z)φp
j,r(z)

}
h j

2
dη,

(
bp

j

)qr =
+1∫

−1

f1(z)φp
j,q(z)φp

j,r(z)
h j

2
dη,

z = z j−1 + 0.5h j(1 + η), q, r = 0, p. (23)

Integrals (23) are evaluated using the Gaussian quadrature formulae

(
ap

j

)qr =
p∑

g=0

{
f2(zg)

4

h2
j

dφ
p
j,q(zg)

dz

dφ
p
j,r(zg)

dz
+ f1(zg)U (ρ, zg)φ

p
j,q(zg)φ

p
j,r(zg)

}
h j

2
w g,

(
bp

j

)qr =
p∑

g=0

f1(zg)φ
p
j,q(zg)φ

p
j,r(zg)

h j

2
w g , (24)

where zg = z j−1 + 0.5h j(1 + ηg), ηg and w g , g = 0, p are the Gaussian nodes and weights.
Let ε j(ρ), ψ j(z;ρ) ∈ H2 are the exact solution of (1)–(3) and εh

j , ψh
j ∈ H1 are the numerical solution of (21). Then for U (ρ, z) > 0,

λ1(ρ) � 0 and λ2(ρ) � 0 the following estimates are valid [10]∣∣ε j(ρ) − εh
j

∣∣ � c1h2p,
∥∥ψ j(z;ρ) − ψh

j

∥∥
0 � c2hp+1, c1 > 0, c2 > 0, (25)

where ‖v(z;ρ)‖2
0 = ∫ zmax

zmin
f1(z)v2(z;ρ)dz, h the maximal step of the finite-element grid, p is the order of finite elements, j is the number

of the corresponding eigensolution, and constants c1 and c2 do not depend on step h. It is necessary to mention that the second estimate
of Eq. (25) is valid also for solution ∂ψ j(z;ρ)/∂ρ of problem (6)–(8), (12). This fact guarantees the same accuracy for eigenfunctions and
their derivatives within the present method.

In order to solve the generalized eigenvalue problem (21), the subspace iteration method [10,11] elaborated by Bathe [11] for the
solution of large symmetric banded matrix eigenvalue problems has been chosen. This method uses a skyline storage mode, which stores
components of the matrix column vectors within the banded region of the matrix, and is ideally suited for banded finite element matrices.
The procedure chooses a vector subspace of the full solution space and iterates upon the successive solutions in the subspace (for details,
see [11]). The iterations continue until the desired set of solutions in the iteration subspace converges to within the specified tolerance
on the Rayleigh quotients for the eigenpairs. If matrix Ap in Eq. (21) is not positively defined, problem (21) is replaced by the following
problem:

Ãpφh = ε̃hBpφh, Ãp = Ap − αBp . (26)

The number α (the shift of the energy spectrum) is chosen in such a way that matrix Ãp is positive. The eigenvector of problem (21) is
the same, and εh = ε̃h + α.

3.1. Calculations of parametric derivative of the eigenfunctions, and matrix elements

The boundary problem (6)–(8) is reduced to the linear system of inhomogeneous algebraic equations

L
∂ψh

∂ρ
≡ (

Ap − εhBp)∂ψh

∂ρ
= b, b = −

(
∂Ap

∂ρ
− ∂εh

∂ρ
Bp

)
ψh. (27)

The normalization, orthogonalization and additional conditions are read as

(
ψh)T

Bpψh = 1,

(
∂ψh

∂ρ

)T

Bpψh = 0,
∂εh

∂ρ
= (

ψh)T ∂Ap

∂ρ
ψh. (28)

From here, potential matrix elements Q h
ij and Hh

ij have the form

Q h
ij = −(

ψh
i

)T
Bp

∂ψh
j

∂ρ
, Hh

ij =
(

∂ψh
i

∂ρ

)T

Bp
∂ψh

j

∂ρ
. (29)

Since εh is an eigenvalue of (21), matrix L in Eq. (27) is degenerate. In this case the algorithm for solving Eq. (27) can be written in
three steps as follows:
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Step k1. Calculate solutions v and w of the auxiliary inhomogeneous systems of algebraic equations

L̄v = b̄, L̄w = d, (30)

with non-degenerate matrix L̄ and right-hand sides b̄ and d

L̄ss′ =
{

Lss′ , (s − S)(s′ − S) �= 0,

δss′ , (s − S)(s′ − S) = 0,

b̄s =
{

bs, s �= S,

0, s = S,
ds =

{ LsS , s �= S,

0, s = S,
(31)

where S is the number of the greatest absolute value element of vector Bpψh .
Step k2. Evaluate coefficient γ

γ = − γ1

(DS − γ2)
, γ1 = vT Bpψh, γ2 = wT Bpψh, DS = (

Bpψh)
S . (32)

Step k3. Evaluate vector ∂ψh/∂ρ

∂ψh
s

∂ρ
=

{
vs − γ ws, s �= S,

γ , s = S.
(33)

From the consideration above it is evident, that the derivative computed has the same accuracy as the calculated eigenfunction.

Theorem. Let L(z;ρ) from (1) is bounded positively defined operator on space H1 with energy norm, and λ1(ρ) � 0, λ2(ρ) � 0. Also ∂U (ρ, z)/∂ρ ,
∂λ1(ρ)/∂ρ and ∂λ2(ρ)/∂ρ are bounded in each value of the real parameter ρ . Then for exact values of solutions, ∂ε j(ρ)/∂ρ , ∂ψ j(z;ρ)/∂ρ ∈ H2 ,

from (6)–(8), (11), (12) and potential matrix elements, Q ij(ρ), Hi j(ρ), from (5), and corresponded numerical values, ∂εh
j /∂ρ , ∂ψh

j /∂ρ ∈ H1 , from

(27), (28) and Q h
ij , Hh

i j , from (29) the following estimates are valid:

∣∣∣∣∂ε j(ρ)

∂ρ
− ∂εh

j

∂ρ

∣∣∣∣ � c3h2p,

∥∥∥∥∂ψ j(z;ρ)

∂ρ
− ∂ψh

j

∂ρ

∥∥∥∥
0
� c4hp+1,

∣∣Q ij(ρ) − Q h
ij

∣∣ � c5h2p,
∣∣Hij(ρ) − Hh

ij

∣∣ � c6h2p,

where h the maximal step of the finite-element grid; p is the order of finite elements; i, j are the number of the corresponding solutions; and constants
c3 , c4 , c5 and c6 do not depend on step h.

Proof is straightforward following the scheme of proof of estimations (25) in accordance with [10].

3.2. Finding the lower bound for the lowest eigenvalue of the generalized eigenvalue problem

In general case it is impossible to define the lower bound for the lowest eigenvalue of Eq. (21), because the lowest eigenvalue ε1(ρ) is
depended on the parameter ρ . But, we can use the following algorithm to find the lower bound for the lowest eigenvalue ε1(ρ):

Step 1. Calculate LDLT factorization of Ap − αBp .
Step 2. If some elements of the diagonal matrix D are less than zero then put α = α − 1 and go to Step 3, else go to Step 5.
Step 3. Calculate LDLT factorization of Ap − αBp .
Step 4. If some elements of the diagonal matrix D are less than zero then put α = α − 1 and go to Step 3, else put α = α − 0.5 and go to

Step 8.
Step 5. Put α = α + 1 and calculate LDLT factorization of Ap − αBp .
Step 6. If all elements of the diagonal matrix D are greater than zero then put α = α + 1 and repeat Step 5.
Step 7. Put α = α − 1.5.
Step 8. End.

After using the above algorithm one should find the lower bound for the lowest eigenvalue, and always ε1(ρ) − α � 1.5.

4. Description of the program

Fig. 1 presents a flow diagram for the ODPEVP program. The function of each subroutine is described in Section 5. The ODPEVP
program is called from the main routine (supplied by a user) which sets dimensions of the arrays and is responsible for the input data.
In the present code each array declarator is written in terms of the symbolic names of constants. These constants are defined in the
following PARAMETER statement in the main routine:

PARAMETER (MTOT=800000,MITOT=500000,NMESH1=5,NROOT1=6)

where

• MTOT is the dimension of the working DOUBLE PRECISION array TOT.
• MITOT is the dimension of the working INTEGER array ITOT.
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Fig. 1. Flow diagram of the ODPEVP program.

• NMESH1 is the dimension of the DOUBLE PRECISION array RMESH containing the information about the subdivision of the interval
[zmin, zmax] on subintervals and the number of elements on each one of them. NMESH1 is always odd and � 3.

• NROOT1 is the number of eigenvalues and eigenvectors required, and also the dimension of the DOUBLE PRECISION arrays HH, QQ,
EIGV.

A more concrete assignment of these dimensions is discussed below. In order to change the dimensions in the code, all one has to do is
to modify the single PARAMETER statement defined above in the main program unit.

The calling sequence for the subroutine ODPEVP is:

CALL ODPEVP(TITLE,PARAM,HH,QQ,EIGV,NROOT,NPOL,RTOL,NITEM,
1 SHIFT,ICHK,IPRINT,IPRSTP,NMESH,RMESH,IBOUND,
2 FNOUT,IOUT,FMATR,IOUM,EVWFN,IOUF,TOT,ITOT,MTOT,
3 MITOT)

where the arguments have the following type and meaning:

• POTCCL is the name of the user-supplied DOUBLE PRECISION function which calculates the potential function U (ρ, z) (PARAM = ρ ,
RG = z) and should be written as follows:
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FUNCTION POTCCL(PARAM,RG)
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C . .
C . P R O G R A M .
C . TO CALCULATE THE PARAMETRIC POTENTIAL .
C . FUNCTION AT POINTS RG AND PARAM .
C . .
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IMPLICIT REAL*8 (A-H,O-Z)
RETURN
END

• POTCC1 is the name of the user-supplied DOUBLE PRECISION function which calculates first derivative of the potential function U (ρ, z)
with respect to the parameter ρ (PARAM = ρ , RG = z) and should be written as follows:

FUNCTION POTCC1(PARAM,RG)
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C . .
C . P R O G R A M .
C . TO CALCULATE FIRST DERIVATIVE OF PARAMETRIC .
C POTENTIAL FUNCTION WITH RESPECT TO PARAMETER .
C . AT POINTS RG AND PARAM .
C . .
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IMPLICIT REAL*8 (A-H,O-Z)
RETURN
END

• F1FUNC is the name of the user-supplied DOUBLE PRECISION function which calculates the function f1(z) (RG = z) and should be
written as follows:

FUNCTION F1FUNC(RG)
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C . .
C . P R O G R A M .
C . TO CALCULATE FUNCTION F1 AT POINT RG .
C . .
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IMPLICIT REAL*8 (A-H,O-Z)
RETURN
END

• F2FUNC is the name of the user-supplied DOUBLE PRECISION function which calculates the function f2(z) (RG = z) and should be
written as follows:

FUNCTION F2FUNC(RG)
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C . .
C . P R O G R A M .
C . TO CALCULATE FUNCTION F2 AT POINT RG .
C . .
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IMPLICIT REAL*8 (A-H,O-Z)
RETURN
END

• BOUNCF is the name of the user-supplied subroutine which calculates the values λ1(ρ), λ2(ρ) and their first derivatives with respect
to the parameter ρ (PARAM = ρ , DLMMN0 = λ1(ρ), DLMMX0 = λ2(ρ), DLMMN1 = ∂λ1(ρ)/∂ρ , DLMMX1 = ∂λ2(ρ)/∂ρ) and should
be written as follows:

SUBROUTINE BOUNCF(PARAM,DLMMN0,DLMMX0,DLMMN1,DLMMX1)
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C . .
C . P R O G R A M .
C . TO CALCULATE DLMMN0, DLMMX0 AND THEIR .
C . FIRST DERIVATIVES WITH RESPECT TO PARAMETER .
C . .
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

IMPLICIT REAL*8 (A-H,O-Z)
RETURN
END
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The parameters PARAM, RG have the same meaning as described below and should not be changed by subroutine BOUNCF, and
functions POTCCL, POTCC1, F1FUNC, F2FUNC.

Input data

TITLE CHARACTER title of the run to be printed on the output listing. The title should be no longer than 70 characters.
PARAM REAL*8 value of the parameter ρ .
HH REAL*8 array HH of dimension NROOT × NROOT containing values of the potential matrix H(ρ).
QQ REAL*8 array QQ of dimension NROOT × NROOT containing values of the potential matrix Q(ρ).
EIGV REAL*8 array EIGV of dimension NROOT containing values of the calculated eigenvalues ε j(ρ).
NROOT INTEGER number of eigenvalues and eigenvectors required.
NPOL INTEGER order of finite-element shape functions (interpolating Lagrange polynomials). Usually set to 6.
RTOL REAL*8 convergence tolerance on eigenvalues (1.D–06 or smaller).
NITEM INTEGER maximum number of iterations permitted (usually set to 16).
SHIFT REAL*8 contains the lower bound of lowest eigenvalue.
ICHK INTEGER key parameter. If ICHK �= 0 the SHIFT is determined automatically by the program with help of the

algorithm 3.2.
IPRINT INTEGER level of print:

= 0 – minimal level of print. The initial data, short information about the numerical scheme parameters,
main flags and keys, and eigenvalues calculated are printed out;
= 1 – eigenfunctions calculated are printed out with step IPRSTP additionally;
= 2 – information about nodal point distribution is printed out;
= 3 – global matrices Ap and Bp are printed out additionally;
= 4 – the highest level of print. The local stiffness and mass matrices together with all current information
about the course of the subspace iteration method solution of the generalized eigenvalue problem are
printed out.

IPRSTP INTEGER step with which eigenfunctions are printed out.
NMESH INTEGER dimension of array RMESH. NMESH always should be odd and � 3.
RMESH REAL*8 array RMESH contains information about subdivision of interval [zmin, zmax] of variable z on subintervals.

The whole interval [zmin, zmax] is divided as follows: RMESH(1) = zmin, RMESH(NMESH) = zmax, and the
values of RMESH(I) set the number of elements for each subinterval [RMESH(I-1), RMESH(I+1)], where I = 2,
4, . . . , NMESH - 1.

IBOUND INTEGER parameter defining the type of boundary conditions set in the boundary points z = zmin and z = zmax:
= 1 – the Dirichlet–Dirichlet boundary conditions: ψ(zmin;ρ) = 0, ψ(zmax;ρ) = 0;
= 2 – the Dirichlet–Neumann boundary conditions: ψ(zmin;ρ) = 0, limz→zmax f2(z) dψ(z;ρ)

dz = 0;

= 3 – the Neumann–Dirichlet boundary conditions: limz→zmin f2(z) dψ(z;ρ)
dz = 0, ψ(zmax;ρ) = 0;

= 4 – the Neumann–Neumann boundary conditions: limz→zmin f2(z) dψ(z;ρ)
dz = 0, limz→zmax f2(z) dψ(z;ρ)

dz = 0.
If μ1λ1(ρ) �= 0 the value of IBOUND equals 3 or 4. If μ2λ2(ρ) �= 0 the value of IBOUND equals 2 or 4.

FNOUT CHARACTER name of the output file (up to 55 characters) for printing out the results of the calculation. It is system
specific and may include a complete path to the file location.

IOUT INTEGER number of the output logical device for printing out the results of the calculation (usually set to 7).
FMATR CHARACTER name of the scratch file (up to 55 characters) for storing calculated matrices.
IOUM INTEGER number of the logical device for storing calculated matrices.
EVWFN CHARACTER name of the output file (up to 55 characters) for storing the results of the calculation, namely, the

eigenvalues and eigenfunctions, their first derivatives with respect to the parameter, and finite-element grid
points. It is used only if IOUF > 0.

IOUF INTEGER number of the logical device for storing data into file EVWFN.
TOT REAL*8 working vector of the DOUBLE PRECISION type.
ITOT INTEGER working vector of the INTEGER type.
MTOT INTEGER dimension of the DOUBLE PRECISION working array ITOT. The last address ILAST of array TOT is calculated

and then compared with the given value of MTOT. If ILAST > MTOT the message about an error is printed
and the execution of the program is aborted. In the last case, in order to carry out the required calculation
it is necessary to increase the dimension MTOT of array TOT to the quantity ILAST taken from the message.

MITOT INTEGER dimension of the INTEGER working array ITOT. The last address ILAST of array ITOT is calculated and then
compared with the given value of MITOT. If ILAST > MITOT the message about an error is printed and the
execution of the program is aborted. In the last case, in order to carry out the required calculation it is
necessary to increase the dimension MITOT of array ITOT to the quantity ILAST taken from the message.

Output data

The results of the calculation of eigenvalues and eigenfunctions are written using unformatted segmented records into file EVWFN,
according to the following operator:

WRITE(IOUF) NN,NROOT,NGRID,(EIGV(I),I=1,NROOT),
1 (BUP(I),I=1,NROOT),
2 (XGRID(I),I=1,NGRID),
3 ((R(I,J),I=1,NN),J=1,NROOT),
4 ((DR(I,J),I=1,NN),J=1,NROOT)
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In the above, parameters presented in the WRITE statement have the following meaning:

• NGRID is the number of finite-element grid points.
• NN is the number of nodes of eigenfunctions.
• NROOT is the number of eigenvalues.
• Arrays EIGV and BUP contain the eigenvalues calculated and their first derivative with respect to the parameter ρ .
• Array XGRID contains the values of the finite-element grid points.
• Arrays R and DR contain NROOT eigenfunctions each per NN elements and their first derivative with respect to parameter ρ .

5. Description of subprogram units

A flow diagram for the ODPEVP program is presented in Fig. 1. The function of each subroutine is briefly described below. Additional
details may be found in COMMENT cards within the program.

• Subroutine ADDVEC [8] assembles the element stiffness and mass matrices and the first derivative of stiffness matrix with respect to
parameter ρ into the corresponding global vector using a compact storage form.

• Subroutine ASSMCY controls the calculation of element stiffness and mass matrices, the first derivative of stiffness matrix with respect
to parameter ρ , and assembles them into the corresponding global matrices.

• User-supplied subroutine BOUNCF calculates λ1(ρ), λ2(ρ) and their first derivatives with respect to the parameter ρ .
• Subroutine BOUNDC [8] sets the Dirichlet or Neumann boundary conditions.
• Subroutine COLMHT [8] calculates column heights in banded matrix.
• Subroutine CHCHSH calculates the lower bound of lowest eigenvalue.
• Subroutine DECOMP [11] calculates LDLT factorization of stiffness matrix. This factorization is used in subroutine REDBAK [11] to

reduce and back-substitute the iteration vectors.
• Subroutine EMASST calculates an element mass matrix.
• Subroutine ERRDIM prints error messages when high-speed storage requested by a user is exceeded and stops the execution of

program ODPEVP.
• Subroutine ESTIF1 calculates the local on element stiffness matrix and its first derivative with respect to the parameter ρ .
• Subroutine EVSOLN prepares all input data for the SSPACE program, prints out the calculated eigenfunctions and first derivative with

respect to the parameter ρ , and writes them into the file EVWFN, if necessary. Also calculates the potential matrices H(ρ) and Q(ρ).
• User-supplied DOUBLE PRECISION function F1FUNC calculates the function f1(z).
• User-supplied DOUBLE PRECISION function F2FUNC calculates the function f2(z).
• Subroutine FEGRID [8] calculates nodal points for the finite-element grid.
• Subroutine GAULEG [17] calculates nodes and weights of the Gauss–Legendre quadrature.
• Subroutine GAUSSJ [17] calculates linear equation solution by the Gauss–Jordan matrix inversion method.
• Subroutine JACOBI [11] solves the generalized eigenproblem in subspace using the generalized Jacobi iteration.
• Subroutine MAXHT [8] calculates addresses of diagonal elements in banded matrix.
• Subroutine MULT [11] evaluates a product of the two vectors stored in compact form.
• Subroutine NODGEN [8] generates a nodal point distribution for the finite-element grid.
• User-supplied DOUBLE PRECISION function POTCCL calculates the potential function U (ρ, z).
• User-supplied DOUBLE PRECISION function POTCC1 calculates the first derivative of potential function U (ρ, z) with respect to param-

eter ρ .
• Subroutine SCHECK [11] evaluates shift for Sturm sequence check (called only if SHIFT = 0).
• Subroutine SHAPEF [8] calculates shape functions of the given order and their derivatives with respect to the master element coordi-

nate η at a specified value of z.
• Subroutine SSPACE [11] finds the smallest eigenvalues and the corresponding eigenvectors in the generalized eigenproblem using the

subspace iteration method [11]. We have added to this program the possibility of finding the eigensolutions closest to the energy spec-
trum shift given and also the possibility of using the previously calculated eigenvectors as the starting vectors for inverse iterations.
The list of arguments for this program is adequately commented in the routine; so, the interested reader is referred to the program
listing for further details. Warning messages will be issued if the requested accuracy RTOL is not obtained after NITEM iterations or if
the stiffness matrix Ap is not positively defined.

6. Test deck

6.1. Test I

We consider a boundary problem for the angular oblate spheroidal functions [18] with respect to a variable −1 < η = cos θ < 1 in the
form [1,14]:

− d

dη

(
1 − η2)dΦ j(η; r)

∂η
+

(
m2

1 − η2
+ γ 2r4

4

(
1 − η2))Φ j(η; r) = λ j(r)Φ j(η; r), (34)

with boundary conditions

lim
η→±1

(
1 − η2)dΦ j(η; r)

dη
= 0, if m = 0, and

Φ j(±1; r) = 0, if m �= 0, (35)
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where m = 0,±1, . . . is the magnetic quantum number, γ = B/B0, B0 ∼= 2.35 × 105 T is a dimensionless parameter which determines the
field strength B . The boundary problem (34), (35) has even and odd eigenfunctions.

We test only the even eigenfunctions with boundary conditions in variable 0 � η � 1 at m = 0 and γ = 1

d� j(η; r)

dη

∣∣∣∣
η=0

= 0, lim
η→1

(
1 − η2)d� j(η; r)

dη
= 0. (36)

Here λ1(ρ) = λ2(ρ) = 0.
The following values of numerical parameters and characters have been used in the test run via the supplied input file MAGNET.INP

&PARAMS TITLE=’ PARAMETRIC DIFFERENTIAL EQUATION I ’,
PARAM=11.51962D0,NROOT=6,NPOL=4,RTOL=1.D-13,NITEM=100,
SHIFT=-10.D0,ICHK=1,IPRINT=2,IPRSTP=400,IBOUND=4,
NMESH=3,RMESH=0.D0,400.D0,1.D0,
FNOUT=’MAGNET.LPR’,IOUT=7,FMATR=’MAGNET.MAT’,IOUM=11,
EVWFN=’MAGNET.WFN’,IOUF=0

&END

Remark. To compare calculated potential matrix elements H(ρ), Q(ρ) with the results in [14] the user should recalculate diagonal matrix
elements Hii(ρ) by the formula

Hii(ρ) = Hii(ρ) + εi(ρ)

ρ2
− 2

ρ
. (37)

6.2. Test II

We consider a boundary problem

−∂2ψ j(θ;ρ)

∂θ2
= ε j(ρ)ψ j(θ;ρ), (38)

with boundary conditions in angular variable −π/6 � θ � π/6

∂ψ j(θ;ρ)

∂θ
− ρcκ̄ψ j(θ;ρ) = 0, θ = −π

6
, (39)

∂ψ j(θ;ρ)

∂θ
+ ρcκ̄ψ j(θ;ρ) = 0, θ = π

6
. (40)

The boundary problem (38)–(40) has exact even and odd eigenfunctions, and also analytical potential matrix elements H(ρ), Q(ρ) [8,12,
13].

We test only even eigenfunctions with the boundary conditions in angular variable −π/6 � θ � 0 at c = −1 and κ̄ = π/6

∂ψ j(θ;ρ)

∂θ
− ρcκ̄ψ j(θ;ρ) = 0, θ = −π

6
, (41)

∂ψ j(θ;ρ)

∂θ
= 0, θ = 0. (42)

Here λ1(ρ) = −ρcκ̄ and λ2(ρ) = 0.
The following values of numerical parameters and characters have been used in the test run via the supplied input file 3DELTA.INP

&PARAMS TITLE=’ PARAMETRIC DIFFERENTIAL EQUATION II ’,
PARAM=2.00469D0,NROOT=6,NPOL=4,RTOL=1.D-13,NITEM=100,
SHIFT=-10.D0,ICHK=1,IPRINT=2,IPRSTP=400,IBOUND=4,
NMESH=3,RMESH=-0.5235987755982989D0,800.D0,0.D0,
FNOUT=’3DELTA.LPR’,IOUT=8,FMATR=’3DELTA.MAT’,IOUM=12,
EVWFN=’3DELTA.WFN’,IOUF=0

&END

Remark. To compare calculated potential matrix elements H(ρ), Q(ρ) with results in [8] the user should recalculate diagonal matrix
elements Hii(ρ) by the formula

Hii(ρ) = Hii(ρ) + εi(ρ)

ρ2
. (43)

6.3. Test III

Consider the following eigenvalue problem of hydrogen atom on a three-dimensional sphere(
− 1

sin2(α)

d

dα
sin2(α)

d

dα
− 2r cot(α)

)
ψ(α; r) = E(r)ψ(α; r), (44)

lim
α→0

sin2(α)
dψ(α; r)

dα
= 0, lim

α→π
sin2(α)

dψ(α; r)

dα
= 0. (45)
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Problem (44) has an analytical solution

En(r) = −r2
(

1

n2
− n2 − 1

r2

)
, n = 1,2, . . . (46)

with eigenfunctions ψn(α; r) which are the radial functions of a hydrogen atom on a three-dimensional sphere [15,16]

ψn(α, r) = Cn(r)Re
{

exp
(−ıα(n − 1 − ıσ )

)
2 F1

(−n + 1,1 + ıσ ,2,1 − exp(2ıα)
)}

,

Cn(r) = 2
√

σ(n2 + σ 2)√
1 − exp(−2πσ)

, σ = r

n
, (47)

where 2 F1 is a full hypergeometric function [18].
The following values of numerical parameters and characters have been used in the test run via the supplied input file HYDRON.INP

&PARAMS TITLE=’ PARAMETRIC DIFFERENTIAL EQUATION III ’,
PARAM=8.D0,NROOT=6,NPOL=4,RTOL=1.D-13,NITEM=100,
SHIFT=-10.D0,ICHK=1,IPRINT=2,IPRSTP=400,IBOUND=4,
NMESH=3,RMESH=0.D0,400.D0,3.141592653589793D0,
FNOUT=’ABRASH.LPR’,IOUT=7,FMATR=’ABRASH.MAT’,IOUM=11,
EVWFN=’ABRASH.WFN’,IOUF=0

&END
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Appendix A. Test run output

PROBLEM: PARAMETRIC DIFFERENTIAL EQUATION I
********

C O N T R O L I N F O R M A T I O N
------------------------------------

NUMBER OF ENERGY LEVELS REQUIRED. . . . . (NROOT ) = 6
NUMBER OF FINITE ELEMENTS . . . . . . . . (NELEM ) = 400
NUMBER OF GRID POINTS . . . . . . . . . . (NGRID ) = 1601
ORDER OF SHAPE FUNCTIONS . . . . . . . . (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE . . . (NGQ ) = 5
NUMBER OF SUBSPACE ITERATION VECTORS. . . (NC ) = 12
BOUNDARY CONDITION CODE . . . . . . . . . (IBOUND) = 4
SHIFT OF DOUBLE ENERGY SPECTRUM . . . . . (SHIFT ) = -10.0000
CONVERGENCE TOLERANCE . . . . . . . . . . (RTOL ) = 0.100000E-12
VALUE OF PARAMETER. . . . . . . . . . . . (PARAM ) = 11.5196

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- -------- -------- ------- ---- --------

1 400 0.00000 0.00250 0.000625 1.000

LAST ADDRESS OF ARRAY ITOT USED = 8807

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS. . . . (NN ) = 1601
TOTAL NUMBER OF MATRIX ELEMENTS. . . . . . (NWK) = 5601
MAXIMUM HALF BANDWIDTH . . . . . . . . . . (MK ) = 5
MEAN HALF BANDWIDTH . . . . . . . . . . (MMK) = 3

LAST ADDRESS OF ARRAY TOT USED = 12999
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LAST ADDRESS OF ARRAY TOT USED = 45256

THERE ARE 0 ROOTS LOWER THEN SHIFT
CONVERGENCE REACHED FOR RTOL 0.1000E-12
I T E R A T I O N N U M B E R 27
RELATIVE TOLERANCE REACHED ON EIGENVALUES
0.1686E-17 0.1446E-15 0.0000E+00 0.0000E+00 0.0000E+00 0.4431E-13

********************************************************************************

R O O T N U M B E R E I G E N V A L U E D E R I V A T I V E
----------------------- --------------------- ---------------------

1 131.6978190423784 23.03991454532688
2 393.0465776953899 69.12818558702216
3 650.2504800146933 115.2433376999127
4 903.2033485769872 161.4069643663601
5 1151.789459036675 207.6445825421709
6 1395.882038049846 253.9865811918269

********************************************************************************

R E I G E N F U N C T I O N
- ----------------------------------------

0.0000 -.22274964D-23 0.89303396D-24 0.22239605D-22 -.11106591D-19 0.30880481D-16 -.11249627D-13
0.2500 0.44557304D-20 -.70037339D-18 0.52788096D-16 -.25638041D-14 0.90742591D-13 -.26726604D-11
0.5000 0.59893375D-13 -.51378822D-11 0.21053777D-09 -.54780510D-08 0.10146586D-06 -.14226801D-05
0.7500 0.82047136D-06 -.29630640D-04 0.49284800D-03 -.49838295D-02 0.34023245D-01 -.16430949D+00
1.0000 0.11475799D+02 0.11386247D+02 0.11293729D+02 0.11197966D+02 0.11098636D+02 0.10995357D+02

********************************************************************************

R I T S D E R I V A T I V E
- ----------------------------------------

0.0000 0.79313330D-24 0.16717921D-23 -.25982994D-21 0.24924824D-19 -.14107815D-16 0.49670201D-14
0.2500 -.38454263D-19 0.58658153D-17 -.43241464D-15 0.20512551D-13 -.70340668D-12 0.18688340D-10
0.5000 -.33974850D-12 0.28224816D-10 -.11170940D-08 0.27985656D-07 -.49719792D-06 0.66503536D-05
0.7500 -.22911857D-05 0.77342703D-04 -.11888254D-02 0.10935688D-01 -.66359810D-01 0.27458239D+00
1.0000 0.10038777D+01 0.10121499D+01 0.10212586D+01 0.10313304D+01 0.10425178D+01 0.10550076D+01

********************************************************************************

P O T E N T I A L M A T R I C E S H(I,J) A N D Q(I,J):

H-MATRIX AT THE PARAMETER = 11.51962
0.7653D-02 0.1209D-03 -.1543D-01 -.3686D-03 -.9037D-05 -.2528D-06
0.1209D-03 0.3876D-01 0.6268D-03 -.4704D-01 -.1537D-02 -.4837D-04
-.1543D-01 0.6268D-03 0.1023D+00 0.1953D-02 -.9569D-01 -.4014D-02
-.3686D-03 -.4704D-01 0.1953D-02 0.2000D+00 0.4612D-02 -.1623D+00
-.9037D-05 -.1537D-02 -.9569D-01 0.4612D-02 0.3339D+00 0.9217D-02
-.2528D-06 -.4837D-04 -.4014D-02 -.1623D+00 0.9217D-02 0.5064D+00

Q-MATRIX AT THE PARAMETER = 11.51962
-.1605D-16 0.8748D-01 0.6854D-03 0.8256D-05 0.1360D-06 0.2879D-08
-.8748D-01 -.4770D-16 0.1764D+00 0.2124D-02 0.3501D-04 0.7408D-06
-.6854D-03 -.1764D+00 0.2472D-16 0.2668D+00 0.4396D-02 0.9302D-04
-.8256D-05 -.2124D-02 -.2668D+00 -.9237D-16 0.3589D+00 0.7592D-02
-.1360D-06 -.3501D-04 -.4396D-02 -.3589D+00 -.6072D-17 0.4528D+00
-.2879D-08 -.7408D-06 -.9302D-04 -.7592D-02 -.4528D+00 0.6072D-17

PROBLEM: PARAMETRIC DIFFERENTIAL EQUATION II
********



Author's personal copy

1372 O. Chuluunbaatar et al. / Computer Physics Communications 180 (2009) 1358–1375

C O N T R O L I N F O R M A T I O N
------------------------------------

NUMBER OF ENERGY LEVELS REQUIRED. . . . . (NROOT ) = 6
NUMBER OF FINITE ELEMENTS . . . . . . . . (NELEM ) = 800
NUMBER OF GRID POINTS . . . . . . . . . . (NGRID ) = 3201
ORDER OF SHAPE FUNCTIONS . . . . . . . . (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE . . . (NGQ ) = 5
NUMBER OF SUBSPACE ITERATION VECTORS. . . (NC ) = 12
BOUNDARY CONDITION CODE . . . . . . . . . (IBOUND) = 4
SHIFT OF DOUBLE ENERGY SPECTRUM . . . . . (SHIFT ) = -10.0000
CONVERGENCE TOLERANCE . . . . . . . . . . (RTOL ) = 0.100000E-12
VALUE OF PARAMETER. . . . . . . . . . . . (PARAM ) = 2.00469

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- -------- -------- ------- ---- --------

1 800 -0.52360 0.00065 0.000164 0.000

LAST ADDRESS OF ARRAY ITOT USED = 17607

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS. . . . (NN ) = 3201
TOTAL NUMBER OF MATRIX ELEMENTS. . . . . . (NWK) = 11201
MAXIMUM HALF BANDWIDTH . . . . . . . . . . (MK ) = 5
MEAN HALF BANDWIDTH . . . . . . . . . . (MMK) = 3

LAST ADDRESS OF ARRAY TOT USED = 25799

LAST ADDRESS OF ARRAY TOT USED = 90056

THERE ARE 0 ROOTS LOWER THEN SHIFT
CONVERGENCE REACHED FOR RTOL 0.1000E-12
I T E R A T I O N N U M B E R 15
RELATIVE TOLERANCE REACHED ON EIGENVALUES
0.0000E+00 0.5566E-14 0.3655E-14 0.3198E-14 0.9938E-15 0.5152E-13

********************************************************************************

R O O T N U M B E R E I G E N V A L U E D E R I V A T I V E
----------------------- --------------------- ---------------------

1 -2.431524951096452 -1.458429440168202
2 31.91272127947840 -2.058234364971463
3 139.9725288836021 -2.012985124428196
4 319.9826816386258 -2.005659513377144
5 571.9861743548753 -2.003162124194071
6 895.9877805734652 -2.002017513522787

********************************************************************************

R E I G E N F U N C T I O N
- ----------------------------------------

-0.5236 0.16689503D+01 -.19826593D+01 0.19607443D+01 -.19571733D+01 0.19559545D+01 -.19553956D+01
-0.4581 0.15627942D+01 -.17155517D+01 0.12800672D+01 -.65642720D+00 -.75119469D-01 0.80383895D+00
-0.3927 0.14729301D+01 -.12165809D+01 -.13054335D+00 0.14458929D+01 -.19567782D+01 0.13466777D+01
-0.3272 0.13984212D+01 -.55318460D+00 -.14667141D+01 0.17826097D+01 0.53663216D-01 -.18236288D+01
-0.2618 0.13384908D+01 0.18497661D+00 -.19665197D+01 -.57447142D-01 0.19573666D+01 0.34289891D-01
-0.1963 0.12925140D+01 0.89813754D+00 -.13449558D+01 -.18273543D+01 -.32200511D-01 0.17976623D+01
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-0.1309 0.12600115D+01 0.14899118D+01 0.43542857D-01 -.13658495D+01 -.19577197D+01 -.13955940D+01
-0.0654 0.12406446D+01 0.18803190D+01 0.14072121D+01 0.76351636D+00 0.10733934D-01 -.74082992D+00
0.0000 0.12342113D+01 0.20165941D+01 0.19684461D+01 0.19605399D+01 0.19578374D+01 0.19565974D+01

********************************************************************************

R I T S D E R I V A T I V E
- ----------------------------------------

-0.5236 0.16035732D+00 0.13094179D-02 -.60773212D-03 0.28686209D-03 -.16445461D-03 0.10614584D-03
-0.4581 0.97967070D-01 0.59195008D-01 -.53622333D-01 0.46414585D-01 -.37602731D-01 0.27780685D-01
-0.3927 0.46378558D-01 0.94296735D-01 -.66092299D-01 0.31427873D-01 -.65965486D-03 -.17886629D-01
-0.3272 0.44915769D-02 0.10617026D+00 -.41890927D-01 -.12163048D-01 0.26868776D-01 -.87796247D-02
-0.2618 -.28596841D-01 0.98927509D-01 -.52229874D-02 -.28852708D-01 0.12484460D-02 0.17146546D-01
-0.1963 -.53606702D-01 0.79908343D-01 0.19110488D-01 -.10698146D-01 -.16125139D-01 -.40659005D-02
-0.1309 -.71086469D-01 0.57828797D-01 0.22073763D-01 0.81688981D-02 -.16017773D-02 -.67842197D-02
-0.0654 -.81421778D-01 0.40772504D-01 0.12788962D-01 0.78289098D-02 0.53756919D-02 0.35489858D-02
0.0000 -.84841577D-01 0.34408945D-01 0.71690953D-02 0.30895655D-02 0.17195639D-02 0.10951726D-02

********************************************************************************

P O T E N T I A L M A T R I C E S H(I,J) A N D Q(I,J):

H-MATRIX AT THE PARAMETER = 2.00469
0.2735D-02 -.2851D-03 -.8665D-03 0.4535D-03 -.2682D-03 0.1755D-03
-.2851D-03 0.2976D-02 -.7163D-03 0.1031D-03 -.3044D-04 0.1246D-04
-.8665D-03 -.7163D-03 0.6601D-03 -.2510D-03 0.4426D-04 -.1478D-04
0.4535D-03 0.1031D-03 -.2510D-03 0.2870D-03 -.1270D-03 0.2453D-04
-.2682D-03 -.3044D-04 0.4426D-04 -.1270D-03 0.1602D-03 -.7659D-04
0.1755D-03 0.1246D-04 -.1478D-04 0.2453D-04 -.7659D-04 0.1022D-03

Q-MATRIX AT THE PARAMETER = 2.00469
-.3050D-15 -.5045D-01 0.1203D-01 -.5305D-02 0.2976D-02 -.1902D-02
0.5045D-01 0.8823D-17 -.1884D-01 0.7053D-02 -.3760D-02 0.2349D-02
-.1203D-01 0.1884D-01 0.3037D-17 -.1116D-01 0.4648D-02 -.2655D-02
0.5305D-02 -.7053D-02 0.1116D-01 -.1669D-17 -.7954D-02 0.3479D-02
-.2976D-02 0.3760D-02 -.4648D-02 0.7954D-02 0.1934D-17 -.6181D-02
0.1902D-02 -.2349D-02 0.2655D-02 -.3479D-02 0.6181D-02 0.1714D-17

PROBLEM: PARAMETRIC DIFFERENTIAL EQUATION III
********

C O N T R O L I N F O R M A T I O N
------------------------------------

NUMBER OF ENERGY LEVELS REQUIRED. . . . . (NROOT ) = 6
NUMBER OF FINITE ELEMENTS . . . . . . . . (NELEM ) = 400
NUMBER OF GRID POINTS . . . . . . . . . . (NGRID ) = 1601
ORDER OF SHAPE FUNCTIONS . . . . . . . . (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE . . . (NGQ ) = 5
NUMBER OF SUBSPACE ITERATION VECTORS. . . (NC ) = 12
BOUNDARY CONDITION CODE . . . . . . . . . (IBOUND) = 4
SHIFT OF DOUBLE ENERGY SPECTRUM . . . . . (SHIFT ) = -10.0000
CONVERGENCE TOLERANCE . . . . . . . . . . (RTOL ) = 0.100000E-12
VALUE OF PARAMETER. . . . . . . . . . . . (PARAM ) = 8.00000

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- -------- -------- ------- ---- --------
1 400 0.00000 0.00785 0.001963 3.142

LAST ADDRESS OF ARRAY ITOT USED = 8807
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T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS. . . . (NN ) = 1601
TOTAL NUMBER OF MATRIX ELEMENTS. . . . . . (NWK) = 5601
MAXIMUM HALF BANDWIDTH . . . . . . . . . . (MK ) = 5
MEAN HALF BANDWIDTH . . . . . . . . . . (MMK) = 3

LAST ADDRESS OF ARRAY TOT USED = 12999

LAST ADDRESS OF ARRAY TOT USED = 45256

THERE ARE 0 ROOTS LOWER THEN SHIFT
CONVERGENCE REACHED FOR RTOL 0.1000E-12
I T E R A T I O N N U M B E R 26
RELATIVE TOLERANCE REACHED ON EIGENVALUES
0.0000E+00 0.3826E-14 0.3197E-13 0.2584E-14 0.2651E-14 0.1134E-12

********************************************************************************

R O O T N U M B E R E I G E N V A L U E D E R I V A T I V E
----------------------- --------------------- ---------------------

1 -63.99999999998519 -15.99999999999546
2 -12.99999999997674 -4.000000000007500
3 0.8888888889180890 -1.777777777775382
4 11.00000000002065 -0.9999999999255478
5 21.44000000001866 -0.6400000012114990
6 33.22222222224192 -0.4444445049532144

********************************************************************************

R E I G E N F U N C T I O N
- ----------------------------------------

0.0000 0.45607017D+02 -.17888544D+02 0.13109228D+02 -.12649133D+02 0.13281250D+02 -.14196050D+02
0.7854 0.85168492D-01 0.16398529D+01 0.59790078D-01 -.61977823D+00 0.95678611D+00 -.10614438D+01
1.5708 0.15904728D-03 0.13362332D+00 0.87617699D+00 0.72882478D+00 -.68083352D+00 -.32293554D+00
2.3562 0.29701169D-06 0.51038856D-02 0.13147060D+00 0.61601006D+00 0.12401978D+01 0.13223847D+01
3.1416 0.55465260D-09 0.62383477D-04 0.30146728D-02 0.23621531D-01 0.87143859D-01 0.21527760D+00

********************************************************************************

R I T S D E R I V A T I V E
- ----------------------------------------

0.0000 0.84636099D+01 -.29068884D+01 0.15425938D+01 -.11067645D+01 0.98392782D+00 -.96904963D+00
0.7854 -.51085871D-01 -.10418382D+00 0.40991318D+00 -.31989712D+00 0.16210582D+00 0.28957439D-01
1.5708 -.22031538D-03 -.66530808D-01 -.12005277D+00 0.23307684D+00 0.17446766D+00 -.27458383D+00
2.3562 -.64469879D-06 -.46731036D-02 -.65118968D-01 -.16500181D+00 -.11862643D+00 0.11616782D+00
3.1416 -.16395611D-08 -.87854421D-04 -.28022143D-02 -.16485488D-01 -.48298137D-01 -.98023856D-01

********************************************************************************

P O T E N T I A L M A T R I C E S H(I,J) A N D Q(I,J):

H-MATRIX AT THE PARAMETER = 8.00000
0.1136D-01 -.1016D-01 -.9803D-03 0.3020D-02 -.3697D-02 0.3875D-02
-.1016D-01 0.2972D-01 -.1652D-01 -.1065D-01 0.9211D-02 -.7225D-02
-.9803D-03 -.1652D-01 0.5213D-01 -.2163D-01 -.1704D-01 0.8337D-02
0.3020D-02 -.1065D-01 -.2163D-01 0.6997D-01 -.2275D-01 -.2062D-01
-.3697D-02 0.9211D-02 -.1704D-01 -.2275D-01 0.7850D-01 -.2038D-01
0.3875D-02 -.7225D-02 0.8337D-02 -.2062D-01 -.2038D-01 0.8015D-01

Q-MATRIX AT THE PARAMETER = 8.00000
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0.1757D-15 -.7355D-01 0.3912D-01 -.3102D-01 0.2724D-01 -.2434D-01
0.7355D-01 0.4427D-16 -.1332D+00 0.5842D-01 -.3716D-01 0.2635D-01
-.3912D-01 0.1332D+00 0.1215D-15 -.1672D+00 0.5393D-01 -.3203D-01
0.3102D-01 -.5842D-01 0.1672D+00 0.7797D-16 -.1844D+00 0.4495D-01
-.2724D-01 0.3716D-01 -.5393D-01 0.1844D+00 -.4739D-16 -.1914D+00
0.2434D-01 -.2635D-01 0.3203D-01 -.4495D-01 0.1914D+00 -.2222D-16
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a b s t r a c t

A FORTRAN 77 program is presented for calculating with the given accuracy eigenvalues, surface
eigenfunctions and their first derivatives with respect to a parameter of the parametric self-adjoined 2D
elliptic partial differential equation with the Dirichlet and/or Neumann type boundary conditions on a
finite two-dimensional region. The program calculates also potential matrix elements that are integrals
of the products of the surface eigenfunctions and/or the first derivatives of the surface eigenfunctions
with respect to a parameter. Eigenvalues and matrix elements computed by the POTHEA program can be
used for solving the bound state and multi-channel scattering problems for a system of coupled second
order ordinary differential equations with the help of the KANTBP program (Chuluunbaatar et al., 2007).
Benchmark calculations of eigenvalues and eigenfunctions of the ground and first excited states of a
Helium atom in the framework of a coupled-channel hyperspherical adiabatic approach are presented.
As a test desk, the program is applied to the calculation of the eigensolutions of a 2D boundary value
problem, their first derivatives with respect to a parameter and potential matrix elements used in the
benchmark calculations.

Program Summary

Program title: POTHEA
Catalogue identifier: AESX_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AESX_v1_0.html
Program obtainable from:
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of bits in distributed program, including test data, etc.: 36 929
No. of lines in distributed program, including test data, etc.: 3 756
Distribution format: tar.gz
Programming language: FORTRAN 77
Computer: Personal computer
Operating system: Unix/Linux, Windows
RAM: depends on

(a) the number of differential equations,
(b) the number and order of finite elements, and
(b) the number of eigensolutions required.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
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Classification: 2.7

External routine: SSPACE [1], GAULEG [2]

Nature of problem: Solutions of boundary value problems (BVPs) for the elliptic partial differential
equations (PDEs) of the Schrödinger type find wide application in molecular, atomic and nuclear physics,
for example, in three-dimensional tunneling of a diatomic molecule incident upon a potential barrier,
fission model of collision of heavy ions, fragmentation of light nuclei, a hydrogen atom in magnetic
field, photoionization of Helium like atoms, one photon ionization of atoms, electron-impact ionization
of molecular hydrogen and photodissociation of molecules in strong laser field [3,4]. In the coupled-
channel adiabatic approach (CCAA) [4], known in mathematical physics as the Kantorovich method, the
desirable solution of the original boundary value problem (BVP) is expanded over surface eigenfunctions
in fast variables (for example, angular variables) of an auxiliary BVP for an appropriate PDE dependent
on a slow variable (for example, radial variable) as a parameter. Averaging of the original BVP over
the surface eigenfunctions leads to 1D BVP for a system of coupled second-order ordinary differential
equations (SOODEs) containing the potential matrix elements and first-derivative coupling terms that
are integrals of the products of the surface eigenfunctions and/or the first derivatives of the surface
eigenfunctions with respect to a parameter [4]. The purpose of this paper is to present the finite element
method procedure based on the use of high-order accuracy approximations for calculating eigenvalues,
surface eigenfunctions and their first derivatives with respect to a parameter of the parametric BVP for
self-adjoined 2D PDE with the Dirichlet and/or Neumann type boundary conditions on a finite 2D region
which arise at the reduction of the 3D BVP to 1D BVP for a system of coupled SOODEs in the framework
of CCAA. The program developed calculates potential matrix elements that are integrals of the products
of the surface eigenfunctions and/or the first derivatives of the surface eigenfunctions with respect to
a parameter. These eigenvalues and potential matrix elements can be used for solving the bound state
and multi-channel scattering problems for a system of coupled SOODEs with the help of the KANTBP
program [5].

Solution method:We seek the desirable solution of the parametric 2D BVP in the form of expansion in the
basis functions of the auxiliary Sturm-Liouville problemwith respect to one of the fast variables. They are
chosen in analytical form or calculated by the ODPEVP program [6]. The coefficients of the expansion are
vector-eigenfunctions of the parametric homogeneous 1D BVP for a system of coupled SOODEs obtained
by averaging the original 2D problem over the basis functions. First derivatives with respect to the
parameter of these vector-eigenfunctions and eigenvalues are solutions of the parametric inhomogeneous
1D BVP, obtained by taking a derivative of the parametric homogeneous 1D BVP with respect to the
parameter [7]. Then, we solve the reduced parametric homogeneous and inhomogeneous 1D BVPs by
the finite element method using high-order accuracy approximations [6]. The generalized algebraic
eigenvalue problem A F = E B F with respect to a pair of unknowns (E, F) arising after the replacement
of the differential problem by the finite-element approximation is solved by the subspace iteration
method using the SSPACE program [1]. First derivatives of the vector-eigenfunctions and eigenvalueswith
respect to the parameter are obtained by solving the inhomogeneous algebraic equations in accordance
with the algorithm used in [6]. Finally, we evaluate the desirable matrix elements using the calculated
eigenvalues, vector-eigenfunctions and their derivatives, which can be applied to generate the coupled
system equations in the slow variable in the CCAA.
Benchmark calculations of eigenvalues and eigenfunctions of the ground and first excited states
of a Helium atom in the framework of a coupled-channel hyperspherical adiabatic approach are
presented. Additionally a convergence of the eigenvalues versus both the number of parametric vector-
eigenfunctions and the number of their components is studied. As a test desk, the program is applied to the
calculation of the eigensolutions and their first derivativeswith respect to the parameter of the parametric
2D BVP including evaluation of matrix elements, which are used in the benchmark calculations.

Restrictions: The computer memory requirements depend on:

(a) the number of differential equations,
(b) the number and order of finite elements, and
(c) the number of eigensolutions required.

Restrictions due to dimension sizesmay be easily alleviated by altering PARAMETER statements (see Long
Write–Up). The user must also supply subroutine POTCLC for evaluating potential matrix elements. The
user must also supply additional three DOUBLE PRECISION functions (see Long Write–Up for details).

Running time: The running time depends critically upon:

(a) the number of differential equations,
(b) the number and order of finite elements, and
(c) the number of eigensolutions required.

The test run which accompanies this paper took 15 s with calculation of matrix potentials on computer
Intel Core i5 CPU 3.33 GHz, 4 GB RAM, Windows 7. This test run requires 10 MB of disk storage.
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LONGWRITE-UP

1. Introduction

Mathematical models of few-body systems in molecular, atomic and nuclear physics, as well as physics of semiconductor
nanostructures are described by boundary value problems (BVPs) for the multidimensional equation of Schrödinger type in configuration
space Rd, for example, in studies of spectral and optical characteristics of excited states of a Helium-like atom [1–11], photoionization and
recombination of opposite charged particles (positrons, antiprotons) in the magnet-optical trap [12], optical absorption in quantumwells,
quantum wires [13], and quantum dots [14], channeling of likely charged particles in thin doped films [15] and resonance tunneling of
composite systems through repulsive barriers [16].

Efficient and stable algorithms for the numerical solution of such class of BVPs are based on its reduction to a system of coupled second-
order ordinary differential equations (SOODEs) with respect to the slow variable (for example, radial variable) in the coupled-channel
adiabatic approach (CCAA) [17,18] or the Kantorovich method (KM) [19]. It is quite natural to use the eigenfunctions dependent on the
slow variable as a parameter of an auxiliary parametric BVP over the fast variables (for example, angular variables) in an appropriate region
of configuration space Rd−1 as the basis for the expansion of the unknown (required) solution.

For efficient application of the CCAA (or KM) one needs to create complex programs for calculations of the following quantities with a
prescribed accuracy:

(1) parametric eigenvalues and eigenfunctions of the auxiliary parametric BVP over the fast variables,
(2) first derivatives of the eigenvalues and eigenfunctions with respect to the parameter,
(3) matrix elements that are integrals of products of the eigenfunctions and/or the first derivatives of the eigenfunctions with respect to

the parameter that appear as variable matrix coefficients in the system of SOODEs in the slow variable,
(4) solutions of 1D BVP for the system of coupled SOODEs in the slow variable.

Using the above approach, we leverage and elaborate programs ODPEVP [20] and POTHMF [12] for the solution of problems (1)–(3) for
the parametric 1D BVP, and programs KANTBP [21,22] for the solution of problem (4).

In this paper, we present program POTHEA where we implement effective and stable algorithms developed in [7] for solving problems
(1)–(3) for the parametric 2D BVP for the elliptic partial differential equation (PDE) with boundary conditions of Dirichlet and/or Neumann
type on a finite two-dimensional region which arise at the reduction of the 3D BVP to a system of coupled SOODEs using the CCAA. We
seek the solution of the parametric 2D BVP in the form of expansion in the basis functions of the auxiliary Sturm–Liouville problem for
the SOODE with respect to one of the variables. They are chosen in analytical form or calculated by ODPEVP program [20]. The coefficients
of the expansion are the parametric vector-functions which are eigensolutions of the parametric homogeneous 1D BVP for a system of
coupled SOODEs obtained by averaging of the original 2D problem over the basis eigenfunctions. The required parametric derivatives of
eigenvalues and vector-eigenfunctions are calculated as a solution of the parametric inhomogeneous 1D BVP which is obtained by taking
a derivative of the above parametric homogeneous 1D BVP with respect to the parameter.

The finite element method (FEM) [23,24] is used to discretize both the homogeneous and inhomogeneous parametric 1D BVPs. The
calculated eigenfunctions and their first derivatives with respect to the parameter are within an accuracy of the same order of O(hp+1),
and also the eigenvalues and matrix elements are within an accuracy of the same order of O(h2p) in the maximal step h of a finite element
grid [23,25]. Choice of the order p of finite element approximation depends on the smoothness of the desired solutions.

The efficiency of application of the programs POTHEA andKANTBP [21,22] is demonstrated by the solution of 3DBVP for the Schrödinger
equation of a Helium atom with zero total angular momentum in the body-fixed hyperspherical coordinates [7]. The corresponding
benchmark calculations with a given accuracy of energies and eigenfunctions of the ground and first excited states of a Helium atom
and their convergence versus both the number of parametric vector-eigenfunctions and the number of their components are presented.
The numerical experiments confirm the above theoretical estimations for the eigenvalues, eigenfunctions of the parametric 2D BVP and
their derivatives with respect to the parameter, and also matrix elements.

The structure of the paper is as follows. In Section 2, we present the statement of the problem and reduction of the parametric 2D BVP to
the parametric 1D BVPs. The construction of the finite-element high-order schemes is discussed in Section 3. A description of the POTHEA
program is given in Section 4. In Section 5, the benchmark calculations and numerical analysis ofmatrix elements and the eigensolutions of
ground and first excited states of a Helium atom in the framework of a coupled-channel hyperspherical adiabatic approach are presented.
Test desk is discussed in Section 6.
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2. Statement of the problem

Let us consider a boundary value problem for a parametric self-adjoined 2D PDE on regionΩx,y = (xmin, xmax)× (ymin, ymax)
−

1
f1(y)

∂

∂y
f2(y)

∂

∂y
−

1
f3(y)

1
f4(x)

∂

∂x
f5(x)

∂

∂x
+ U(x, y; z)− εi(z)


Bi(x, y; z) = 0, (1)

with the Dirichlet and/or Neumann type boundary conditions

lim
y→yt

f2(y)
∂Bi(x, y; z)

∂y
= 0 or Bi(x, yt; z) = 0, x ∈ (xmin, xmax), (2)

lim
x→xt

f5(x)
∂Bi(x, y; z)

∂x
= 0 or Bi(xt , y; z) = 0, y ∈ [ymin, ymax],

where t = min,max. Here z ∈ Ωz = [zmin, zmax] is a parameter, functions f1(y) > 0, f2(y) > 0, f3(y) > 0, f4(x) > 0, f5(x) > 0, and
∂yf2(y), ∂xf5(x), U(x, y; z), ∂zU(x, y; z) are continuous on the (x, y) ∈ Ωx,y. Also assume that the parametric BVP (1), (2) has only discrete
spectrum.

The program POTHEA is implemented as the sequence of the following steps:
Step 1. Calculates a set of jmax smallest eigenvalues ε1(z) < ε2(z) < · · · < εN(z), and ε1(z) ≥ α(z), and the corresponding

eigenfunctions {Bj(x, y; z)}Nj=1 ∈ Fz ∼ L2(Ωx,y), satisfying the orthogonality and normalization conditions ymax

ymin

dy f1(y)
 xmax

xmin

dx f4(x)Bi(x, y; z)Bj(x, y; z) = δij, (3)

where δij is the Kronecker symbol and α(z) > −∞ is the lower bound of the smallest eigenvalue of ε1(z).
Step 2.Computes a set of partial derivatives of eigenvalues ∂zεj(z) andpartial derivatives of eigenfunctions ∂zBj(x, y; z)with an accuracy

of the same order achieved for eigenvalues and eigenfunctions of the BVP (1)–(3), respectively.
Step 3. Computes elements of matrices of dimension N × N defined by the two-dimensional integrals

Hij(z) = Hji(z) =

 ymax

ymin

dy f1(y)
 xmax

xmin

dx f4(x)
∂Bi(x, y; z)

∂z
∂Bj(x, y; z)

∂z
, (4)

Qij(z) = −Qji(z) = −

 ymax

ymin

dy f1(y)
 xmax

xmin

dx f4(x)Bi(x, y; z)
∂Bj(x, y; z)

∂z
,

with an accuracy of the same order achieved for the corresponding eigenvalues of the BVP (1)–(3).
The calculated eigenvalues εi(z) and potential matrix elements Hij(z), Qij(z) can be used for solving the bound state and multichannel

scattering problems for a system of coupled SOODEs with respect to the variable z with the help of the KANTBP programs [21,22].

2.1. Reduction of the 2D parametric BVP to the 1D parametric BVP

Step 1.1. The partial wave function Bi(x, y; z) is expanded over the orthonormal basis functions {ψj(x)}
jmax
j=1 (jmax → ∞):

Bi(x, y; z) =

jmax
j=1

ψj(x)ξ
(i)
j (y; z). (5)

In Eq. (5), vector-functions ξ(i)(y; z) =


ξ
(i)
1 (y; z), . . . , ξ

(i)
jmax
(y; z)

T
are unknown. Basis functionsψj(x) are determined as solutions of the

following eigenvalue problem:
−

1
f4(x)

d
dx

f5(x)
d
dx

+ U0(x)

ψj(x) = λjψj(x), (6)

lim
x→xt

f5(x)
dψj(x)
dx

= 0 or ψj(xt) = 0, (7)

where t = min,max, U0(x) is a known function. Basis functions ψj(x) satisfy the orthogonality and normalization conditions xmax

xmin

dx f4(x)ψi(x)ψj(x) = δij, (8)

and they are chosen in analytical form or calculated by the ODPEVP program [20].
Step 1.2. After minimizing the Rayleigh–Ritz variational functional, and using the expansion (5), the parametric BVP (1)–(3) is reduced

to a finite set of jmax coupled SOODEs

(D(y; z)− εi(z) I) ξ(i)(y; z) ≡


−

1
f1(y)

I
∂

∂y
f2(y)

∂

∂y
+ W(y; z)− εi(z) I


ξ(i)(y; z) = 0, (9)

lim
y→yt

f2(y)
∂ξ(i)(y; z)

∂y
= 0 or ξ(i)(yt; z) = 0, (10)
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where t = min,max. Here I, W(y; z) are symmetric matrices of dimension jmax × jmax

Iij = δij =

 ymax

ymin

dy f1(y)

ξ(i)(y; z)

T
ξ(j)(y; z), (11)

Wij(y; z) =
λi + λj

2f3(y)
δij +

 xmax

xmin

dx f4(x) ψi(x)

U(x, y; z)−

U0(x)
f3(y)


ψj(x).

Step 2.1. Taking a derivative of the boundary problem (9)–(11) with respect to parameter z, we get that ∂zξ(i)(y; z) can be obtained as
a solution of the following boundary problem

(D(y; z)− εi(z) I)
∂ξ(i)(y; z)

∂z
= −


∂

∂z
(W(y; z)− εi(z) I)


ξ(i)(y; z), (12)

lim
y→yt

f2(y)
∂2ξ(i)(y; z)
∂y∂z

= 0 or
∂ξ(i)(yt; z)

∂z
= 0 (13)

where t = min,max. The parametric BVP (12), (13) has a unique solution, if and only if it fulfills conditions

∂εi(z)
∂z

=

 ymax

ymin

dy f1(y)

ξ(i)(y; z)

T ∂W(y; z)
∂z

ξ(i)(y; z), (14)

 ymax

ymin

dyf1(y)

ξ(i)(y; r)

T ∂ξ(i)(y; z)
∂z

= 0. (15)

Step 3.1. In this case the required matrix elements (4) are represented by the one-dimensional integrals

Hij(z) = Hji(z) =

 ymax

ymin

dy f1(y)


∂ξ(i)(y; z)

∂z

T
∂ξ(j)(y; z)

∂z
, (16)

Qij(z) = −Qji(z) = −

 ymax

ymin

dy f1(y)

ξ(i)(y; z)

T ∂ξ(j)(y; z)
∂z

.

2.2. Continuity conditions for the eigenfunction Bi(x, y; z)

Since problems (1)–(3) and (9)–(11) are homogeneous, it is necessary to use an additional condition to support the continuity of vector-
functions ξ(i)(y; z) and matrix elements (16) with respect to parameter z on interval Ωz = [zmin, zmax]. We have used the following
additional condition:

1. At the first point z = z1 ∈ Ωz , find value y = y0, in which eigenfunction Bi(x0, y0; z1) reached an absolute maximum value and fix the
sign of the value of eigenfunction Bi(x0, y0; z1). Here x0 ∈ [xmin, xmax] is a fixed point and at least one of functions ψj(x0) in expansion
(5) is not equal to zero.

2. At the next points z ∈ Ωz compute the value of eigenfunction Bi(x0, y0; z) and compare its sign with the sign of the previous one. If
they are different, change the sign of Bi(x0, y0; z) and again find new value y = y0, in which eigenfunction Bi(x0, y0; z1) reached an
absolute maximum value, and fix the sign of the value of eigenfunction Bi(x0, y0; z).

Note that if theΩz grid is dense, the above algorithm works well. One can check alternatively a continuous property of the expansionjmax
j=1 ψj(x)ξ

(i)
j (y; z) instead of the continuous one of expansion (5).

3. High order approximations of the finite-element method

Let us consider a numerical algorithm for the calculation of the vector-eigenfunctions ξ(y; z) = ξ(i)(y; z) of the parametric boundary
problem (9)–(11) and their derivative with respect to parameter z. Computational schemes of the high order of accuracy are derived from
the Rayleigh–Ritz variational functional on the basis of the finite-element method (FEM)

R(ξ, ε) =

 ymax
ymin


f2(y)


∂yξ(y; z)

T
∂yξ(y; z)+ f1(y) (ξ(y; z))T W(y, z)ξ(y; z)


dy ymax

ymin
f1(y) (ξ(y; z))T ξ(y; z)dy

. (17)

The general idea of FEM in one-dimensional space is to divide interval [ymin, ymax] into many small domains called elements. The size
of elements can be defined very freely so that physical properties or quality behavior of solutions can be taken into account. Interval
∆ = [ymin, ymax] is covered by a system of n subintervals ∆j = [yj−1, yj] in such a way that ∆ =

n
j=1∆j. In each subinterval ∆j nodes

ypj,r
p
r=0

ypj,r = yj−1 +
hj

p
r, hj = yj − yj−1, (18)
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and the Lagrange elements

φ

p
j,r(y)

p
r=0

φ
p
j,r(y) =

p
i=0,i≠r

(y − ypj,i)

(ypj,r − ypj,i)
(19)

are determined. By means of the Lagrange elements φp
j,r(y), we define a set of local functions Nl(y) as follows:

Np
l (y) =




φ

p
1,0(y), y ∈ ∆1,

0, y ∉ ∆1,
l = 0,


φ

p
j,r(y), y ∈ ∆j,

0, y ∉ ∆j,
l = r + p(j − 1), r = 1, p − 1,


φ

p
j,p(y), y ∈ ∆j,

φ
p
j+1,0(y), y ∈ ∆j+1,

0, y ∉ ∆j


∆j+1,

l = jp, j = 1, n − 1,


φp
n,p(y), y ∈ ∆n,

0, y ∉ ∆n,
l = np.

(20)

The functions {Np
l (y)}

L
l=0, L = np, form a basis in the space of polynomials of the p-th order. Now, each component of the vector-functions

ξ(y; z) ∈ F h
z ∼ H1(Ωhy) is approximated by a finite sum of local functions Np

l (y)

ξν(y; z) =

L
l=0

ξ lν(y; z)N
p
l (y), (21)

i.e. vector-function ξ(y; z) has a generalized first-order partial derivative and belongs to the Sobolev spaceH1(Ωhy) [23]. After substituting
expansion (21) into the variational functional (17) and minimizing it [23,24] we obtain the generalized eigenvalue problem

Apξh = εhBpξh. (22)

Here Ap is the stiffness matrix; Bp is the positive definite mass matrix; ξh is the vector approximating solution on the finite-element grid;
and εh is the corresponding eigenvalue. Matrices Ap and Bp have the following form:

Ap
=

n
j=1

apj , Bp
=

n
j=1

bp
j , (23)

where the local matrices apj and bp
j are calculated as

(apj )
qr
µν =


+1

−1


δµν f2(y)

4
h2
j

dφp
j,q(y)

dη

dφp
j,r(y)

dη
+ f1(y)Wµν(y; z)φ

p
j,q(y)φ

p
j,r(y)


hj

2
dη, (24)

(bp
j )

qr
µν = δµν


+1

−1
f1(y)φ

p
j,q(y)φ

p
j,r(y)

hj

2
dη, y = yj−1 + 0.5hj(1 + η), q, r = 0, p.

Integrals (24) are evaluated using the Gaussian quadrature formulae

(apj )
qr

=

p
g=0


δµν f2(yg)

4
h2
j

dφp
j,q(yg)

dη

dφp
j,r(yg)

dη
+ f1(yg)Wµν(yg; z)φ

p
j,q(yg)φ

p
j,r(yg)


hj

2
wg , (25)

(bp
j )

qr
= δµν

p
g=0

f1(yg)φ
p
j,q(yg)φ

p
j,r(yg)

hj

2
wg ,

where yg = yj−1 + 0.5hj(1 + ηg), ηg and wg , g = 0, p are the Gaussian nodes and weights related to the orthogonal polynomial of order
p + 1. Note in this approach maximum value of a half-band of matrices Ap and Bp is small compared to their dimension and is not greater
than jmax × (p + 1).

In order to solve the generalized eigenvalue problem (22), the subspace iteration method [23,24] elaborated by Bathe [24] for the
solution of large symmetric banded matrix eigenvalue problems has been chosen. This method uses a skyline storage mode which stores
components of thematrix column vectors within the banded region of thematrix, and is ideally suited for banded finite element matrices.
The procedure chooses a vector subspace of the full solution space and iterates upon the successive solutions in the subspace (for details,
see [24]). The iterations continue until the desired set of solutions in the iteration subspace converges to within the specified tolerance
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on the Rayleigh quotients for the eigenpairs. If matrix Ap in Eq. (22) is not positively defined, problem (22) is replaced by the following
problem:

Ãpφh
= ε̃hBpξh, Ãp

= Ap
− αBp. (26)

The number α (the shift of the energy spectrum) is chosen in such a way that matrix Ãp is positive defined. The eigenvector of problem
(26) is the same, and εh = ε̃h + α.

3.1. Calculations of the parametric derivative of the eigenfunctions and matrix elements

The boundary problem (12)–(15) is reduced to the linear system of inhomogeneous algebraic equations

L
∂ξh

∂z
≡ (Ap

− εhBp)
∂ξh

∂z
= b, b = −


∂Ap

∂z
−
∂εh

∂z
Bp


ξh. (27)

The normalization (11), orthogonalization (15) and additional conditions (14) read as


ξh
T

Bpξh = 1,


∂ξh

∂z

T

Bpξh = 0,
∂εh

∂z
=

ξh
T ∂Ap

∂z
ξh. (28)

From here, potential matrix elements Hh
ij (z) and Q h

ij (z) have the form

Hh
ij (z) =


∂ξhi
∂z

T

Bp ∂ξ
h
j

∂z
, Q h

ij (z) = −

ξhi
T

Bp ∂ξ
h
j

∂z
. (29)

Since εh is an eigenvalue of (22), matrix L in Eq. (27) is degenerate. In this case the algorithm for solving Eq. (27) can be written in three
steps as follows:

Step k1. Calculate solutions v andw of the auxiliary inhomogeneous systems of algebraic equations

L̄v = b̄, L̄w = d, (30)

with non-degenerate matrix L̄ and right-hand sides b̄ and d

L̄ss′ =


Lss′ , (s − S)(s′ − S) ≠ 0,

δss′ , (s − S)(s′ − S) = 0,
(31)

b̄s =


bs, s ≠ S,

0, s = S,
ds =


LsS, s ≠ S,

0, s = S,

where S is the number of the greatest absolute value element of vector Bpξh.
Step k2. Evaluate coefficient γ

γ = −
γ1

(DS − γ2)
, γ1 = vTBpξh, γ2 = wTBpξh, DS = (Bpξh)S . (32)

Step k3. Evaluate vector ∂zξh

∂ξ hs

∂z
=


vs − γws, s ≠ S,

γ , s = S.
(33)

From the consideration above it is evident, that the derivative computed has the same accuracy as the calculated eigenfunction.
Let D(y; z) from (9) be a continuous and bounded positively defined operator on the space H1 with energy norm, εi(z), ξ(i)(y; z) ∈ H2

are the exact solutions of (9)–(11), and εhi (z), ξ
h
i (y; z) ∈ H1 are the corresponding numerical solutions. Then the following estimates are

valid [23]εi(z)− εhi (z)
 ≤ c1h2p,

ξ(i)(y; z)− ξhi (y; z)

0 ≤ c2hp+1, (34)

where ∥ξ(i)(y; z)∥2
0 =

 ymax
ymin

dyf1(y)(ξ(i)(y; z))T ξ(i)(y; z), h is the maximal step of the finite-element grid, p is the order of finite-elements,
i is the number of corresponding solutions, and constants c1 and c2 do not depend on step h.

We have the following theorem.

Theorem 1. Let D(y; z) from (9) be a continuous and bounded positively defined operator on the space H1 with energy norm. Also ∂zW (y; z)
is continuous and bounded in each value of the parameter z. Then for exact values of solutions ∂zεi(z), ∂zξ(i)(y; z) ∈ H2, Hij(z), Qij(z)
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Fig. 1. Flow diagram of the POTHEA program.

from (12)–(15) and corresponding numerical values ∂zεhi (z), ∂zξ
h
i (y; z) ∈ H1, Hh

ij (z), Q
h
ij (z) from (27)–(29) the following estimates are valid:∂εi(z)∂z

−
∂εhi (z)
∂z

 ≤ c3h2p,

∂ξ(i)(y; z)∂z
−
∂ξhi (y; z)
∂z


0

≤ c4hp+1, (35)Qij(z)− Q h
ij (z)

 ≤ c5h2p,
Hij(z)− Hh

ij (z)
 ≤ c6h2p,

where h is the maximal step of the finite-element grid, p is the order of finite-elements, i, j are the numbers of corresponding solutions, and
constants c3, c4, c5 and c6 do not depend on step h.

Proof is straightforward following the proof schemes in accordance with [23,25].

4. Description of the POTHEA program

Fig. 1 presents a flow diagram for the POTHEA program. It is called from the main routine (supplied by a user) which sets dimensions
of the arrays and is responsible for the input data. The POTHEA program needs no installation. Also users can find instructions on how to
compile the POTHEA in the README file.

The calling sequence for the subroutine POTHEA is:

CALL POTHEA(TITLE,PARAM,HH,QQ,EIG,ICOUN,NROOT,MDIM,NPOL,
1 RTOL,NITEM,SHIFT,ICHK,IPRINT,IPRSTP,NMESH,RMESH,
2 NDIR,NDIL,NMDIL,IBOUND,FNOUT,IOUT,POTEN,IOUP,
3 FMATR,IOUM,EVWFN,IOUF,TOT,ITOT,MTOT,MITOT)

Input data
CHARACTER type input data:

• TITLE is the title of the run to be printed on the output listing. The title should be no longer than 70 characters.
• FNOUT is the name of the output file (up to 55 characters) for printing out the results of the calculation. It is system specific and may

include a complete path to the file location.
• POTEN is the name of the input/output file (up to 55 characters) containing potential matrix elements.
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• EVWFN is the name of the output file (up to 55 characters) for storing the results of the calculation, namely, the eigenvalues and
eigenfunctions, their first derivatives with respect to the parameter, and finite-element grid points.

• FMATR is the name of the scratch file (up to 55 characters) for storing calculated matrices.

DOUBLE PRECISION type input data:

• PARAM is the value of the parameter z.
• RTOL is the convergence tolerance on eigenvalues.
• SHIFT contains the lower bound of the lowest eigenvalue.
• ArrayRMESHcontains information about subdivision of interval [ymin, ymax]of variable yon subintervals. Thewhole interval [ymin, ymax]

is divided as follows: RMESH(1) = ymin, RMESH(NMESH) = ymax, and the values of RMESH(I) set the number of elements for each
subinterval [RMESH(I − 1), RMESH(I + 1)], where I = 2, 4, . . . ,NMESH − 1.

• TOT is the working vector of the DOUBLE PRECISION type.

INTEGER type input data:

• ICOUN is the key parameter for the continuity of eigenfunctions with respect to parameter z. For the first call of POTHEA the parameter
ICOUN always 0.

• NROOT is the number of eigenvalues and eigenvectors required.
• MDIM is the maximum number of coupled differential equations.
• NPOL is the order of finite-element shape functions (interpolating Lagrange polynomials).
• NITEM is the maximum number of iterations permitted.
• ICHK is the key parameter. If ICHK ≠ 0 the SHIFT is determined automatically by the program with the help of the algorithm [20].
• IPRINT is the level of prints:

= 0—the minimal level of print. The initial data, short information about the numerical scheme parameters, main flags and keys, and
eigenvalues calculated and their first derivatives with respect to the parameter are printed out;
= 1—eigenfunctions calculated and their first derivatives with respect to the parameter are printed out with step IPRSTP additionally;
= 2—potential matrix and its first derivatives with respect to the parameter are printed out with step IPRSTP;
= 3—information about nodal point distribution is printed out;
= 4—global matrices are printed out additionally;
= 5—the highest level of print. The local stiffness and mass matrices together with all current information about the course of the
subspace iteration method solution of the generalized eigenvalue problem are printed out.

• IPRSTP is the step with which eigenfunctions are printed out.
• NMESH is the dimension of array RMESH. NMESH always should be odd and ≥ 3.
• NDIR is the dimension of the INTEGER array NDIL. If NDIR > MDIM the message about the error is printed and the execution of the

program is stopped.
• Array NDIL containing information about the set of numbers of coupled differential equations and always should be NDIL(NDIR)≤

MDIM.
• NMDIL is the key parameter. If NMDIL= 0 the potentialmatrix elements of coupling are calculated andwritten to file POTEN; otherwise,

they are read from file POTEN.
• IBOUND is the parameter defining the type of boundary conditions set in the boundary points y = ymin and y = ymax:

= 1—the Dirichlet–Dirichlet boundary conditions;
= 2—the Dirichlet–Neumann boundary conditions;
= 3—the Neumann–Dirichlet boundary conditions;
= 4—the Neumann–Neumann boundary conditions.

• IOUT is the number of the output logical device for printing out the calculation results.
• IOUP is the number of the logical device for reading/storing data from/into file POTEN.
• IOUM is the number of the logical device for storing calculated matrices.
• IOUF is the number of the logical device for storing data into file EVWFN.
• ITOT is the working vector of the INTEGER type.
• MTOT is the dimension of the DOUBLE PRECISION working array TOT. The last address ILAST of array TOT is calculated and then

compared with the given value of MTOT. If ILAST > MTOT the message about an error is printed and the execution of the program
is aborted. In the last case, in order to carry out the required calculation it is necessary to increase the dimension MTOT of array TOT to
the quantity ILAST taken from the message.

• MITOT is the dimension of the INTEGER working array ITOT. The last address ILAST of array ITOT is calculated and then compared with
the given value of MITOT. If ILAST>MITOT the message about an error is printed and the execution of the program is aborted. In the
last case, in order to carry out the required calculation it is necessary to increase the dimension MITOT of array ITOT to the quantity
ILAST taken from the message.

In the present code each array declarator is written in terms of the symbolic names of constants. These constants are defined in the
following PARAMETER statement in the main routine:

PARAMETER (MTOT = 700000,MITOT = 40000,NMESH = 3,MDIM = 12,NROOT = 6)
In order to change the dimensions of the code, all one has to do is to modify the single PARAMETER statement defined above in the main
program unit.
Output data

• Array EIG of dimension NROOT containing values of the calculated eigenvalues εj(z).
• Array HH of dimension NROOT × NROOT containing values of the potential matrix Hij(z).
• Array QQ of dimension NROOT × NROOT containing values of the potential matrix Qij(z).
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Also the results of the calculation of eigenvalues, eigenfunctions and their first derivatives with respect to parameter z from the last
POTHEA call are written using unformatted segmented records into file EVWFN, according to the following operator:

WRITE(IOUF) NDIM,NN,NROOT,NGRID,(EIGV(I),I=1,NROOT),
1 (BUP(I),I=1,NROOT),(XGRID(I),I=1,NGRID),
2 ((R(I,J),I=1,NN),J=1,NROOT),((DR(I,J),I=1,NN),J=1,NROOT)

In the above, parameters presented in the WRITE statement have the following meaning:

• Arrays EIGV and BUP contain the NROOT eigenvalues calculated and their first derivatives with respect to the parameter z, respectively.
• Array XGRID contains the NGRID values of the finite-element grid points.
• Arrays R and DR contain NROOT eigenfunctions and their first derivatives with respect to parameter z, respectively, each per NN

elements in length stored in the following way: for each of the NGRID mesh points per NDIM elements of eigenfunction or its first
derivative with respect to parameter z.

• NGRID is the number of finite-element grid points.
• NDIM is the number of coupled equations.
• NN = NDIM × NGRID, if IBOIND = 4;

NN = NDIM × (NGRID − 1), if IBOIND = 3 or 2;
NN = NDIM × (NGRID − 2), if IBOIND = 1.

User-supplied DOUBLE PRECISION functions and subroutine

• F1FUNC is the name of the function which calculates the function f1(y).
• F2FUNC is the name of the function which calculates the function f2(y).
• WFUNC is the name of the function which calculates the basis function ψi(x) at fixed point x = x0. (see Eq. (5)–(8) and Section 2.2).
• POTCLC is the name of the subroutine which calculates potential matrix elements WW = W(y; z) of dimension MDIM × MDIM and

their first derivatives DW of dimension MDIM × MDIM with respect to the parameter z.

Note that in POTHEA programwe used the subroutine SSPACEwhich finds the smallest eigenvalues and the corresponding eigenvectors
in the generalized eigenproblemusing the subspace iterationmethod [24], and the subroutineGAULEGwhich calculates nodes andweights
of the Gauss–Legendre quadrature [26]. The description of all subroutines can be found in comments in the program source code.

5. Benchmark calculation of the energies of a Helium atom

The Schrödinger equation for a Helium atom with zero total angular momentum in the conventional hyperspherical coordinates
z ≡ R ∈ [0,+∞), y ≡ α ∈ [0, π], x ≡ θ ∈ [0, π] can be written as the BVP for the following 3D-elliptic PDE (in atomic units
h̄ = e = me = 1) [7]:

−
1
R5

∂

∂R
R5 ∂

∂R
+

4
R2 (H(θ, α; R)+ V (θ, α; R))− 2E


Ψ (R, α, θ) = 0, (36)

H(θ, α; R) = −
1

sin2(α)


∂

∂α
sin2(α)

∂

∂α
+

1
sin(θ)

∂

∂θ
sin(θ)

∂

∂θ


,

V (θ, α; R) =
R
2


−

2
sin(α/2)

−
2

cos(α/2)
+

1
√
1 − sin(α) cos(θ)


.

Total wave function Ψ (R, α, θ) satisfies the following boundary conditions:

lim
R→0

R5 ∂Ψ (R, α, θ)
∂R

= 0, lim
R→∞

R5Ψ (R, α, θ) = 0, (37)

lim
α→0,π

sin2(α)
∂Ψ (R, α, θ)

∂α
= 0, lim

θ→0,π
sin(θ)

∂Ψ (R, α, θ)
∂θ

= 0, (38)

and is normalized by condition
∞

0
dRR5

 π

0
dα sin2(α)

 π

0
dθ sin(θ)Ψ 2(R, α, θ) = 1. (39)

5.1. Reduction of the 3D BVP to the 1D BVP: Kantorovich expansion

Consider a formal expansion of the solution of Eqs. (36)–(39) over a set of two-dimensional parametric basis functions {Bi(α, θ; R)}Ni=1
(N → ∞):

Ψ (R, α, θ) =

N
j=1

Bj(θ, α; R)χj(R). (40)

In Eq. (40) functions χ(R) = (χ1(R), χ2(R), . . . , χN(R))T are unknown, and adiabatic functions B(θ, α; R) = (B1(α, θ; R), B2(θ, α; R), . . . ,
BN(θ, α; R))T form an orthonormal basis for each value of hyperradius Rwhich is treated here as a slowly varying adiabatic parameter.
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After minimizing the Rayleigh–Ritz variational functional (see [7]), and using the expansion (40), 3D BVP equation (36)–(39) is reduced
to a finite set of N coupled SOODEs for χ(R)

−
1
R5

I
d
dR

R5 d
dR

+ U(R)+ Q(R)
d
dR

+
1
R5

dR5Q(R)
dR

− 2E I


χ(R) = 0, (41)

lim
R→0

R5 dχ(R)
dR

= 0, lim
R→∞

R5χ(R) = 0, (42)
∞

0
dRR5 (χ(R))T χ(R) = 1. (43)

Here I, U(R) and Q(R) are matrices of dimension N × N:

Iij = δij, Uij(R) = Uji(R) = 2
εi(R)+ εj(R)

R2
δij + Hij(R),

Hij(R) = Hji(R) =

 π

0
dα sin2(α)

 π

0
dθ sin(θ)

∂Bi(θ, α; R)
∂R

∂Bj(θ, α; R)
∂R

, (44)

Qij(R) = −Qji(R) = −

 π

0
dα sin2(α)

 π

0
dθ sin(θ)Bi(θ, α; R)

∂Bj(θ, α; R)
∂R

.

This problem can be solved by FEM at values R belonging to the Gauss nodes of a finite element grid ΩR with the help of KANTBP
programs [21,22]. In the KM [19] the parametric basis functions Bi(θ, α; R) are determined as solutions of the following parametric BVP:

−
1

sin2(α)


∂

∂α
sin2(α)

∂

∂α
+

1
sin(θ)

∂

∂θ
sin(θ)

∂
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+V (θ, α; R)− εi(R)


Bi(θ, α; R) = 0, (45)

lim
α→0,π

sin2(α)
∂Bi(θ, α; R)

∂α
= 0, lim

θ→0,π
sin(θ)

∂Bi(θ, α; R)
∂θ

= 0, (46) π

0
dα sin2(α)

 π

0
dθ sin(θ)Bi(θ, α; R)Bj(θ, α; R) = δij. (47)

5.2. Reduction of the 2D parametric BVP (45)–(47) to the parametric 1D BVP

Consider the following expansion of adiabatic surface function Bi(α, θ; R):

Bi(θ, α; R) =

jmax
j=1

ψj(θ)ξ
(i)
j (α; R). (48)

Here ψj(θ) ≡ Pj−1(cos(θ)) is the normalized Legendre polynomial [27]:

−
1

sin(θ)
d
dθ

sin(θ)
dψj(θ)

dθ
= λjψj(θ), λj = j(j − 1), (49)

lim
θ→0,π

sin(θ)
dψj(θ)

dθ
= 0, (50) π

0
dθ sin(θ)ψi(θ)ψj(θ) = δij. (51)

After minimization of the variational functional we get that eigenfunctions ξ(i)(α; R) =


ξ
(i)
1 (α; R), ξ (i)2 (α; R), . . . , ξ (i)jmax

(α; R)
T

and
eigenvalues εi(R) satisfy the following eigenvalue problem for the set of jmax coupled SOODEs
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Î
∂

∂α
sin2(α)

∂

∂α
+ W(α; R)− εi(R) Î
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Here Î, W(α; R) are symmetric matrices of dimension jmax × jmax

Îij = δij =
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ξ(j)(α; R), (54)
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δij +
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Fig. 2. The eigenfunctions Bj(θ, α, R) at θ = π (left) and their first derivatives (right) with respect to parameter R (in a.u.) plotted vs hyperradius R (in a.u.) and variable α
(in rad.). Top: j = 1. Bottom: j = 4.

where

W rep
ij (α) = W rep

ij (π − α) =

 π

0
dθ sin(θ)

Pi−1(cos(θ))Pj−1(cos(θ))
√
1 − sin(α) cos(θ)

=

 1

−1
dη

Pi−1(η)Pj−1(η)
√
1 − sin(α)η

. (55)

Because of the symmetry of matrix elementsWij(α; R)with respect to α = π/2, problem (52)–(55) will be considered for α ∈ [0, π/2]
with the following boundary conditions for the ground and first excited states

lim
α→0,π/2

sin2(α)
∂ξ(i)(α; R)

∂α
= 0. (56)

The 1D weak singular integral (55) at α = π/2 was conventionally calculated analytically using the Clebsch–Gordan coefficients [4,5].
But this approach gives large numerical errors at large numbers i and j because of calculations of the factorial of large numbers (required
factorials of numbers up to 4jmax − 3). After the change of the variable in (55)

η = η(α, ζ ) ≡
tan(α/2)

2
(1 − ζ 2)+ ζ , ζ ∈ [−1, 1], α ∈ [0, π/2], (57)

we obtain a nonsingular integral

W rep
ij (α) = W rep

ij (π − α) =
1

cos(α/2)

 1

−1
dζPi−1 (η(α, ζ )) Pj−1 (η(α, ζ )) . (58)

The last 1D integral calculated by means of the 96-order Gauss–Legendre quadrature, and this approach gives results with accuracy
≤ 10−14 at i, j ≤ 120, i.e. with the double precision accuracy.

In Fig. 2 we plotted the first four eigenfunctions Bj(θ, α, R) at θ = π and their first derivatives with respect to parameter R as functions
of hyperradius R and variable α. Potential curves 4R−2(εi(R) + 1), radial diagonal and nondiagonal matrix elements Hij(R), and radial
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Fig. 3. Potential curves 4R−2(εi(R)+1), i = 1, . . . , 16 (top-left), radial diagonal (top-right) and nondiagonal (bottom-left)matrix elementsHij(R), and radialmatrix elements
Qij(R) (bottom-right) plotted vs hyperradius R (in a.u.).

matrix elements Qij(R) as functions of hyperradius R are displayed in Fig. 3. As can be seen from Figs. 2 and 3, our algorithm for continuity
conditions from Section 2.2 for eigenfunction Bi(α, θ; R)workswell. Note, that the peaks ofmatrix elements are result of avoiding crossing
of potential curves. The classification of potential curves at small and large values of R by sets of adiabatic quantum numbers (so-called
correlation diagrams), and asymptotic behavior of matrix elements are described in [3,8].

The numerical experiments show a strict correspondence with the theoretical estimations for the eigenvalues, eigenfunctions of (34)
and their derivatives with respect to the parameter (35). In particular, we calculated the values of the Runge coefficients

βl = log2

 σ h
l − σ

h/2
l

σ
h/2
l − σ

h/4
l

 , l = 1–6, (59)

with absolute errors on four twice condensed grids for their eigenvalues, their derivatives, and matrix elements, respectively:

σ h
1 = |ε

h/8
j (ρ)− εhj |, σ h

2 =

∂ε
h/8
j (R)

∂R
−
∂εhj

∂R

 ,
σ h
3 = ∥ξ

h/8
j (α; R)− ξhj (α; R)∥0, σ h

4 =

∂ξ
h/8
j (α; R)

∂R
−
∂ξhj (α; R)

∂R


0

, (60)

σ h
5 = |Hh/8

1j (R)− Hh
1j(R)|, σ h

6 = |Q h/8
1j (R)− Q h

1j(R)|.

From (59) we obtained numerical estimations of the convergence order of proposed numerical schemes, i.e. theoretical estimations equal
to βl = p + 1 for l = 3, 4 and βl = 2p otherwise. For the chosen approximation order p = 4 for their eigenvalues, their derivatives, and
matrix elements we obtain numerical estimations of Runge coefficients within 7.5–7.8, and for their eigenfunctions and their derivatives
in the range 4.6–4.8, which corresponds to the theoretical error estimates at fixed number jmax of Eq. (52). Calculations of (60) were
performed with a specified accuracy of ∼10−12 by means of POTHEA program at relative error tolerance ϵ1 = 4 · 10−16.

A convergence study of several matrix elements with respect to number jmax = 12, 28, 40, 50, 60, 70, 80, 100, 120 of the Legendre
polynomials and the number of finite elements, Nel = 6, 12, 18, 24, 30, 36, of the grid Ωα = {0(Nel)π/2} and their order p = 4 is
presented in Tables 1 and 2. One can see that potential curves 2R−2(εj(R) + 1) and matrix elements Hij(R) converge monotonically from
above, with the increasing of numbers Nel and jmax. The absolute values of the matrix elements Qij(R) converge monotonically from above
with increasing jmax and from below with increasing Nel. As it follows from (58) and confirmed by Table 1, the convergence of eigenvalues
and matrix elements vs the number of Legendre polynomials Pj−1(η), is proportional to their order ∼ j−3.
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Table 1
Convergence of potential curve 2R−2(ε5(R)+1) andmatrix elementsQ35(R),H35(R),
H55(R) at R = 7.65 a.u. as a function of the maximum number of terms jmax ,
numbers of finite elements Nel at their order p = 4.

jmax Nel 2R−2(ε5(R)+ 1), 10−1 H55(R), 10−2

12 6 −3.717 091 841 269 3 8.333 864 894 452
12 12 −3.717 092 590 328 6 8.333 904 465 350
12 18 −3.717 092 593 788 5 8.333 904 678 183
12 24 −3.717 092 593 920 9 8.333 904 686 599
12 30 −3.717 092 593 932 9 8.333 904 687 440

12 36 −3.717 092 593 934 6 8.333 904 687 547

28 36 −3.717 093 236 000 2 8.335 180 574 435
40 36 −3.717 093 288 608 1 8.335 245 600 693
50 36 −3.717 093 302 610 3 8.335 261 797 875
60 36 −3.717 093 308 887 9 8.335 268 874 497
70 36 −3.717 093 312 101 5 8.335 272 444 815
80 36 −3.717 093 313 911 2 8.335 274 437 152

100 36 −3.717 093 315 706 2 8.335 276 397 958
120 36 −3.717 093 316 498 0 8.335 277 258 259

jmax Nel Q35(R), 10−1 H35(R), 10−2

12 6 1.345 981 051 407 7 2.269 823 448 371
12 12 1.345 984 463 203 5 2.269 832 028 222
12 18 1.345 984 480 233 8 2.269 832 074 795
12 24 1.345 984 480 897 0 2.269 832 076 647
12 30 1.345 984 480 959 1 2.269 832 076 831

12 36 1.345 984 480 970 4 2.269 832 076 853

28 36 1.345 970 507 627 5 2.270 529 070 029
40 36 1.345 970 198 842 4 2.270 563 372 554
50 36 1.345 970 135 204 1 2.270 571 881 381
60 36 1.345 970 109 700 7 2.270 575 593 492
70 36 1.345 970 097 498 1 2.270 577 464 966
80 36 1.345 970 090 921 3 2.270 578 508 889

100 36 1.345 970 084 645 4 2.270 579 535 991
120 36 1.345 970 081 968 6 2.270 579 986 560

Table 2
Convergence of potential curve 2R−2(ε45(R) + 1) and matrix elements Q4345(R),
H4345(R), H4545(R) at R = 7.65 a.u. as a function of the maximum number of terms
jmax , numbers of finite elements Nel at their order p = 4.

jmax Nel 2R−2(ε45(R)+ 1) H4545(R), 10−3

28 6 4.879 922 636 381 1.034 074 714 010
28 12 4.878 939 387 221 1.037 535 372 894
28 18 4.878 936 678 011 1.037 544 063 945
28 24 4.878 936 575 214 1.037 544 380 393
28 30 4.878 936 565 567 1.037 544 409 101

28 36 4.878 936 564 065 1.037 544 413 457

40 36 4.878 929 789 512 1.036 946 196 503
50 36 4.878 928 117 456 1.036 806 107 806
60 36 4.878 927 388 168 1.036 746 299 243
70 36 4.878 927 020 395 1.036 716 518 763
80 36 4.878 926 815 186 1.036 700 039 417

100 36 4.878 926 613 217 1.036 683 940 956
120 36 4.878 926 524 598 1.036 676 926 529

jmax Nel Q4345(R), 10−3 H4345(R), 10−4

28 6 7.163 551 693 508 1.313 245 172 874
28 12 7.192 416 552 701 1.313 393 326 976
28 18 7.192 470 461 759 1.313 394 061 373
28 24 7.192 471 802 131 1.313 393 807 683
28 30 7.192 471 876 618 1.313 393 761 626

28 36 7.192 471 882 307 1.313 393 751 746

40 36 7.164 925 249 674 1.304 767 510 954
50 36 7.158 600 336 853 1.302 825 852 351
60 36 7.155 920 393 086 1.302 012 009 221
70 36 7.154 591 453 293 1.301 611 523 137
80 36 7.153 857 856 101 1.301 391 714 358

100 36 7.153 142 578 776 1.301 178 645 274
120 36 7.152 831 407 895 1.301 086 493 836
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Table 3
The disk storage usage (DSU, KB) and the CPU time (min:s) scale with the number jmax of Eqs. (9) and (12), the number n = Nel and order
p of the finite-elements and the number N of eigensolutions, number of iterations NITEM, and minimal dimensions MTOT and MITOT of
working arrays TOT and ITOT, respectively, and CPU time per iteration (TCPU) at the convergence tolerance on eigenvalues RTOL = 10−12

and the lower bound of lowest eigenvalue SHIFT = −1.1.

jmax n = Nel p N CPU DSU TCPU
NDIM RMESH(2) NPOL NROOT MTOT MITOT (min:s) (KB) NITEM (s)

12 6 4 6 33914 1300 <0:01 912 45 <0.01
12 6 4 12 33914 1306 <0:01 3304 52 <0.01
12 6 8 6 108242 2476 0:10 4884 43 0.23
28 6 4 6 182874 2980 0:22 4644 45 0.49
28 6 4 12 182874 2986 0:26 4816 52 0.50
28 6 8 6 585330 5692 1:32 8232 43 2.14
12 36 4 6 162548 7570 0:24 4528 47 0.51
28 36 4 6 768708 17410 2:49 9440 47 3.60
28 36 4 12 826122 17416 3:23 10720 52 3.90

Table 4
Convergence of the ground state energy (in a.u.) for a Helium atom versus number N of basis
functions and number jmax of Legendre polynomials.

N jmax = 12 [7] jmax = 12 jmax = 21 jmax = 28

1 −2.887 911 68 −2.895 539 19 −2.895 551 19 −2.895 552 76
2 −2.891 379 91 −2.898 631 57 −2.898 643 21 −2.898 644 74
6 −2.903 004 48 −2.903 644 06 −2.903 655 96 −2.903 657 52

10 −2.903 636 13 −2.903 702 86 −2.903 714 79 −2.903 716 36
15 −2.903 705 49 −2.903 708 67 −2.903 720 60 −2.903 722 16
21 −2.903 722 64 −2.903 722 99
28 −2.903 722 66

N jmax = 35 jmax = 40 jmax = 45 jmax = 50

1 −2.895 553 32 −2.895 553 52 −2.895 553 63 −2.895 553 71
2 −2.898 645 28 −2.898 645 47 −2.898 645 58 −2.898 645 66
6 −2.903 658 08 −2.903 658 27 −2.903 658 39 −2.903 658 46

10 −2.903 716 91 −2.903 717 10 −2.903 717 22 −2.903 717 30
15 −2.903 722 72 −2.903 722 91 −2.903 723 03 −2.903 723 10
21 −2.903 723 54 −2.903 723 74 −2.903 723 85 −2.903 723 93
28 −2.903 723 55 −2.903 723 74 −2.903 723 85 −2.903 723 93
35 −2.903 723 91 −2.903 724 03 −2.903 724 10
40 −2.903 724 03 −2.903 724 10
45 −2.903 724 15

[5] −2.903 722 99
[10] −2.903 724 37

Table 3 shows the disk storage usage (DSU, in kilobytes) and the CPU time (in min:s) scale with the number jmax of Eqs. (9) and (12),
the number n = Nel and order p of the finite-elements and the number N of eigensolutions and minimal dimensions MTOT and MITOT
of working arrays TOT and ITOT in the test run of calculations of matrix potentials with relative error tolerance ϵ2 = 10−12 in Intel Core
i5 CPU 3.33 GHz, 4 GB RAM, Windows 7. One can see that the execution time linear dependent on the number of calculated solutions
and quadratically dependent on the number of equations, or number of nodal points L + 1 = np + 1 from (21), while disk storage usage
slow depended on the number of calculated solutions and quadratically dependent on the number of equations, or number of nodal points
L + 1 = np + 1. This follows from the fact that the main resources are expanded by solving the banded system of (Nel · p + 1) · jmax
linear algebraic equations (22) with the maximum half bandwidth (p + 1) · jmax and the number of arithmetic operations of the SSPACE
subroutine specified in [24].

In the benchmark calculations the grids in R and α have been chosen as follows: ΩR = {0(200)10(200)30} and Ωα = {0(150)π/2}.
Enclosed in parentheses are the numbers of finite elements of the order p = 4 in each interval. The set of matrix elements including the
eigenfunctions with number up to N = 45 were calculated with an accuracy of an order of 10−8, using set of jmax = 50 Eqs. (9), (12) and
the number of finite elements Nel = 150. The banded system of 30050 linear algebraic equations (22) with the maximum half bandwidth
250 has been solved with relative error tolerance ϵ2 = 10−12 at each value of hyperradius R belonging to the Gauss nodes of the gridΩR. A
convergence study of the ground and first excited state energies of a Helium atomwith numberN of radial equations (41) and number jmax
of Legendre polynomials are presented in Tables 4 and 5. One can see that the energy eigenvalues convergemonotonically fromabove,with
the N = 45, jmax = 50—channel value being E1 = −2.903 724 15 a.u. and E2 = −2.145 973 22 a.u. Tables show that the obtained results
agree with an accuracy of an order of 10−6 at jmax ∼ N with variational estimations [10,11] and have a higher accuracy than the previous
coupled-channel hyperspherical adiabatic calculations [5,7]. A similar accuracy can be achieved also in calculations of high excited states
of a Helium atom, for which variational calculations were not applied, taking into account appropriate asymptotic behaviors of the matrix
elements and solutions [5].

Thus, the calculation of parametric eigenvalues, eigenfunctions (parametric basis functions) and thematrix elements of the BVPs for Eqs.
(9) and (12) with the help of the program POTHEA can be used for the numerical solution with the required accuracy of bound states and
the scattering problem for the three dimensional equation of the Schrödinger type, including long-range potentials of the Coulomb type or
for various three-dimensional elliptic equations in partial derivatives, with the help of the programs KANTBP [21,22]. The generalization
of the algorithm for solving a system of parametric coupled 2D BVPs in the framework of the projection method and FEM, which can be
applied for solving multidimensional boundary value problems for equations of Schrödinger type, will be given in further papers.
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Table 5
Convergence of the first excited state energy (in a.u.) of a Helium atom versus
number N of basis functions and number jmax of Legendre polynomials.

N jmax = 21 jmax = 28 jmax = 35

1 −2.139 935 59 −2.139 935 68 −2.139 935 71
2 −2.141 664 27 −2.141 664 32 −2.141 664 34
6 −2.145 700 08 −2.145 700 17 −2.145 700 20

10 −2.145 914 95 −2.145 915 04 −2.145 915 07
15 −2.145 957 21 −2.145 957 30 −2.145 957 34
21 −2.145 968 71 −2.145 968 74
28 −2.145 970 24

N jmax = 40 jmax = 45 jmax = 50

1 −2.139 935 72 −2.139 935 72 −2.139 935 73
2 −2.141 664 35 −2.141 664 35 −2.141 664 36
6 −2.145 700 21 −2.145 700 21 −2.145 700 22

10 −2.145 915 09 −2.145 915 09 −2.145 915 10
15 −2.145 957 35 −2.145 957 36 −2.145 957 36
21 −2.145 968 76 −2.145 968 76 −2.145 968 77
28 −2.145 970 26 −2.145 970 26 −2.145 970 27
35 −2.145 972 10 −2.145 972 10 −2.145 972 11
40 −2.145 972 62 −2.145 972 63
45 −2.145 973 22

[5] −2.145 956 97
[11] −2.145 974 04

6. Test desk

Boundary value problems (9)–(16) for the problems considered in Section 5 and the corresponding matrix elements Hij(z), Qij(z)
at z = R = 7.65 a.u. have been solved by the POTHEA program on grids Ωα = {0(150)π/2} with input data MTOT = 700000,
MITOT = 40000, NMESH = 3, MDIM = 12, NROOT = 6.

The following values of numerical parameters and characters have been used in the test run via the supplied input file POTHEA.INP

&PARAMS TITLE=’ PARAMETRIC 2D DIFFERENTIAL EQUATION ’,
ICOUN=0,PARAM=7.65D0,NPOL=4,RTOL=1.D-12,
NITEM=2000,SHIFT=-1.1D0,ICHK=1,IPRINT=1,IPRSTP=150,
RMESH=0.0D0,150.D0,1.5707963267948966D0,
NDIR=1, NDIL=12, NMDIL=0,IBOUND=4,
FNOUT=’POTHEA.LPR’,IOUT=7,POTEN=’POTHEA.PTN’,IOUP=10,
FMATR=’POTHEA.MAT’,IOUM=11,EVWFN=’POTHEA.WFN’,IOUF=1

&END

All calculation details of this problem were written into file POTHEA.LPR.

Test run output

PROBLEM: PARAMETRIC 2D DIFFERENTIAL EQUATION
********

C O N T R O L I N F O R M A T I O N
------------------------------------

NUMBER OF DIFFERENTIAL EQUATIONS. . . . . (MDIM ) = 12
NUMBER OF ENERGY LEVELS REQUIRED. . . . . (NROOT ) = 6
NUMBER OF FINITE ELEMENTS . . . . . . . . (NELEM ) = 150
NUMBER OF GRID POINTS . . . . . . . . . . (NGRID ) = 601
ORDER OF SHAPE FUNCTIONS . . . . . . . . (NPOL ) = 4
ORDER OF GAUSS-LEGENDRE QUADRATURE . . . (NGQ ) = 5
NUMBER OF SUBSPACE ITERATION VECTORS. . . (NC ) = 12
BOUNDARY CONDITION CODE . . . . . . . . . (IBOUND) = 4
SHIFT OF EIGENVALUE . . . . . . . . . . . (SHIFT ) = -1.10000
CONVERGENCE TOLERANCE . . . . . . . . . . (RTOL ) = 0.100000E-11
VALUE OF PARAMETER. . . . . . . . . . . . (PARAM ) = 7.65000

SUBDIVISION OF RHO-REGION ON THE FINITE-ELEMENT GROUPS:
******************************************************

NO OF NUMBER OF BEGIN OF LENGTH OF GRID END OF
GROUP ELEMENTS INTERVAL ELEMENT STEP INTERVAL
----- --------- -------- --------- -------- --------

1 150 0.000 0.01047 0.00262 1.571

T O T A L S Y S T E M D A T A
-------------------------------

TOTAL NUMBER OF ALGEBRAIC EQUATIONS. . . . (NN ) = 7212
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TOTAL NUMBER OF MATRIX ELEMENTS. . . . . . (NWK) = 262878
MAXIMUM HALF BANDWIDTH . . . . . . . . . . (MK ) = 60
MEAN HALF BANDWIDTH . . . . . . . . . . (MMK) = 36

NDIM, MDIM= 12 12

THERE ARE 0 ROOTS LOWER THEN SHIFT
CONVERGENCE REACHED FOR RTOL 0.1000E-11
I T E R A T I O N N U M B E R 44
RELATIVE TOLERANCE REACHED ON EIGENVALUES
0.2098E-16 0.3975E-14 0.0000E+00 0.4782E-14 0.4128E-13 0.1326E-11

********************************************************************************

R O O T N U M B E R E I G E N V A L U E D E R I V A T I V E
----------------------- --------------------- ---------------------

1 -63.49915325624646 -15.79613618944456
2 -21.45188690752900 -3.997431891553315
3 -19.08232583432120 -4.142711985674064
4 -13.37148062340640 -3.897824374402062
5 -11.87667756641220 -3.314347679213019
6 -8.897683985407177 -2.705544197968186

********************************************************************************

THERE ARE 0 ROOTS LOWER THEN SHIFT
THERE ARE 1 ROOTS LOWER THEN SHIFT
THERE ARE 2 ROOTS LOWER THEN SHIFT
THERE ARE 3 ROOTS LOWER THEN SHIFT
THERE ARE 4 ROOTS LOWER THEN SHIFT
THERE ARE 5 ROOTS LOWER THEN SHIFT

Y E I G E N F U N C T I O N
- ----------------------------------------

0.0000 0.4225D+02 -.1146D+02 -.5852D+01 0.1089D+02 -.8482D+01 0.4394D+01 0.9180D-10 -.2399D-09 0.4888D-09
0.2768D-09 0.1720D-09 -.1439D-09 -.6736D-11 0.2973D-11 0.5036D-11 -.1174D-10 -.2842D-10 -.3904D-10
0.2727D-12 -.1761D-12 -.1965D-12 0.1489D-12 -.1137D-11 -.3916D-11 0.1366D-13 -.2115D-13 0.7755D-13
0.5347D-13 0.1374D-12 0.1232D-12 -.2101D-14 0.3412D-14 -.1335D-13 -.8508D-14 -.2067D-13 -.1439D-13
-.2388D-16 0.3595D-16 -.1357D-15 -.8639D-16 -.1951D-15 -.1144D-15 -.1765D-18 0.2600D-18 -.9645D-18
-.6132D-18 -.1328D-17 -.6915D-18 -.7617D-21 0.1631D-20 -.6517D-20 -.3980D-20 -.8757D-20 -.4118D-20
0.5869D-20 -.1580D-20 -.8656D-21 0.1481D-20 -.1247D-20 0.5813D-21 -.4887D-21 0.1132D-21 0.1164D-21
-.9199D-22 0.1245D-21 -.7810D-22 0.6556D-20 -.1781D-20 -.8977D-21 0.1695D-20 -.1310D-20 0.6762D-21

0.3927 0.2160D+01 0.1271D+01 0.6877D+00 -.1338D+01 0.1070D+01 -.5704D+00 -.2044D-01 -.1045D+01 0.2548D+01
0.1532D+01 0.1190D+01 -.1095D+01 -.1775D-02 0.1345D-01 -.1037D+00 0.6894D-01 0.3425D+00 0.5857D+00
-.2088D-03 0.7681D-03 -.5465D-02 -.3307D-02 -.1799D-01 -.5098D-01 -.2818D-04 0.7689D-04 -.5590D-03
-.2652D-03 -.1055D-02 -.1178D-02 -.4119D-05 0.9523D-05 -.7068D-04 -.3121D-04 -.1139D-03 -.1026D-03
-.6346D-06 0.1320D-05 -.9954D-05 -.4241D-05 -.1488D-04 -.1185D-04 -.1015D-06 0.1960D-06 -.1497D-05
-.6242D-06 -.2141D-05 -.1573D-05 -.1668D-07 0.3052D-07 -.2355D-06 -.9670D-07 -.3271D-06 -.2268D-06
-.2802D-08 0.4915D-08 -.3826D-07 -.1553D-07 -.5204D-07 -.3462D-07 -.4787D-09 0.8113D-09 -.6375D-08
-.2563D-08 -.8532D-08 -.5517D-08 -.8298D-10 0.1363D-09 -.1086D-08 -.4317D-09 -.1434D-08 -.9172D-09

0.7854 0.1179D+00 0.1367D+01 0.6856D+00 -.6310D+00 0.4577D+00 -.1475D+00 -.3738D-02 -.6211D+00 0.1257D+01
0.1603D+00 0.1082D+00 0.1203D+00 -.6788D-03 0.1087D-01 -.1608D+00 0.1644D+00 0.6513D+00 0.8656D+00
-.1649D-03 0.4686D-03 -.1806D-01 -.6471D-02 -.6270D-01 -.2147D+00 -.4599D-04 -.3962D-05 -.3889D-02
-.7313D-03 -.6981D-02 -.1269D-01 -.1391D-04 -.1774D-04 -.1030D-02 -.1468D-03 -.1507D-02 -.2559D-02
-.4438D-05 -.8433D-05 -.3033D-03 -.3655D-04 -.4010D-03 -.6591D-03 -.1471D-05 -.3356D-05 -.9529D-04
-.1023D-04 -.1185D-03 -.1912D-03 -.5018D-06 -.1274D-05 -.3128D-04 -.3079D-05 -.3734D-04 -.5954D-04
-.1750D-06 -.4780D-06 -.1061D-04 -.9746D-06 -.1229D-04 -.1947D-04 -.6212D-07 -.1798D-06 -.3692D-05
-.3195D-06 -.4176D-05 -.6612D-05 -.2242D-07 -.6897D-07 -.1318D-05 -.1071D-06 -.1458D-05 -.2333D-05

1.1781 0.7007D-02 0.8100D+00 0.3644D+00 0.5801D+00 -.5048D+00 0.3923D+00 -.4938D-03 -.3666D+00 0.5486D+00
-.6731D+00 -.4216D+00 0.6695D+00 -.1391D-03 0.2280D-02 -.1611D+00 0.2277D+00 0.8125D+00 0.7350D+00
-.5285D-04 -.1898D-02 -.2763D-01 -.3683D-02 -.8840D-01 -.4000D+00 -.2322D-04 -.1036D-02 -.9332D-02
0.3469D-03 -.1163D-01 -.4553D-01 -.1112D-04 -.5255D-03 -.3917D-02 0.2819D-03 -.3332D-02 -.1578D-01
-.5645D-05 -.2723D-03 -.1837D-02 0.1564D-03 -.1252D-02 -.6796D-02 -.2985D-05 -.1453D-03 -.9223D-03
0.8450D-04 -.5423D-03 -.3253D-02 -.1628D-05 -.7968D-04 -.4853D-03 0.4629D-04 -.2565D-03 -.1662D-02
-.9094D-06 -.4473D-04 -.2645D-03 0.2587D-04 -.1288D-03 -.8877D-03 -.5186D-06 -.2567D-04 -.1484D-03
0.1478D-04 -.6753D-04 -.4915D-03 -.3017D-06 -.1510D-04 -.8567D-04 0.8667D-05 -.3669D-04 -.2818D-03

1.5708 0.9176D-03 0.6259D+00 0.2602D+00 0.9793D+00 -.8079D+00 0.5366D+00 -.1145D-03 -.2950D+00 0.3591D+00
-.9164D+00 -.5359D+00 0.7541D+00 -.4206D-04 -.1909D-02 -.1584D+00 0.2483D+00 0.8699D+00 0.6095D+00
-.2107D-04 -.3934D-02 -.3357D-01 -.1232D-02 -.8992D-01 -.5009D+00 -.1236D-04 -.2440D-02 -.1462D-01
0.1618D-02 -.9916D-02 -.8229D-01 -.7982D-05 -.1559D-02 -.8108D-02 0.1056D-02 -.2184D-02 -.3913D-01
-.5514D-05 -.1057D-02 -.5108D-02 0.6844D-03 -.4975D-03 -.2312D-01 -.4002D-05 -.7540D-03 -.3491D-02
0.4685D-03 -.1856D-04 -.1527D-01 -.3019D-05 -.5609D-03 -.2526D-02 0.3376D-03 0.1279D-03 -.1083D-01
-.2350D-05 -.4318D-03 -.1909D-02 0.2538D-03 0.1668D-03 -.8072D-02 -.1879D-05 -.3424D-03 -.1494D-02
0.1976D-03 0.1685D-03 -.6258D-02 -.1540D-05 -.2789D-03 -.1205D-02 0.1588D-03 0.1579D-03 -.5017D-02

********************************************************************************

Y I T S D E R I V A T I V E
- ----------------------------------------

0.0000 0.8305D+01 -.2738D+01 -.1640D+01 0.1796D+01 0.1835D+01 -.1058D+01 0.5306D-10 -.2102D-09 0.4085D-09
0.1328D-09 0.1792D-09 -.8756D-10 -.3017D-11 0.1522D-11 0.2008D-11 -.7017D-12 -.1657D-10 -.2957D-10
0.8393D-13 -.6855D-13 -.7260D-13 0.1507D-12 -.2009D-12 -.2170D-11 0.3195D-14 -.1136D-13 0.3155D-13
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-.1263D-13 0.3545D-13 0.5915D-13 -.1406D-15 0.1364D-14 -.3612D-14 0.3114D-14 -.2829D-14 -.5907D-14
-.1706D-17 0.1424D-16 -.3737D-16 0.2961D-16 -.2961D-16 -.5321D-16 -.1129D-19 0.1021D-18 -.2678D-18
0.2034D-18 -.2123D-18 -.3506D-18 0.7434D-22 0.6358D-21 -.1816D-20 0.1376D-20 -.1411D-20 -.2250D-20
0.1892D-20 -.5748D-21 -.3445D-21 0.4499D-21 0.9614D-22 -.8764D-22 -.1564D-21 0.3667D-22 0.5103D-22
-.3386D-22 0.6352D-23 0.1102D-23 0.2102D-20 -.6472D-21 -.3621D-21 0.4883D-21 0.1247D-21 -.8050D-22

0.3927 -.4239D+00 0.5896D+00 0.3227D+00 -.4007D+00 -.9620D-01 0.7857D-01 0.5106D-02 -.2710D+00 0.4027D+00
-.4246D+00 0.2529D+00 0.2273D+00 0.4181D-03 0.4246D-02 -.3033D-02 -.4320D-01 0.1744D-01 0.1321D+00
0.4801D-04 0.2448D-03 -.6590D-03 0.2800D-02 0.1474D-02 -.1164D-01 0.6393D-05 0.2402D-04 -.7710D-04
0.1940D-03 0.2494D-04 -.2805D-03 0.9266D-06 0.2920D-05 -.1028D-04 0.2199D-04 0.7715D-06 -.2995D-04
0.1419D-06 0.3985D-06 -.1490D-05 0.2945D-05 -.2387D-07 -.3887D-05 0.2259D-07 0.5849D-07 -.2281D-06
0.4304D-06 -.1410D-07 -.5570D-06 0.3701D-08 0.9020D-08 -.3631D-07 0.6644D-07 -.3207D-08 -.8481D-07
0.6200D-09 0.1442D-08 -.5947D-08 0.1065D-07 -.6203D-09 -.1347D-07 0.1057D-09 0.2371D-09 -.9952D-09
0.1756D-08 -.1116D-09 -.2206D-08 0.1830D-10 0.3989D-10 -.1695D-09 0.2963D-09 -.1828D-10 -.3721D-09

0.7854 -.6952D-01 0.6128D-01 0.4800D-01 0.1842D+00 -.3575D+00 0.1918D+00 0.2330D-02 -.2599D-01 -.7033D-01
-.2571D+00 -.1716D+00 0.1822D+00 0.4148D-03 0.2555D-02 0.2318D-01 -.1004D+00 -.5479D-02 0.1104D+00
0.9998D-04 0.3003D-03 0.1044D-02 0.1009D-01 0.1502D-01 -.2996D-01 0.2775D-04 0.5818D-04 0.1699D-03
0.1326D-02 0.1692D-02 -.1355D-02 0.8368D-05 0.1411D-04 0.3925D-04 0.2993D-03 0.3830D-03 -.3285D-03
0.2665D-05 0.3886D-05 0.1067D-04 0.8126D-04 0.1052D-03 -.9249D-04 0.8820D-06 0.1160D-05 0.3188D-05
0.2430D-04 0.3182D-04 -.2828D-04 0.3005D-06 0.3664D-06 0.1013D-05 0.7714D-05 0.1020D-04 -.9121D-05
0.1047D-06 0.1207D-06 0.3367D-06 0.2551D-05 0.3408D-05 -.3055D-05 0.3715D-07 0.4115D-07 0.1163D-06
0.8695D-06 0.1176D-05 -.1055D-05 0.1340D-07 0.1453D-07 0.4173D-07 0.3040D-06 0.4189D-06 -.3765D-06

1.1781 -.6916D-02 -.1518D+00 -.6089D-01 0.2452D+00 -.4112D-01 -.1678D-01 0.5018D-03 0.6124D-01 -.1586D+00
0.5692D-02 -.2692D+00 -.1913D-02 0.1398D-03 0.1977D-02 0.4953D-01 -.1470D+00 -.2836D-01 0.4991D-01
0.5284D-04 0.7475D-03 0.6593D-02 0.1287D-01 0.3672D-01 -.2801D-01 0.2314D-04 0.3105D-03 0.2165D-02
0.1784D-02 0.7251D-02 -.1142D-03 0.1106D-04 0.1433D-03 0.9018D-03 0.4870D-03 0.2678D-02 -.8333D-04
0.5603D-05 0.7094D-04 0.4218D-03 0.1728D-03 0.1186D-02 -.4117D-04 0.2959D-05 0.3687D-04 0.2115D-03
0.7080D-04 0.5771D-03 -.2083D-04 0.1612D-05 0.1986D-04 0.1112D-03 0.3180D-04 0.2977D-03 -.1112D-04
0.8997D-06 0.1101D-04 0.6058D-04 0.1522D-04 0.1601D-03 -.6317D-05 0.5128D-06 0.6251D-05 0.3393D-04
0.7619D-05 0.8904D-04 -.3912D-05 0.2982D-06 0.3634D-05 0.1951D-04 0.3945D-05 0.5114D-04 -.2802D-05

1.5708 -.1265D-02 -.1866D+00 -.7505D-01 0.1981D+00 0.1181D+00 -.1138D+00 0.1594D-03 0.7895D-01 -.1555D+00
0.1058D+00 -.2714D+00 -.7381D-01 0.5766D-04 0.2719D-02 0.6069D-01 -.1667D+00 -.3446D-01 0.3338D-01
0.2857D-04 0.1495D-02 0.1108D-01 0.1160D-01 0.4924D-01 -.1974D-01 0.1660D-04 0.8298D-03 0.4816D-02
0.7971D-03 0.1283D-01 0.3189D-02 0.1064D-04 0.5111D-03 0.2677D-02 -.1341D-03 0.6287D-02 0.1604D-02
0.7304D-05 0.3404D-03 0.1688D-02 -.2446D-03 0.3751D-02 0.9770D-03 0.5273D-05 0.2402D-03 0.1153D-02
-.2269D-03 0.2489D-02 0.6515D-03 0.3959D-05 0.1772D-03 0.8332D-03 -.1907D-03 0.1768D-02 0.4592D-03
0.3070D-05 0.1354D-03 0.6277D-03 -.1572D-03 0.1321D-02 0.3359D-03 0.2446D-05 0.1065D-03 0.4889D-03
-.1300D-03 0.1025D-02 0.2517D-03 0.1998D-05 0.8597D-04 0.3918D-03 -.1087D-03 0.8226D-03 0.1905D-03

********************************************************************************

P O T E N T I A L M A T R I C E S H(I,J) A N D Q(I,J):

H-MATRIX AT THE PARAMETER = 7.65000
0.12918038D-01 -0.12641211D-01 -0.72935879D-02 0.37629284D-02 0.10519176D-01 -0.60042850D-02

-0.12641211D-01 0.38709965D-01 0.44935643D-02 -0.18998123D-01 -0.23783442D-01 0.53965043D-02
-0.72935879D-02 0.44935643D-02 0.32704926D-01 -0.25656399D-01 0.22698321D-01 0.11990754D-01
0.37629284D-02 -0.18998123D-01 -0.25656399D-01 0.81363937D-01 -0.96634404D-02 -0.23134677D-01
0.10519176D-01 -0.23783442D-01 0.22698321D-01 -0.96634404D-02 0.83339050D-01 -0.19487269D-01

-0.60042850D-02 0.53965043D-02 0.11990754D-01 -0.23134677D-01 -0.19487269D-01 0.27420033D-01

Q-MATRIX AT THE PARAMETER = 7.65000
0.12452392D-14 -0.58590434D-01 -0.28637352D-01 0.44221163D-01 -0.33622119D-01 0.16210177D-01
0.58590434D-01 -0.35605789D-15 -0.25023025D-01 -0.16578031D+00 0.60790898D-01 -0.17278669D-01
0.28637352D-01 0.25023025D-01 -0.14683108D-15 0.45842536D-01 0.13459845D+00 -0.89786331D-01

-0.44221163D-01 0.16578031D+00 -0.45842537D-01 -0.84056152D-15 -0.20292997D+00 0.15554966D-01
0.33622119D-01 -0.60790898D-01 -0.13459845D+00 0.20292996D+00 -0.85338623D-16 -0.11414279D+00

-0.16210176D-01 0.17278664D-01 0.89786338D-01 -0.15554922D-01 0.11414281D+00 0.66845182D-17
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a b s t r a c t

A FORTRAN program for calculating energy values, reflection and transmissionmatrices, and correspond-
ing wave functions in a coupled-channel approximation of the adiabatic approach is presented. In this
approach, a multidimensional Schrödinger equation is reduced to a system of the coupled second-order
ordinary differential equations on a finite interval with the homogeneous boundary conditions of the
third type at the left- and right-boundary points for continuous spectrum problem. The resulting system
of these equations containing the potential matrix elements and first-derivative coupling terms is solved
using high-order accuracy approximations of the finite element method. As a test desk, the program is
applied to the calculation of the reflection and transmission matrices and corresponding wave functions
for the two-dimensional problem with different barrier potentials.

Program summary

Program title: KANTBP
Catalogue identifier: ADZH_v3_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADZH_v3_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
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No. of lines in distributed program, including test data, etc.: 81813
No. of bytes in distributed program, including test data, etc.: 276779
Distribution format: tar.gz
Programming language: FORTRAN 90/95. Compilers: Intel Fortran 8.0+, GNU Fortran 95 4.4.5+.
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Operating system: Unix/Linux, Window.
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(c) the number of longitudinal points
(d) the number of eigensolutions required.
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Catalogue identifier of previous version: ADZH_v2_0
Journal reference of previous version: Comput. Phys. Comm. 179 (2008) 685
Nature of problem:
In the adiabatic approach [1], a multidimensional Schrödinger equation for quantum reflection [2], three-
dimensional tunneling of a diatomic molecule incident upon a potential barrier [3], fission model of
collision of heavy ions [4] or the photoionization of a hydrogen atom in magnetic field [5] is reduced
by separating the longitudinal coordinate, labeled as z, from the transversal variables to a system of
the second-order ordinary differential equations containing the potential matrix elements and first-
derivative coupling terms. The purpose of this paper is to present the new version of the program based
on the use of the finite element method of high-order accuracy approximations for calculating reflection
and transmissionmatrices andwave functions for such systems of coupled differential equations on finite
intervals of the variable z ∈ [zmin, zmax] with homogeneous boundary conditions of the third-type at the
left- and right-boundary points following from the above scattering problems.
Solution method:
The boundary-value problems for the coupled second-order differential equations are solved by the finite
element method using high-order accuracy approximations [6–8]. The generalized algebraic eigenvalue
problem A F = E B Fwith respect to pair unknowns (E, F) arising after the replacement of the differential
eigenvalue problem by the finite-element approximation is solved by the subspace iteration method [6].
The generalized algebraic eigenvalue problem (A − E B) F = D F with respect to pair unknowns (D, F)
arising after the corresponding replacement of the scattering boundary problem in open channels at fixed
energy value, E, is solved by the L D LT factorization of symmetric matrix and back-substitution methods
[6].
Reasons for new version:
The previous versions of KANTBP were intended only to calculate the energy levels, reaction matrix
and radial wave functions of the bound state problem and scattering problem in the coupled-channel
hyperspherical adiabatic approach, in which original problems were reduced to a set of coupled-channel
second order differential equations with respect to radial variable in a semi-axis. However a wider
range of physical scattering problems are reduced to a set of coupled-channel second order differential
equations with respect to the longitudinal variable on the whole axis. In this case one needs to formulate
the third-type boundary conditions for systems of coupled differential equations on a finite interval
and calculate a desirable scattering matrix which is expressed via unknown reflection and transmission
amplitudematrices of asymptotes of solutions in the open channels. The purpose of this new version is to
provide a program for calculating the reflection and transmission amplitude matrices and corresponding
wave functions of the continuous spectrum problem thus covering a wider range of physical scattering
problems.
Summary of revisions:
TheKANTBP3.0 extends the framework of the previous versions, KANTBP 1.0 andKANTBP 2.0. It calculates
the reflection and transmission amplitude matrices and corresponding wave functions of the continuous
spectrum for systems of coupled differential equations on finite intervals of the variable z ∈ [zmin, zmax]
using a general homogeneous boundary condition of the third-type at z = zmin < 0 and z = zmax > 0. The
third-type boundary conditions are formulated for the continuous problems under consideration by using
known asymptotes for a set of linear independent asymptotic regular and irregular solutions in the open
channels and a set of linear independent regular asymptotic solutions in the closed channels, respectively.
The program is applied to the computation of the penetration coefficient for 2D-model of pair particles
connected by the oscillator interaction potential (throughout symmetric or nonsymmetric) as well as the
Coulomb-like barriers.
Restrictions:
The computer memory requirements depend on:

(a) the number of differential equations
(b) the number and order of finite elements
(c) the total number of longitudinal points
(d) the number of eigensolutions required.

The user must supply subroutine POTCAL for evaluating potential matrix elements. The user should also
supply subroutineASYMEV (when solving the eigenvalueproblem) orASYMSL andASYMSR (when solving
the scattering problem) which evaluate asymptotics of the wave functions at boundary points in case of
a boundary condition of the third-type for the above problems.
Running time:
The running time depends critically upon:

(a) the number of differential equations
(b) the number and order of finite elements
(c) the total number of longitudinal points on interval [zmin, zmax]
(d) the number of eigensolutions required.

As a test desk, the program is applied to the calculation of the reflection and transmission matrices and
corresponding wave functions of the boundary-value problem for a set of N coupled-channel ordinary
second order differential equations which follows from the two-dimensional problem describing a
quantum tunneling of two particles i = 1, 2 with masses mi and effective charges Zi, interacted by
a harmonic oscillator potential through the repulsive Coulomb-like barrier potential Ui(xi) = Zi(xsi +

x̄smin)
−1/s [8]. The following values of parameters were used:m1 = 1,m2 = 3, x̄min = 0.1, Z1 = Z2 = 0.1,
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s = 8,N = 4. The test run took 25 s with calculation of matrix potentials on the Intel Core i5 CPU 3.33
GHz, 4 GB RAM, Windows 7. This test run requires 5 MB of disk storage. The program KANTBP was tested
on the JINR Central Information and Computer Complex.

The work was supported partially by RFBR Grants Nos. 14-01-00420 and 13-01-00668 and the
JINR theme 05-6-1119-2014/2016 ‘‘Methods, Algorithms and Software for Modeling Physical Systems,
Mathematical Processing and Analysis of Experimental Data’’.
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Abstract—An adiabatic method is presented for solving a boundary discrete spectrum problem for a
parabolic quantum well and a rectangular quantum well with infinitely-high walls in the presence of a
hydrogen-like impurity. The upper and lower bounds for the energy of the ground state of the systems
are obtained under the conditions of the shift of the Coulomb center in a given range of the parameter
with respect to earlier variational estimates. The comparison of the rate of convergence of the adiabatic
expansion of the solution in parametric bases in the cylindrical and spherical coordinates is carried out.
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1. INTRODUCTION

In [1, 2] the optical absorption into the ground
state of GaAs parabolic quantum well and rectan-
gular quantum well with infinitely high walls in the
presence of a hydrogen-like impurity was considered.
The calculations of the ground state of these quantum
wells were carried out using a single-parameter vari-
ational functions in the cylindrical coordinate system.
The upper bounds of these energies were obtained de-
pending on the shift of the Coulomb potential center.
The analysis of more complex quantum-mechanical
models leads to boundary problems in nonstandard
domain of the configuration space with complex
boundary, solved using multiparameter variational
functions [3], finite-element method [4, 5], or by
means of reducing the problem to ordinary differential
equations following Kantorovich method [6], known
in physics as the adiabatic approach of quantum-
mechanical problems with slow and fast variables [7].
In the Kantorovich method the basis functions depend
upon the slow variables as parameters and obey the
boundary conditions that account for all specific fea-
tures of the original problem, which provides the effi-
ciency of the method for solving boundary problems in

∗The text was submitted by the authors in English.
1)Joint Institute for Nuclear Research, Dubna, Russia.
2)Saratov State University, Russia.
3)Russian–Armenian (Slavonic) University, Yerevan, Arme-

nia.
4)Yerevan State University, Armenia.
**E-mail: gooseff@jinr.ru

***E-mail: vinitsky@theor.jinr.ru
****E-mail: shayk@ysu.am

a nonstandard domain, e.g., in a sector of a circle with
mixed boundary conditions [7], as well as in the pres-
ence of singular potential against the background of
confining potentials of the oscillator type with respect
to some of the independent variables [8]. This deter-
mines the potentialities of using the method in the
analysis of low-dimensional quantum-mechanical
models of semiconductor nanostructures [9].

Here we present a scheme for solving the discrete-
spectrum boundary problem for a parabolic quantum
well and rectangular quantum well with infinitely high
walls in the adiabatic representation in the cylindri-
cal and spherical coordinates. The upper and lower
bounds are obtained for the ground-state energies of
the systems under the conditions of the shift of the
Coulomb potential center in a given range of the pa-
rameter with respect to earlier variational estimates. It
is shown that the rate of convergence of the solution
expansion depends upon the choice of the adiabatic
basis representation with the specific features of the
problem taken into account.

2. ADIABATIC REPRESENTATION
FOR A QUANTUM WELL

IN THE CYLINDRICAL COORDINATES

For a quantum well the Schrödinger equation gov-
erning the discrete-spectrum wave function
ψ(z, ρ, φ) = ψmz (z, ρ) exp(imzϕ)/

√
2π with the fixed

magnetic quantum number mz in the cylindrical
coordinates (z, ρ, φ) ∈ R3 has the form [1][

− �
2

2m∗

(
1
ρ

∂

∂ρ
ρ

∂

∂ρ
− m2

z

ρ2
+

∂2

∂z2

)
(1)
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Cluster Eigenfunctions: Tunneling of Clusters
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Abstract. A model for quantum tunnelling of a cluster comprising A
identical particles, coupled by oscillator-type potential, through short-
range repulsive potential barriers is introduced for the first time in the
new symmetrized-coordinate representation and studied within the s-
wave approximation. The symbolic-numerical algorithms for calculating
the effective potentials of the close-coupling equations in terms of the
cluster wave functions and the energy of the barrier quasistationary
states are formulated and implemented using the Maple computer al-
gebra system. The effect of quantum transparency, manifesting itself in
nonmonotonic resonance-type dependence of the transmission coefficient
upon the energy of the particles, the number of the particles A = 2, 3, 4,
and their symmetry type, is analyzed. It is shown that the resonance
behavior of the total transmission coefficient is due to the existence of
barrier quasistationary states imbedded in the continuum.

1 Introduction

During a decade, the mechanism of quantum penetration of two bound parti-
cles through repulsive barriers [1] attracts attention from both theoretical and
experimental viewpoints in relation with such problems as near-surface quan-
tum diffusion of molecules [2–4], fragmentation in producing very neutron-rich
light nuclei [5, 6], and heavy ion collisions through multidimensional barriers
[7–14]. Within the general formulation of the scattering problem for ions having
different masses, a benchmark model with long-range potentials was proposed
in Refs. [15–17]. The generalization of the two-particle model over a quantum
system of A identical particles is of great importance for the appropriate descrip-
tion of molecular and heavy-ion collisions. The aim of this paper is to present the
convenient formulation of the problem stated above and the calculation methods,
algorithms, and programs for solving this problem.

V.P. Gerdt et al. (Eds.): CASC 2013, LNCS 8136, pp. 427–442, 2013.
c© Springer International Publishing Switzerland 2013
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Abstract
Quantum tunnelling of a cluster comprised of several identical particles, coupled via an
oscillator-type potential, through short-range repulsive barrier potentials is studied in the s-wave
approximation of the symmetrized coordinate representation. A procedure is briefly described
that allows the construction of states, symmetric or asymmetric with respect to permutations of A
identical particles, from the harmonic oscillator basis functions expressed via the newly
introduced symmetrized coordinates. In the coupled-channel approximation of the -matrix
approach, the effect of quantum transparency is analysed; it manifests itself in non-monotonic
resonance dependence of the transmission coefficient upon the energy of the particles, their
number A = 3, 4 and the symmetry types of their states. The total transmission coefficient is
shown to demonstrate resonance behaviour with probability density growth in the vicinity of the
potential energy local minima, which is a manifestation of the barrier quasi-stationary states,
embedded in the continuum.

Keywords: quantum tunnelling, cluster, system of identical particles, permutation symmetry,
transmission coefficient, quantum transparency, symmetrized coordinates

(Some figures may appear in colour only in the online journal)

1. Introduction

The mechanism of quantum penetration (tunnelling) of two
bound particles through repulsive barriers is a subject of both
theoretical and experimental interest in relation to such pro-
blems as those of near-surface quantum molecular diffusion,
fragmentation in the production of neutron-rich light nuclei,
and heavy ion collisions through multidimensional barriers
[1–6]. Generalization of the two-particle model over a quan-
tum system of >A 2 identical particles is urgently needed for
an appropriate description of molecular and heavy ion colli-
sions, as well as for the study of nuclei possessing tetrahedral
and octahedral symmetry [7].

Here we consider the penetration of a cluster, consisting
of A identical quantum particles, coupled via the short-range
oscillator-type potential, through a repulsive potential barrier.
We assume that the total spin of the cluster is fixed, so only

the coordinate wavefunction is to be considered, which may
be symmetric (S) or antisymmetric (A) with respect to the
permutation of A identical particles. The initial problem is
shown to be reduced to that of the motion of a composite
system, with the internal degrees of freedom describing an

−( )A d1 -dimensional oscillator, and the external degrees of

freedom describing the cluster centre-of-mass motion in the d-
dimensional Euclidean space. For simplicity, we restrict our
consideration to the so-called s-wave approximation, in which
d = 1. The reduction is provided by using appropriately
chosen symmetrized coordinates, rather than the conventional
Jacobi coordinates. The advantage of the symmetrized coor-
dinates over the Jacobi ones is that they provide invariance of
the resulting Hamiltonian with respect to permutations of A
identical particles. This, in turn, allows the construction of
basis functions that are symmetric or antisymmetric under the

0031-8949/14/054011+07$33.00 © 2014 The Royal Swedish Academy of Sciences Printed in the UK1
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permutations not only of −A 1 relative coordinates, but also of
A Cartesian coordinates, i.e., of A real particles that form the
cluster. Using this basis to expand the solution is referred to as
adopting the symmetrized coordinate representation (SCR).

In the SCR we seek the solution in the form of Galerkin
or Kantorovich expansions with unknown coefficients having
the form of matrix functions of the centre-of-mass variables.
Thus the initial problem is reduced to a boundary-value
problem (BVP) for a system of coupled-channel equations in
the centre-of-mass variable with conventional asymptotic
boundary conditions. The solution procedure involves com-
bined symbolic–numeric algorithms [8, 9]. The results are
analysed with particular emphasis on the quantum transpar-
ency phenomenon, i.e., the non-monotonic energy depen-
dence of the transmission coefficient, revealing the resonance
nature of quantum tunnelling of clusters in S or A states.

2. The setting of the problem

Consider A identical quantum particles having mass m and the

set of Cartesian coordinates ∈x Ri
d in the d-dimensional

Euclidean space, forming a vector ˜ = ˜ … ˜ ∈ ×x xx R( , , )A
A d

1 in
the A × d-dimensional configuration space. The particles form

a cluster due to the coupling via the pair potential ˜ ˜V x( )
pair

ij

depending on the relative coordinates ˜ = ˜ − ˜x x xij i j in a similar

way to the potential of a harmonic oscillator

˜ ˜ = ˜ωV x x( ) ( )
hosc

ij
m

ij2
22

with the frequency ω. The particles are

considered to penetrate through the repulsive potential barrier
˜ ˜( )V xi . Adopting the dimensionless coordinates = ˜ /x x xi i osc,

= ˜ = −/x x x x xij ij osc i j and energy = ˜ /E E Eosc, =V x( )i
˜ /V x x E( )i osc osc , = ˜ =/ /V x V x x E x A( ) ( )hosc

ij

hosc

ij osc osc ij
2 , using the

oscillator units (osc.u.)  ω= /( )x m Aosc and =Eosc

ω A /2 , one can write the appropriate Schrödinger equation
as

⎡
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where = −( ) ( ) ( )U x V x V xpair
ij

pair
ij

hosc
ij is the non-oscillator

part of the coupling potential, i.e., if =( ) ( )V x V xpair
ij

hosc
ij ,

then =( )U x 0pair
ij , = … ∈ ×x xx R( , , )A

A d
1 .

We seek for the solutions Ψ x( ) of equation (1), totally
symmetric or antisymmetric under the permutations of A
particles that belong to the permutation group Sn. A permu-
tation of particles is nothing but a permutation of the appro-
priate Cartesian coordinates ↔x xi j, = …i j A, 1, , .

The construction of states that retain the symmetry
(antisymmetry) under the permutations of A initial Cartesian
coordinates (below referred to as S (A) states) is most clearly

implemented using the symmetrized relative coordinates
rather than the Jacobi ones. One of the possible definitions for
the symmetrized coordinates is

⎛
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0
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1

1 0 0

0 1 0

0 0 1

1

2

where = −( )a A1 10 , = +a a A1 0 . If A = 2, then the
above symmetrized coordinates are similar to the symme-
trized Jacobi coordinates of [10], while for A = 4 they cor-
respond to those of [11] (up to a normalizing factor).

With the relations − =a a A1 0 , − =a a A10 0 taken
into account, the relative coordinates ≡ −x x xij i j of a pair of

particles i and j are expressed in terms of the internal −A 1
symmetrized coordinates only:

ξ ξ ξ≡ − = − ≡− − − −x x x , (3)ij i j i j i j1 1 1, 1

∑ξ ξ≡ − = + = …−
′=

−

′x x x a i j A, , 2, , . (4)i i i

i

A

i1 1 1 0

1

1

In the symmetrized coordinates, equation (1) takes the
form

⎡
⎣⎢

⎤
⎦⎥

∑ ∑

ξ
ξ ξ ξ

ξ ξ ξ

ξ
ξ Ψ ξ

ξ ξ

− ∂
∂

− ∂
∂

+ + − =

= +
= < =

( )( )

U E

U U x V x

( , ) ( , ) 0,

( , ) ( ( , ) ), (5)
i j i j

A
pair

ij

i

A

i

2

0
2

2

2
2

0 0

0

, 1; 1

0

with ξ ∈ Rd
0 and ξ ξ ξ= … ∈−

− ×R{ , , } ( )
A

A d
1 1

1 , which is
invariant under the permutations ξ ξ↔i j with

= … −i j A, 1, , 1, i.e., the invariance of equation (1) under
the permutations ↔x xi j with = …i j A, 1, , survives the

symmetrizing coordinate transformation (2). This remarkable
fact is one of the most prominent features of the proposed
approach.

3. The symmetrized coordinate representation

We restrict ourselves to considering =( ) ( )V x V xpair
ij

hosc
ij in

the s-wave approximation (d = 1). We define the set of SCR

cluster functions ξ ξΦ〈 | 〉 ≡ ( )j ( ) ( )S A
j
S A and the corresponding

energy eigenvalues ϵ ( )
j
S A as a solution of the BVP for the

equation

⎛
⎝⎜

⎞
⎠⎟ξ

ξ ξϵ Φ− ∂
∂

+ − =( ) 0. (6)( ) ( )
j
S A

j
S A

2

2
2

The solution is sought for in the form of an expansion:

∑ξ ξΦ α Φ=
Δ… ∈

… …
−

− −( ) ( ). (7)( )
[ ]
( )

[ ]
{ }

j
S A

i i
j i i
S A

i i
osc

, ,
, , , ,

A j

A A

1 1

1 1 1 1

Here the set Δ ≡ … −{ }i i, ,j A1 1 is defined by the condition
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Δ ϵ= … ∑ + − =− =
−{ }( )i i i A, , 2 1 ( )

j A k

A
k j

S A
1 1 1

1
, and

ξΦ = ∏
ξ ξ

π… =
− −

!− ( ) ( )
[ ]

( )
i i
osc

k

A H

i
, , 1

1 exp 2

2A

k ik k

ik
k

1 1

2

4
is the eigenfunction,

corresponding to the energy eigenvalue ϵ ϵ≡ =… −[ ]i i
osc

f
osc

, , A1 1

+ −f A2 1 , = ∑ =
−

f i
k

A
k1

1
, of the −( )A 1 -dimensional oscil-

lator. The energy levels are degenerate with the degeneracy

multiplicity (DM) = + − ! ! − !( ) ( )p A f f A2 2 [12]. The

coefficients α … −[ ]
( )

j i i
S A

, , A1 1
of the orthonormal eigenfunctions

ξΦ ( )( )
j
S A , symmetric (S) (or antisymmetric (A)) under the

permutations of A particles and the corresponding eigen-

values ϵ ( )
j
S A with the DM ≪p p( )S A are calculated using the

SCR algorithm [8] in two steps. First, the eigenfunctions
symmetric (or antisymmetric) under the permutations of ξi

(see equation (3)) are constructed in a standard way. These

eigenfunctions are symmetric (antisymmetric) under the
permutation of −A 1 particles. Second, the eigenfunctions
symmetric (antisymmetric) under the permutation of a sin-
gle pair ⟷x xi 1, e.g., ⟷x x2 1 (see equation (4)), are
constructed and orthonormalized using the Gram–Schmidt
procedure.

In the particular case A = 3, d = 1, the S (or A) functions
can be expressed in polar coordinates ξ ρ φ= cos1 ,
ξ ρ φ= sin2 as

Φ ρ φ ρ φ π

ρ ρ ρ

= = +

= ! + ! ρ−

/

/

A R Y m

R k k m e L

( , , 3) ( ) (3 ( 12) ),

( ) 2 ( 3 ) ( ) ( ),

( ) ( )

/ /

k m
S A

km m
S A

km

m

k
m

,

2 3 2 2 3 22

where = …k 0, 1, , and ρ( )Lk
m3 2 are the generalized Laguerre

polynomials [13], φ φ δ π= +( )/Y ( ) cos ( ) 1m
S

m0 , =m 0,

…1, , for S states, and φ φ π= /Y ( ) sin ( )m
A , = …m 1, 2, ,

for A states, that are classified in terms of irreducible repre-
sentations of the D m3 symmetry group. The corresponding

energy levels ϵ = + +( )k m2 2 3 1( )
k m
S A
, have the DM

= +p K 1( )S A if the energy ϵ ϵ− = + ′K K12( ) ( )
k m
S A

ground
S A

, ,

where ′ =K 0, 4, 6, 8, 10, 14, ϵ = 2ground
S and ϵ = 8ground

A .

For A = 4, d = 1, the energy levels ϵ =( )
i i i
S A
, ,1 2 3

+ + +( )i i i2 3/21 2 3 have the DM = +p K3( )S A 2 + ′( )K3

δ+ ′ + ′K K K0 if the energy ϵ ϵ− =( ) ( )
i i i
S A

ground
S A

, ,1 2 3
+ ′( )K K4 6

+ ″K , where ′ =K 0, 1, 2, 3, 4, 5, ″ =K 0, 6, ϵ = 3ground
S ,

ϵ = 15ground
A . Here = …i 0, 1,1 , = + …i i i, 2,2 1 1 , =i i ,3 2

+ …i 2,2 for S states and = + + …i i i2, 4,2 1 1 , = +i i 2,3 2

+ …i 4,2 for A states. The S states with even values of the
quantum numbers i i i, ,1 2 3 and the A states with odd ones have
the octahedral Oh symmetry, while the A states with even
values of i i i, ,1 2 3 and the S states with odd ones have the
tetrahedral Td symmetry. Figure 1 shows example profiles of
S and A oscillator eigenfunctions for A = 4, d = 1. Note that

four maxima (black) and four minima (grey) of 3
S
are

positioned at the vertices of two tetrahedra forming a stella

octangula. Eight maxima and six outer minima for 4
S
are

positioned at the vertices of a cube and an octahedron. The

positions of twelve maxima of 1
A
coincide with the vertices

of a polyhedron with 20 triangle faces (only 8 of them being
equilateral triangles) and 30 edges, 6 of them having the
length 2.25 and the other having the length 2.66 (in oscillator
units (osc.u.)).

4. Coupled-channel equations in the SCR

We restrict our consideration to the so-called s-wave
approximation (d = 1). The asymptotic boundary conditions

for the solution ξ ξΨ ξ Ψ ξ=
=

{ }( ) ( ), ,( ) ( )S A
i
S A

i

N

0 0
1o

o

o
, describing

the incident wave and outgoing waves at ξ → +∞+
0 and
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Figure 1. Profiles of the first six 3D oscillator eigenfunctions

ξ j
( )S A

symmetric and antisymmetric under a permutation of

A = 4 particles in the internal 3D space (ξ ξ ξ, ,1 2 3). The vertices of the
figures illustrate the positions of maxima (black) and minima (grey)

for the eigenfunctions 3
S
, 4

S
, and 1

A
.



ξ → −∞−
0 , can be written in the matrix form ΦΨ = F( ) ( )S A S A

T

,
where

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ξ ξ
ξ ξ

ξ
ξ

ξ
ξ

=

+

→
+

←
+

→
−

←
−

− +

+ −

+ +

− −

F F
F F

0 X

X 0

0 X

X 0
S

( ) ( )
( ) ( )

( )

( )

( )

( )
. (8)

0 0

0 0

( )
0

( )
0

( )
0

( )
0

Here ξ =
ξ∓ ∓ ı( )( ) ( )

Xi

p

p
( )

0

exp

o

io

io

0
, = ← →v , indicates the initial

direction of the particle motion along the ξ0 axis, and No

is the number of open channels with the fixed energy

E and momentum ϵ= − >p E 0( )
i i

S A2

o o
. The quantities

=← ← ( )R R Eji jio o
, =→ → ( )R R Eji jio o

, =← ← ( )T T Eji jio o
, and =→Tjio

→ ( )T Ejio
are the unknown amplitudes of the reflected and

transmitted waves. S is the scattering matrix, which is unitary
and symmetric [6]:

⎛
⎝⎜

⎞
⎠⎟= = =→ ←

→ ←

† †S
R T
T R

S S SS I, . (9)

Now we proceed to seek for the solution of the problem
(5) in symmetrized coordinates in the form

∑ξ ξΨ ξ Φ χ ξ=
=

( , ) ( ) ( ), (10)( ) ( ) ( )
i
S A

j

j

j
S A

ji
S A

0

1

0o o

max

where χ ξ( )( )
ji
S A

0
o

are the unknown functions and ξΦ ( )( )
j
S A are

the SCR cluster functions (7).
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Figure 2. The total probabilities of transmission through the repulsive Gaussian barrier for the system of A = 3, 4 particles, coupled by the
oscillator potential and initially in the ground symmetric (left) or antisymmetric (right) state, versus the energy E (in osc.u.).



In the SCR the set of coupled-channel Galerkin-
type equations in the centre-of-mass variable has the
form

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥∑

ξ
δ ξ χ ξ− − + =

=

p V
d

d
( ) ( ) 0, (11)( ) ( )

j

j

i ij ij
S A

ji
S A

1

2

0
2

2
0 0

o

max

where ξ( )V ( )
ij
S A

0 are the effective potentials defined as

⎛
⎝⎜

⎞
⎠⎟∫ ∑ξ ξ ξξ Φ Φ=′

=
′V V x( ) d ( ) ( ) ( ). (12)( ) ( ) ( )

ij
S A

i
S A

k

A

k j
S A

0

1

The boundary conditions at ξ ξ= t0 and =t min, max have
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Figure 3. The probability densities χ ξ( )i 0

2
for the coefficient functions of the decomposition (10), representing the incident wavefunction of

the ground S state of the particles at the values of the collision energy E corresponding to individual maxima and minima of the transmission
coefficient in figure 2. The parameters of the Gaussian barrier are α = 10 and σ = 0.1.



the form

ξ
ξ

ξ ξ=
ξ ξ=

F
F

d ( )
d

( ) ( ). (13)t t
0

0
t0

Here ξ ( ) is an unknown ×j j
max max

-matrix function and

χξ ξ χ ξ= == = =( )F { ( )} {{ ( ) } }
i i

N
ji j

j
i
N

0 0 1 0 1 1o o

o

o o

omax is the required

× ⩾( )j N j No omax max
matrix solution of the BVP (11)–(13)

with asymptotes (8)–(9).

5. Results

Consider the repulsive barrier V x( )i in (12) described by the

Gaussian potential = −α
π σ σ

V x( ) exp( )i
x

2
i
2

2 . Figure 2 shows the

energy dependence of the total transmission probability

| | | |= ∑ = ( )T T Eii j

N
ji

2
1

2o . This is the probability of a transition

from a chosen state i into any of the No states, found from
(8)–(9) by solving the BVP (11)–(13) [6]. For this purpose we
solve the BVP at A = 3, 4: =j 21, 39

max
( =j 16, 15

max
) for S

(A) states with an accuracy of about four significant figures,
using the KANTBP program [9] on the finite-element grid

Ω ξ ξ−ξ{ },0
max

0
max , ξ = 10.5, 12.80

max , with =N 800, 976elem

the fourth-order Lagrange elements between the nodes.
Figure 2 illustrates the non-monotonic dependence of the
transmission probability upon the energy; the observed
resonances are manifestations of the quantum transparency
effect. With the barrier height increasing, the peaks become
narrower and their positions shift towards higher energies.
The multiplet structures of the peaks are similar for symmetric
and antisymmetric states.

The effect of quantum transparency, accompanied with
the enhancement of the probability density in the vicinity of
the potential energy local minima, is due to the existence of
barrier quasi-stationary states, embedded in the continuum.
Figure 3 shows that in the case of resonance transmission the
wavefunctions, depending on the centre-of-mass variable ξ0,

are localized in the vicinity of the potential barrier centre
(ξ = 00 ). The correspondence between the probability density
distributions shown in figure 3 and the transmission prob-
ability features in figure 2 is the following: figures 3(a)–(d)
correspond to the first four peaks in figure 2(a), the third panel
from the top; figures 3(e), (f) correspond to the first two peaks
in figure 2(c), the third panel from the top; figure 3(g) cor-
responds to the dip between the second and the third peaks in
figure 2(a), the third panel from the top; figure 3(h) corre-
sponds to the dip between the first and second peaks in
figure 2(c), the third panel from the top.

Table 1 presents the resonance values of the energy ES

(EA) calculated by solving the BVP (11)–(13) for S (A) states
at A = 3, 4 σ = 1/10, α = 20, which correspond to the

maxima of the transmission coefficients | |T ii
2 in figure 2 for

<E 18, and the corresponding approximate energy eigenva-

lues Ei
D of the quasi-stationary states of the BVP for equation

(1), calculated using the Galerkin sets of 816, 1820 basis
functions of the truncated A-dimensional oscillator at A = 3, 4,
calculated by means of the DC algorithm [8]. The approx-
imation of a narrow barrier with impermeable walls used in

the DC algorithm is seen to provide a good approximation Ei
D

of the above high-accuracy results ES and EA, with the error
smaller than 2%.

When A = 3 there are six similar wells, three of them on
each side of the plane ξ = 00 . The symmetry with respect to
the plane ξ = 00 explains the presence of doublets. The pre-
sence of states with definite symmetry is associated with the
fact that the axis ξ0 is a third-order symmetry axis.

When A = 4 there are 14 wells. Six wells in the centre
correspond to the case where two particles are located on one
side of the barrier and the other two are on the other side. The

corresponding energy eigenvalue is denoted by Ei
D22. The

remaining eight wells correspond to the case where one par-
ticle is located on one side of the barrier and the remaining
three are on the other side. The corresponding energy

eigenvalue is denoted by Ei
D31. For these states, one expects

doublets to be observed, like for the case of three particles.

Phys. Scr. 89 (2014) 054011 A A Gusev et al

6

Table 1. Comparison of the resonance energy values ES and EA (in osc.u.) for S and A states with the approximate eigenvalues Ei
D, for the first

ten quasi-stationary states = …i 1, , 10, at A = 3, 4 (σ = 1/10, α = 20).

A = 3 A = 4

i ES EA Ei
D ES Ei

D31 Ei
D22

1 8.18 8.31 8.19 10.12 10.03
2 11.11 11.23 11.09 11.89 11.76
3 11.55 11.61 11.52 12.71 12.60
4 12.60 12.51 14.86 14.71
5 13.93 14.00 13.86 15.19 15.04
6 14.46 14.56 14.42 15.41 15.21
7 14.84 14.88 14.74 15.86 15.64
8 15.79 15.67 16.37 16.18
9 16.18 16.25 16.11 17.54 17.34
10 16.67 16.73 16.53 17.76 17.56



However, the separation between the energy levels is much
smaller, because the four-well groups are strongly separated
by two barriers, rather than only one barrier as for the case
A = 3.

6. Conclusion

A cluster model consisting of A identical particles bound by
an oscillator-type potential in the external field of a target was
formulated in new symmetrized coordinates. Typical exam-
ples of clusters with A = 3 and A = 4 identical particles were
analysed in the s-wave approximation, and the correspon-
dence was revealed between the representations of the sym-
metry groups D3 for A = 3 SCR cluster function shapes, and Td

and Oh for A = 4 ones. We demonstrated the quantum
transparency effect that manifests itself in a non-monotonic
resonance-type dependence of the transmission coefficient
upon the energy of the particles, their number A = 3, 4, and
the symmetry types of their states. We found that this effect
accompanies an enhancement of the probability density in the
vicinity of local potential minima and is related to the exis-
tence of sub-barrier quasi-stationary states, embedded in the
continuum.

The proposed approach can be adapted to analyse nuclei
having tetrahedral and octahedral symmetry, the quantum
diffusion of molecules and microscopic clusters through
surfaces, and the fragmentation mechanism involved in the
production of neutron-rich light nuclei.
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ABSTRACT

The model for quantum tunneling of a diatomic homonuclear molecule is formulated as a 2D boundary-value
problem (2D BVP) for the Schrödinger equation with homogeneous boundary conditions of the third type. The
molecule is considered as a pair of identical particles coupled via the effective potential. For short-range barrier
potentials the Galerkin reduction to BVP for a set of closed-channel second-order ordinary differential equations
(ODEs) is obtained by expanding the solution in a basis of transverse variable functions. Benchmark calculations
of quantum tunneling through Gaussian barriers are presented for a pair of identical nuclei coupled by Morse
potential. The results are compared with the direct numerical solution of the original 2D BVP obtained using the
Numerov scheme. The effect of quantum transparency, i.e., the resonance behavior of the transmission coefficient
versus the energy of the molecule, is shown to be a manifestation of the barrier metastable states, embedded in
the continuum below the dissociation threshold, as well as quantum diffusion. The possibility of controlling the
dynamics of atom-ion collisions by laser pulses is analyzed using a 1D BVP two-center model with Pöschl-Teller
potentials.

Keywords: tunneling, interatomic potentials, diatomic molecules, quantum diffusion, laser pulses, time-
dependent Scrödinger equation

1. INTRODUCTION

The study of tunneling coupled particles through repulsive barriers1 has revealed the effect of resonance quantum
transparency: when the cluster size is comparable with the spatial width of the barrier, there are mechanisms
that lead to greater transparency of the barrier. These mechanisms are related to the formation of the barrier
resonances, provided that the potential energy of the composite system has local minima giving rise to metastable
states of the moving cluster.2 Currently this effect and its possible applications are a subject of extensive study in
relation with different quantum-physical problems, e.g., sub-barrier tunneling of light nuclei,3 quantum diffusion
of molecules,4 exciton resonance passage through a quantum heterostructure barrier,5 resonant formation of
molecules from individual atoms,6 controlling the direction of diffusion in solids,7 and tunnelling of ions and
clusters through repulsive barriers.8,9 One more important problem is the possibility to control the tunneling of
molecules by means of laser pulses, which can allow the enhancement of desired chemical reactions.10 For the
analysis of these effects it is useful to develop model approaches based on approximations, providing a realistic
description of interactions between the atoms in the molecule, as well as with the barriers and/or external fields.

In this paper we formulate and study the model of a diatomic molecule with the nuclei coupled via the
effective Morse potential, tunneling through a Gaussian repulsive barrier. We present the comparison of the
close-coupling approximate results with those of the direct numerical solution of the original 2D BVP using
the Numerov scheme below the dissociation threshold. The effect of quantum transparency, i.e., the resonance
behavior of the transmission coefficient versus the energy of the molecule, as well as quantum diffusion are
analyzed. Atom-ion collisions, as well as the dynamics of an ion in the field of a laser pulse, are studied on the
base of a two-center model with Pöschl-Teller potentials.
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2. MODEL I. TRANSMISSION OF A DIATOMIC MOLECULE THROUGH A
BARRIER

We consider a 2D model of two identical particles with mass m, coupled by pair interaction Ṽ (x2 − x1) and
interacting with barrier potentials Ṽb(x1) and Ṽb(x2). The relevant stationary Schrödinger equation for the wave
function Ψ(x1, x2) in the s-wave approximation has the form:(

h̄2

2m
∂2

∂x2
1

− h̄2

2m
∂2

∂x2
2

+ Ṽ (x2 − x1) + Ṽb(x1) + Ṽb(x2)− Ẽ
)

Ψ(x1, x2) = 0, (1)

where Ẽ is total energy of the system and h̄ is Plank constant. Using the change of variables x = x2 − x1,
y = x2 + x1, we can rewrite Eq. (1) in the form(

− h̄
2

m

∂2

∂y2
− h̄2

m

∂2

∂x2
+ Ṽ (x) + Ṽb(

x+ y

2
) + Ṽb(

x− y
2

)− Ẽ
)

Ψ(y, x) = 0. (2)

The equation describing the molecular subsystem has the form(
− h̄

2

m

d2

dx2
+ Ṽ (x)− ε̃

)
φ(x) = 0. (3)

The molecular subsystem considered is assumed to possess the continuous energy spectrum with the eigenvalues
ε̃ ≥ 0 and eigenfunctions φε̃(x) and the discrete energy spectrum with the finite number n of bound states with
the eigenfunctions φj(x) and the eigenvalues ε̃j = −|ε̃j |, j = 1, n.

The asymptotic boundary conditions imposed on the solution for the 2D model in the s-wave approximation
Ψ(y, x) = {Ψj(y, x)}No

j=1 with the direction v =→ can be written in the obvious form

Ψj(y → −∞, x)→ φj(x)
exp(ıkjy)√

kj
+

No∑
l=1

φl(x)
exp(−ıkly)√

kl
Rlj ,

Ψj(y → +∞, x)→
No∑
l=1

φl(x)
exp(ıkly)√

kl
Tlj , (4)

Ψj(y, x→ ±∞)→ 0,

where Rlj and Tlj are the reflection and transmission amplitudes, No is the number of open channels, ki is

the wave number, ki =
√

(m/h̄2)(Ẽ − ε̃i) > 0, below dissociation threshold Ẽ < 0 , φi(x) and εi are the
eigenfunctions and eigenvalues of the BVP for Eq. (3).

The solution of Eq. (2) is sought for in the form of Galerkin expansion

Ψ(y, r) =
jmax∑
j=1

φj(r)χjio(y), (5)

Here χjio(y) are unknown functions and the orthonormalized basis functions φj(r) in the interval 0 ≤ r ≤ rmax

are defined as eigenfunctions of the BVP for the equation(
− d2

dr2
+ V (r)− εj

)
φj(r) = 0, φj(0) = φj(rmax) = 0,

∫ rmax

0

drφi(r)φj(r) = δij , (6)

where V (r) = (m/h̄2)Ṽ (x), εj = (m/h̄2)ε̃j . The desirable set of numerical solutions of this BVP is calculated
with the given accuracy by means of the program ODPEVP.11 Hence, we calculate the set of n bound states
having the eigenfunctions φj(x) and the eigenvalues εj , j = 1, n and the desirable set of pseudostates with the
eigenfunctions φj(x) and the eigenvalues εj ≥ 0, j = n + 1, jmax. The latter approximate the set of continuum
eigensolutions ε ≥ 0 of the BVP for Eq. (3).
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Figure 1. Gaussian-type barrier Vb(xi) = D̂ exp
(
−x

2
i

2σ

)
, at D̂ = 236.510003758401Å−2 = (m/h̄2)Ṽ0 = (m/h̄2)D, Ṽ0 =

D = 1280K, σ = 5.23 · 10−2Å2, the two-particle interaction potential, V (r) = D̂{exp[−2(r− r̂eq)ρ̂]− 2 exp[−(r− r̂eq)ρ̂]},
r̂eq = 2.47Å, ρ̂ = 2.96812423381643Å−1 and the corresponding 2D potential.

Figure 2. The wave functions φj(r) of the bound states j = 1, 5 (solid lines) and pseudostates j = 6, ..., 15 (dashed lines)
The matrix elements Vjj(y) (solid lines) and Vj1(y) (dashed lines).

The set of closed-channel Galerkin equations has the form[
− d2

dy2
+ εi − E

]
χiio(y) +

jmax∑
j=1

Vij(y)χjio(y) = 0. (7)

Thus, the scattering problem (2)–(3) with the asymptotic boundary conditions (4) is reduced to the boundary-
value problem for the set of close-coupling equations in the Galerkin form (7) with the boundary conditions at
y = ymin and y = ymax (from ref.9):

dF (y)
dy

∣∣∣∣
y=ymin

= R(ymin)F (ymin),
dF (y)
dy

∣∣∣∣
y=ymax

= R(ymax)F (ymax), (8)

where R(y) is an unknown jmax × jmax matrix function, F (y) = {χio(y)}No
io=1 = {{χjio(y)}jmax

j=1 }
No
io=1 is the

required jmax × No matrix solution, and No is the number of open channels, No = max
E≥εj

j ≤ jmax, calculated

using the third version of the program KANTBP.12
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In Eq. (7) the effective potentials Vij(y) are expressed by the integrals

Vij(y) =
∫ rmax

0

drφi(r)(Vb(
r + y

2
) + Vb(

r − y
2

))φj(r). (9)

For example let us take the parameters of the molecule Be2, namely, the reduced mass µ = m/2 = 4.506Da,
the average distance between the atoms 2.47Å, the frequency of molecular vibrations expressed in temperature
units h̄ω = 398.72K, the ground state of molecule 1Σ+

u , the wave number of the order of 277.124cm−1 for the
observable excited-to-ground state transitions (we use relationship 1K= 0.69503476cm−1 from13). These values
were used to determine the parameters of the Morse potential

Ṽ = D{exp[−2(r − r̂eq)ρ̂]− 2 exp[−(r − r̂eq)ρ̂]}, (10)

where D is the depth of the interaction potential well and ρ̂ describes the width of the potential well. The values
of D and ρ̂ are determined from the known spectrum

−ε̃n = D

[
1− ς(n+ 1/2)

]2

. (11)

Having the average size of the molecule and the separation between the energy levels taken into account, one
can parametrize the molecular potential to fit the observable quantities, namely, D = 1280K, r̂eq = 2.47Å,
ρ̂ = 2.968Å−1 is determined from the condition (ε̃2 − ε̃1)/(2πh̄c) = 277.124cm−1, at ς = ρ̂h̄√

mD
= 0.193 is the

dimensionless constant of the problem and D̂ = (
√
mD
h̄ )2 = (ρ̂/0.193)2 = (2.968Å−1/0.193)2 = 236.5Å−2. In

accordance with (11), the ground state energy of the molecule Be2 is equal to −ε̃n = −1044.88K. Since the
bond in the molecule Be2 is of the Van der Waals type, one can consider each constituent atom independently
interacting with the external barrier potential. The latter should be chosen to have the height and the width
typical for barriers in a real crystal lattice. Moreover, this potential should be a smooth function having the
second derivative to apply high-accuracy numerical methods, like the Numerov method or the finite element
method, for solving the BVP for the systems of second-order ordinary differential equations. Therefore, we
choose the Gaussian repulsive barrier potential

Ṽb(xi) = Ṽ0 exp
(
−x

2
i

2σ

)
, Vb(xi) =

m

h̄2 Ṽb(xi) = D̂ exp
(
−x

2
i

2σ

)
. (12)

Here the parameters Ṽ0 = 1280K, D̂ = 236.510003758401Å−2 = (m/h̄2)Ṽ0, σ = 5.23 · 10−2Å2 are determined
by the model requirement that the width of repulsive potential at the kinetic energy equal to that of the ground
state is 1Å, so that the average distance 2.47Å between the atoms of Be is less that the distance 2.56Åbetween
Cu atoms in the plane (111) of the crystal lattice cell. The potential barrier height Ṽ0 of the order of 200
meV was estimated following the experimental observation of quantum diffusion of hydrogen atoms.14 Fig.
1 illustrates the Gaussian and Morse potentials, and the corresponding 2D potential. Fig. 2 presents the
calculated eigenfunctions of the BVP (6) and the effective potentials Vij(y) of Eq. (9), calculated using these
functions. Note, that the wave functions φj(r) and the eigenvalues εj(r) of the bound states j = 1, 5 (solid lines)
approximate the known analytical ones of the BVP for Eq. (3) with the Morse potential (10) with four and
seven significant digits, respectively, the states being localized in the well, while the pseudostates j = 6, ..., 15 are
approximated with the same accuracy and localized outside the well. The matrix elements between the bound
states are localized in the vicinity of the barriers and the matrix elements between the pseudostates are localized
beyond the barriers. The matrix elements between the bound states and pseudostates are small. The expansion
of the desirable solution (5) over such orthogonal basis at (jmax = 15) with only ten closed channels taken into
account allows the calculation of approximate solutions of the original 2D problem (2) at E < 0 with the required
accuracy of hp+1 for the eigenfunctions and h2p for the eigenvalues with respect to the maximum step h of the
finite-element grid, p being the order of approximation. The solutions of the BVPs (6)-(12) were performed on
the finite-element grids Ωr = {0(Nelem = 800)12}, and Ωy = {−12(Nelem = 120)12}, respectively, with Nelem
fourth-order Lagrange elements p = 4 between the nodes, using the program KANTBP 3.0.15

Proc. of SPIE Vol. 9031  90311D-4



1E-3

1E-8

1E-9

1E-12

1E-15

1E-18

1E-2

O 100 200
K

300 400
E,

500 600 700 800 900 1000

O 100 200 300 400 500 600 700 800 900 1000

E.

-1000 -900
E,K

-800 -700 -600 -500 -400 -300 -200 -100 0-

1E-3-

1E-6-

1E-9-

1E-12-

1E-15-

1E-18 -

1E-21 -

ITI ITIn

IT zz

1 'TIa Et]
.... ,... .. ,....e ...e ....e....

-1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 0
E,K

Figure 3. Left panel: Comparison of the total probability of penetration from the first channel to all five open channels sim-
ulated by the Galerkin expansion and Numerov calculations ; dotted and dashed curves are probabilities of penetration of
one particle through one barrier and one particle through a sequence of two barriers, i.e., upper and lower average, respec-
tively. Right panel: The total probability of penetration from the first channels with the energies E1 = −1044.879649,
E2 = −646.1570935, E3 = −342.7919791, E4 = −134.7843058, E5 = −22.13407384 (in K) to all five open channels,
simulated by the Galerkin expansion.

The left panel of Fig. 3 illustrates the comparison of the total probability of penetration from the first
channel to all five open channels simulated by Galerkin expansion and Numerov calculations. One can see that
the position of resonances calculated with accuracy of order of 10−6 by the Galerkin expansion and Numerov
procedure (at steps hx = 0.05, hy = 0.05 with accuracy < 10−3) are in good agreement, the difference in height
is explained by the crudeness of the energy grid used in the latter case. Probabilities of penetration of one
particle through one barrier, one particle through a sequence of two barriers, and one particles with double
mass through one barrier give approximations of upper, lower and average estimations. In the right panel of
Fig. 3 we show the resonance behavior of the total probability of penetration with the transition from the first
channels with the energies E1 = −1044.879649, E2 = −646.1570935, E3 = −342.7919791, E4 = −134.7843058,
E5 = −22.13407384 (in K) to all five open channels, simulated by the Galerkin expansion. The total transmission
probability is seen to demonstrate the resonance behavior. Some peaks are high and narrow, and the position of
peaks corresponding to transitions from different bound states are similar. As the energy of the initial excited
state increases, the transmission peaks demonstrate a shift towards higher energies, the set of peak positions
keeping approximately the same as for the transitions from the ground state and the peaks just replacing each
other, like it was observed in the model calculations.16 For example, the left epure shows that the positions of
the 13th and 14th peaks for transitions from the first state coincide with the positions of the 1st and 2nd peaks
for the transitions from the second state, while the right epure shows that the positions of the 25th and 26th
peaks for transitions from the first state coincide with the positions of the 13th and 14th peaks for transitions
from the second state and with the positions of the 1st and 2nd peaks for the transitions from the third state.

One can suppose that a better fit of the Morse potential to the observable upper part of the discrete spectrum
of Be molecule, containing six more Val der Waals bound states, will increase the density of peaks near the
dissociation threshold.17–20 As one can see from right panels of Fig. 2, the diagonal potentials Vjj(y) have shapes
of double barriers and nondiagonal matrix elements Vij have size less then four time. It means that positions
of peaks are real part of energy of the quasistationary states imbedded in continuum that are predominately
localized between double barriers. It is confirmed by behavior of probability density of coefficient functions
χjio(y). The examples from Fig. 4 shows that in the case of resonance transmission the wave functions, depending
on the center-of-mass variable y, are localized in the vicinity of the potential barrier center (y = 0), and in the
case of total reflection the wave functions are localized at the barrier side, on which the wave is incident, and
decrease to zero within the effective range of the barrier action. For the energy values, corresponding to some
of the transmission coefficient peaks in Fig. 3 at within the effective range of barrier potential action the wave
functions demonstrate considerable increase (till 106 times, see Fig. 4) of the probability density in comparison
with the incident unit flux. This is a fingerprint of quasistationary states, which is not a quantitative definition,
but a clear evidence in favour of their presence in the system.21,22
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Figure 5. Left panel: Thermal rate constants vs. temperature: partial ki(T ) (solid curve) and total k̂(T ) (dashed lines) and
their upper (dotted curves) and lower (short dashed) estimations. Right panel: The temperature-dependent activation
energy: partial Eai (T ) (solid curve) and total Ea(T ) (dashed lines) activation energy, and its approximation of lower
(dotted curves) and upper (short dashed) estimations that produced by corresponding upper and lower estimations of
k(T ) of the left panel.

For a quantum particle, the possibility of tunneling makes the concept of activation barrier ill defined and
therefore deviations from Arrhenius behavior may be expected. Normalized total thermal rate constant k̂qn/kqn(0)

have of the form:4,23

k̂qn/kqn(0) =
No∑
i=1

k̂i(T ), k̂i(T ) =
e−ε̃i/T

Qvib
ki(T ), Qvib =

No∑
i=1

e−ε̃i/T , (13)

ki(T ) =
1√
T

∫ Ẽmax
y

0

Wii(Ẽy)e−Ẽy/T dẼy +
1√
T

∫ ∞
Ẽmax

y

Wii(Ẽy)e−Ẽy/T dẼy. (14)

where k̂i(T ) are weighed thermal rate constants, Qvib is vibrational energy counted of the bottom of the Morse
potential and ki(T ) is partial thermal rate constant in initial vibrational state i, Wii(Ẽ) = |T |2ii(Ẽ) is the
total transmission probability for initial state i. Fig. 5a displays the comparison of partial ki(T ) and total
k̂(T ) thermal rate constant vs temperature T and with their upper and lower estimations. Diffusion can still be
approximately described by using a temperature-dependent activation energy, often much lower than the classical
energy barrier. The temperature-dependent activation energy: total Êa(T ) and partial Eai (T ) are defined by

Êa(T ) = − 1
√
βk̂(T )

d
√
βk̂(T )
dβ

, Eai (T ) = − 1√
βki(T )

d
√
βki(T )
dβ

, β = 1/T.

Fig. 5a displays the comparison of partial Eai (T ) and total Êa(T ) activation energy vs temperature T and
with their upper and lower estimations in restricted interval till Tmax = 100K. So, activation energy Ea for
a composite system less then two noninteracted particles. With increasing temperature T contribution of high
energies Ey, will be taking into account.
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Figure 6. a) Eigenenergies En(t) of the instant Hamiltonian depending on time as a parameter t. b) The bound state
probabilities p1(t), p2(t) and the ionization probability pc(t) versus the time t. Here A0 = −15/8, A1 = 15/8, v = 1/2,
x0(t0) = vt0 = −15, and t0 = −30.

3. MODEL II. IONIZATION OF A PÖSCHL-TELLER ATOM

Let us consider simplified model of collision of antiproton (p̄+H) or proton (p+H) on hydrogen atom where
incident nucleus moves by straight line classical trajectory with the velocity v, which describe by the TDSE
on the finite time interval t ∈ [t0, T ] for the two-center problem24 with Pöschl-Teller potentials, similar to the
ionization problem.25 We consider a particular case of a resting well, A0 < 0, and a barrier, A1 > 0, (or a well
at A1 < 0) moving with the velocity v with respect to the resting well in units h̄ = me = 1:

ı
∂ψ(x, t)
∂t

= H(x, t)ψ(x, t),

H(x, t) = −1
2
∂2

∂x2
+

A0

cosh2(x)
+

A1

cosh2(x− x0(t))
, (15)

where H(x, t) is the instant Hamiltonian and x0(t) = vt is the position of the moving barrier center. For numerical
calculation with required accuracy the initial infinite-axis boundary problem is reduced to a sufficiently large
finite interval x ∈ (xmin, xmax) with the boundary and normalization conditions

ψ(xmin, t) = 0, ψ(xmax, t) = 0, ‖ψ(x, t)‖2 =
∫ xmax

xmin

|ψ(x, t)|2dx = 1. (16)

We consider an example of the wave packet evolution in the time interval t ∈ [t0, T ], induced by the barrier
(A1 = 15/8) moving with the velocity v with respect to the motionless well (A0 = −15/8) that supports two
bound states n0 = 2 with the energies E1(t = t0) ∼= EW1 = −9/8 = −1.125 and E2(t = t0) ∼= EW2 = −1/8 =
−0.125.

For v > 0 we choose the initial time t0 and the final time T to correspond to the initial x0(t0) = vt0 = −15
and the final x0(T ) = vT = 15 positions of the moving barrier center with the aim to preserve with required
accuracy the discrete spectrum states supported by the resting well at both t0 and T . We start from the initial
state that corresponds with required accuracy to the ground state supported by the resting well

ψ(x, t0) ∼= ψW1 (x) = N1(coshx)−(
√

1−8A0−1)/2. (17)

Note that in the case A1 +A0 = 0 at t = 0 the potential of the problem (15) is equal to zero on the entire axis and
the instant Hamiltonian H(x, t) at t = 0 has purely continuous spectrum that provides the complete ionization
of the considered quantum system and the capture to the discrete spectrum states during further evolution.

The calculations were performed using the program TIME6T26 within the spatial interval x ∈ (−512, 512),
which was sufficient to avoid reflection from the boundaries within the considered time interval t ∈ [t0, T ]. The

wave functions ψn(x; t) of the discrete spectrum En < 0 and the wave functions ψνE(x; t) ≡ ψ
←→
E (x; t) of the

continuous spectrum E ≥ 0 of the instant Hamiltonian H(x, t) depend on t as a parameter, as follows from Eq.
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(15). They were calculated in the spatial interval x ∈ (xmin, xmax) with the homogeneous third-type boundary
conditions by mean of the modified15 KANTBP program12 using the appropriate asymptotic expressions. The
subscript ν equals→ or← for the positive or negative direction of the final momentum q = ±

√
2E, respectively.

After joining the asymptotic expressions on the entire axis x ∈ (−∞,+∞), these functions satisfy the conventional
relations ∫ +∞

−∞
dx(ψν

′

E (x; t))∗ψνE′(x; t) = (2π)δ(E − E′)δνν′ , (18)∫ +∞

−∞
dx(ψνE(x; t))∗ψn(x; t) = 0, (19)

n0∑
n=1

ψn(x; t)ψn(x′; t) +
∑
ν=→←

∫ +∞

0

dE(ψνE(x; t))∗ψνE(x′; t) = δ(x− x′). (20)

An example of the dependence of eigenenergies En < 0 of the instant Hamiltonian upon the time parameter
t is shown in Fig. 6a. In the vicinity of t = 0 the Hamiltonian is seen to have only one eigenvalue E1 < 0 and at
t = 0 it has only a continuous spectrum.

The probabilities pn(t) and pc(t) of transitions to the bound and continuum states and the energy distribution
of probability pE(t) in the continuous spectrum E ≥ 0 in the above capture and ionization processes are calculated
using the expressions

pn(t) = |tn0(t)|2, tn(t) =
∫ xmax

xmin

dx(ψn(x, t))∗ψ(x, t) (21)
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Figure 7. a) The real part (solid line) and the imaginary part (dashed line) of the wave function; b) the energy distribution
of ionization probability pE(t) at different moments of time t for the fixed values of parameters v = 1/2, A0 = −15/8,
A1 = 15/8 and the initial position of the moving barrier x0(t0) = vt0 = −15, t0 = −30.
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pE(t) =
|t→E (t)|2 + |t←E (t)|2

2π
, t

→←
E (t) =

∫ xmax

xmin

dx(ψ
→←
E (x, t))∗ψ(x, t). (22)

As follows from Eq. (20), they satisfy with the required accuracy the condition at Emax � 1:

n0∑
n=1

pn(t) + pc(t) = 1, pc(t) =
∫ Emax

0

pE(t)dE. (23)

As mentioned above, at t = 0 the effective potential is zero, and the eigenfunctions of the instant Hamiltonian
correspond to the continuous spectrum. Then the effective potential becomes nonzero again and the capture to
the exited and ground states become possible, which is seen from the evolution of probabilities pE(t) and pc(t)
in Figs. 6b and 7. Fig. 7 shows that at t ≥ 1 the maxima of the energy distribution pE∼1 ∼ 0.5 correspond
to the forward and backward ionization waves with similar frequencies. The maxima of pc(t) at t ∼ 4 in Fig.
6b correspond to the maxima of pE∼0.01 ∼ 1 at t = 4 in Fig. 7b and correlate with ionization and capture
processes. With increasing velocity the probability densities of the excited states tend to zero (see Fig. 8). The
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Figure 9. a) The real part (solid line) and the imaginary part (dashed line) of the wave function; b) the energy distribution
of ionization probability pE(T ) for the fixed velocity values v = 0.1, 0.5, 1, 2 at A0 = −15/8, A1 = 15/8.
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Figure 10. The probabilities p1(T ), p2(T ) of the ground and lower excited states in a resting well, the probabilities p∗1(T ),
p∗2(T ) of the ground and lower excited states in a moving well, and the ionization probability pc(T ) versus the inverse
velocity 1/v for the time T = 15/v and the initial time t0 = −15/v, when the position of the barrier center is x0(T ) = 15
and x0(t0) = −15, respectively.

wave function and the distribution of ionization probability pE(t) for some particular values of the velocity are
shown in Fig. 9. As seen from Fig. 9, with increasing v the forward ionization waves become dominant and
their energy increases.

Consider another example of the evolution of the wave packet in the time interval t ∈ [t0, T ], induced by the
barrier (A1 = 3/8) moving with the velocity v with respect to the fixed well (A0 = −3/8), supporting a single
bound state n0 = 1 with energy E1(t = t0) ∼= EW1 = −1/8 = −0.125. Fig. 8 shows that, generally, the velocity
distribution of the probability has the similar structure. Note, that the probability of detecting the system in
the excited states is substantially smaller than that in the ground state.

For two cases discussed above let us consider an example of the wave packet evolution, induced by the well

a) b)
Figure 11. a) The real part (solid line) and the imaginary part (dashed line) of the wave function for three fixed values of
velocity v = 1/2, 2/3, 3/2 at different moments of time t and A0 = A1 = −15/8 .
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Figure 12. The potential curves (a,b) and the wave functions (c) of the ground (gerade g) and excited (ungerade u) states
of the electron at different values of the internuclear distance R. The inset in Fig. (a) shows the dependence of the free
oscillation period upon R. The values of R corresponding to the maxima of ionization probability are shown by vertical
lines.

(A1 = A0), moving with the velocity v, in the time interval t ∈ [t0, T ]. An example of the dependence of
eigenenergies En < 0 and eigenfunctions of the instant Hamiltonian, having also a continuous spectrum, upon
the time parameter t is shown in Fig. 12b,c as a function of R = vt. At t = 0, i.e. at R = 0, the Hamiltonian
is seen to have only one eigenvalue E1(R = 0) < 0 because in this point E2(R = 0) = 0, i.e. second eigenvalue
touch boundary of continuous spectrum and after that go to unphysical sheet of energy. At t > 0 the bound
state corresponding second eigenvalue appears again and its settlement occurs by capture of ionized particles
to discrete spectrum E2(R 6= 0) < 0. Fig. 10 shows the dependence of probabilities p1(T ), p2(T ) of detecting
the system in the ground and first excited states in the resting well and the probabilities p∗1(T ), p∗2(T ) for the
ground and first excited states in the moving well versus the inverse velocity 1/v. The Figure 10 shows that the
probability to remain in the resting well or to go to the moving one is rapidly oscillating at small v, which is
due to multiple reflection of the wave packet from the walls of the wells. The probability of transition to the
continuum is also a rapidly oscillating functions at v → 0 , due to the reflection from the walls of the wells.
There is also a peak at v ∼ 0.5 in the case of A0 = −3/8 and at v ∼ 1.5 in the case of A0 = −15/8, which are
associated with the appearance of the barrier, separating the wells starting from the time t = ln(2 +

√
3)/v.

Figure 11 shows the time dependence of the wave function ψ(x, t) at the velocities of the well v = 1/2,
v = 2/3, and v = 3/2, when the wave packet passes to the moving well, remains localized in the resting well,
and is partially converted into the continuum, respectively. At low velocities the wave packet is seen to oscillate.
At high velocities the mutual influence of the wells becomes negligible, and in the limit v → ∞ the scattering
becomes purely elastic.

The considered models allow the description of composite systems in transient effective potentials that may
cause not only the excitation and ionization processes, but also the capture to bound states. The models are
advantageous for demonstrating the efficiency of computational unitary schemes, implemented in the applied
program TIME6.

4. MODEL III. IONIZATION DYNAMICS OF A MOLECULAR ION

Now consider a simplified one-dimensional model of molecular ion with two nuclei fixed at the points ±R/2,
attracting an electron at the point x via a superposition of two identical PöschlTeller (PT) potentials. The
system is affected by the electric field of a laser pulse. The Scrödinger equation describing the ionization
dynamics of this model (in atomic units) reads

ı
∂ψ(x, t)
∂t

= H(x, t)ψ(x, t), (24)

H(x, t) = H0(x) + V (x, t)

H0(x) = −1
2
∂2

∂x2
− V0

cosh2((x−R/2)/L)
− V0

cosh2((x+R/2)/L)
,
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Here V (x, t) is the potential induced by the laser pulse

V (x, t) = F0f(t) sin(ωLt), (25)

with the amplitude F0 and the frequency ωL. We choose the envelope function f(t) of the laser pulse in the form
f(t) = sin2(πt/Tpulse), where Tpulse is the pulse duration.

The BVP for Eq. (24) was solved with the boundary and normalization conditions (16) and the initial
state ψ(x, 0) = (ψg + ψu)/

√
2 localized in the right-hand well of the double-well potential. The finite spatial

interval x ∈ (−128, 128) was sufficient to avoid reflection from the boundaries within the considered time interval
t ∈ [t0, T ] using the program TIME6T.26

Figures 12–15 present the results of calculations performed using the following parameters. The magnitude
and the width of the PT potentials were V0 = 2.216Eh and L = 2/3aB , respectively, where Eh ≡ Ry =
h̄2/2/me/aB and aB = h̄2/me/e

2 is the Bohr radius. The laser frequency ωL = 0.16546 corresponded to the
wavelength λ = 300 nm and the period Toc = 2π/ωL = 37.973; the pulse duration was taken to be Tpulse = 32Toc.

For the fixed values of the parameter R > R0 ≈ 0.1 the Hamiltonian H0(x;R) has two eigenvalues, cor-
responding to the ground and excited state that vary with the distance between wells as shown in Fig. 12a.
The eigenstates possess the symmetry with respect to permutations of identical nuclei, namely, the ground state
is even (gerade, g) and the excited state is odd (ungerade, u). With respect to the center of symmetry the
wave function is symmetric for g state and antisymmetric for u state. The wider is the barrier, the smaller
is the separation between the energy levels. In the process of evolution, the wave function of the initial state
ψa(x) = (ψg +ψu)/

√
2 localized in the well (a) turns into the the wave function ψb(x) = (ψg−ψu)/

√
2, localized

in the well (b), and then returns to the initial state. In the absence of external fields the evolution of the initial
state ψ(x, 0) = ψa(x) (Fig. 13 at R = 2.9) can be described by the formula

ψ(x, t) =
1
2

(ψg(t) + ψu(t)) =
1
2

(ψg exp(iEgt) + ψu(t) exp(iEut))

=
exp(iEgt)

2
[ψa(x)(1 + exp(i(Eu − Eg)t) + ψb(x)(1− exp(i(Eu − Eg)t)].

The period of free oscillation T ≡ Tgu = 2π/(Eu − Eg) versus the distance R is shown in the inset of Fig. 12a.
At R = 2.9 the frequency of free oscillation is equal to the wave frequency.

In Fig. 14 the probability P+ of the particle localization in the right-hand well and the total discrete spectrum
probability P at Tfin = 36Toc are shown as functions of R (left) and the free oscillation frequency ωgu (right).

Figure 13. Temporal dynamics of the wave function without the laser pulse (left) and with the laser pulse (right). R = 2.9,
the line plots the laser pulse f(t) sin(ωLt), ωL = 0.16546, F0 = 0.05 a.u. Note that the laser frequency is close to the
resonance 1:1, i.e. ωL = ωgu.
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Figure 14. The probability P+ of the particle localization in the right-hand well and the total discrete spectrum probability
P at the time Tfin = 36Toc as functions of the internuclear distance R (left) and the free oscillation frequency ω (right).

From Fig. 14 the probability of electron localization in the initial state ψa(x, Tfin) at the moment of time Tfin at
R� 10 is seen to be a fast oscillating function of R. The total discrete spectrum probability P is a slow varying
function everywhere except the interval R ∈ (2.2, 4.2), in which P has four peaks. These peaks are clearly seen
in the right panel of Fig. 14. The values of R corresponding to the resonance periods Tgu and frequencies ωgu
are indicated by straight lines in the inset of Fig. 12a. The greatest peak is located in the vicinity of R ≈ 2.86 for
which the free oscillation frequency ωgu ≈ 0.173 (Tgu ≈ 36.2) is approximately equal to the laser pulse frequency
ωL = 0.16546, ωgu ≈ ωL, and the second peak is located at R ≈ 2.33, for which the free oscillation frequency
ωgu ≈ 0.282 (Tgu ≈ 22.2) is approximately by 3/2 times larger than ωL, ωgu/ωL ≈ 3/2. Thus, the resonances
1 : 1 (the evolution of which is shown in Fig. 13) and 3 : 2 are observed, the small deviations being due to the
small pulse duration and the variation of its envelope.

The time dependence of the probability P+ of the particle localization in the right-hand well and of the total

Figure 15. The probability P+ of the particle localization in the right-hand well and the total discrete spectrum probability
P as functions of time t at different values of R.
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discrete spectrum probability P at different values of R is shown in Fig. 15. It is seen that at large distance
between the wells the period of free oscillation is large, and the ionization occurs from a definite well. Decreasing
the separation between the wells gives rise to the additional resonance ionization when the resonance frequency
conditions are satisfied and the capture form the continuum otherwise.

5. CONCLUSIONS

The effect of quantum transparency in resonance tunneling of diatomic molecules through repulsive potential
barriers is demonstrated and shown to lead to quantum diffusion by the example of diatomic low-dimensional
model systems, coupled via realistic molecular potentials. The proposed models and approach, the quantum
transparency effect itself and the developed software can find further applications in barrier heavy-ion reactions
and molecular quantum diffusion. They can be also applied in the studies of laser control of molecular tunneling,
aimed at enhancing the rate of chemical reactions and quantum diffusion.
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Abstract
A new efficient method for calculating the photoionization of a hydrogen atom
in a strong magnetic field is developed based on the Kantorovich approach to the
parametric boundary problems in spherical coordinates using the orthogonal
basis set of angular oblate spheroidal functions. The progress as compared
with our previous paper (Dimova M G, Kaschiev M S and Vinitsky S I 2005
J. Phys. B: At. Mol. Opt. Phys. 38 2337–52) consists of the development of
the Kantorovich method for calculating the wavefunctions of a continuous
spectrum, including the quasi-stationary states imbedded in the continuum.
Resonance transmission and total reflection effects for scattering processes of
electrons on protons in a homogenous magnetic field are manifested. The
photoionization cross sections found for the ground and excited states are
in good agreement with the calculations by other authors and demonstrate
correct threshold behavior. The estimates using the calculated photoionization
cross section show that due to the quasi-stationary states the laser-stimulated
recombination may be enhanced by choosing the optimal laser frequency.

PACS numbers: 31.15.Ja, 31.15.Pf, 34.50.Pi, 32.80.Fb

1. Introduction

In recent decades the dynamics of transient processes in magnetic traps, such as excitation,
de-excitation, ionization, recombination of ions and atoms, became a subject of intense
experimental and theoretical studies [1–4]. Recently a new mechanism of formation of
metastable positive-energy atoms via quasi-stationary states [5] due to the magnetic field
was revealed. The most complicated case when the magnetic energy is comparable to that
of Coulomb interaction requires new approaches to provide really stable numerical schemes

1751-8113/07/3811485+40$30.00 © 2007 IOP Publishing Ltd Printed in the UK 11485
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for the states of both discrete and continuous spectra, including the quasi-stationary states,
analogous to the well-known doubly excited states of a helium atom [6–10]. In the known
approaches serious problems arise, for example, concerned with reproducing true threshold
behavior in the variational complex rotation method [8, 11] or with constructing efficient and
stable numerical schemes [11]. In doing so, this method does not describe the difference in
physical asymptotics of scattering states for a different choice of a gauge of magnetic field
[12]. The R-matrix approach [13–16] using the combined nonorthogonal basis of Landau and
Sturmian functions in both cylindrical and spherical coordinates leads to the ill-conditioned
matrix problems [6, 17]. The method of diabatic sector basis functions requires a huge interval
for the integration of the closed set of radial equations, because the overlap matrix between the
pure physical asymptotic solutions in cylindrical coordinates and the numerical basis functions
at large r can be calculated only numerically [7, 10]. The Kantorovich method (KM) [18]
has been shown to provide strong mathematical background for consequent development of
the adiabatic approach in spherical coordinates [19] using the orthogonal basis set of angular
oblate spheroidal functions (AOSF) [20]. This approach yields stable calculation schemes for
boundary problems, however, heretofore it has been elaborated only for the discrete spectrum
problem [9].

In the present paper we develop the KM (i.e., the reduction of the boundary problem for
elliptical partial differential equation in a 2D domain to a regular boundary problem for a set
of ordinary second-order differential equations with variable coefficients with the boundary
conditions of the third kind) in the form, appropriate for R-matrix calculations of the continuous
spectrum and photoionization of atomic hydrogen in a strong magnetic field [21]. The solution
depending on the radial variable r and the angular variable η = cos θ = z/r with fixed values
of the magnetic quantum number m and the z-parity σ is expanded using the basis set of the
AOSF, which is orthogonal at fixed values of the radial variable. A matter of principle in the
implementation of KM is how to calculate the matrix of the variable coefficients, expressed as
angular integrals involving the derivatives of the angular functions with respect to a parameter,
keeping the accuracy the same as for the angular functions themselves. This is achieved by
calculating the mentioned derivatives as solutions of the inhomogenous boundary problem
that results from differentiation of the ordinary second-order differential equation for the
spheroidal functions with respect to the parameter and the corresponding algebraic eigenvalue
problem, for which a stable symbolic-numerical algorithm is developed [22, 23]. The stability
of the computational scheme is achieved using the fact that at small r (in the vicinity of pair
collision point) the angular functions turn into the associated Legendre polynomials, while at
large r near η = ±1 they turn into the associated Laguerre functions [24, 25]. This makes it
possible to construct asymptotic expansions in powers of r−2, necessary for computer-accuracy
calculation of the basis set of functions at all values of the parameter r. Substantial economy
of computer resource in the numerical solution of the boundary problem for the set of radial
equations is achieved by decreasing the integration interval 0 � r � rmax. With this aim in the
present paper for large r � rmax new asymptotic expansions of the fundamental solutions of
the radial equations are constructed in the basis of linear combinations of Coulomb regular and
irregular functions and their derivatives. The corresponding matrix of asymptotic expansions
of fundamental solutions is derived in the analytic form and is related to the overlap matrix
between the physical asymptotic form of fundamental solutions in the cylindrical coordinates,
z = r cos θ, ρ = r sin θ and the asymptotic form of the basis functions of the independent
variable η = cos θ at large values of r. The presented recurrence relations for expressing this
matrix in the analytic form are the key to calculating the reaction matrix K via the matrix of
logarithmic derivative of the radial solution in the joining point of numerical and asymptotic
solutions in the inner and outer regions. The capabilities of the elaborated method and the
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Figure 1. Projections of cylindrical and spherical coordinate systems in the zx plane for a hydrogen
atom or scattering of an electron with a proton in a homogenous magnetic field �B = (0, 0, B).

computational scheme are demonstrated by the example of photoionization cross section of
a hydrogen atom in the magnetic field. Using the previously derived relation between the
photoionization cross section and the laser-induced radiative recombination rate, it is shown
that the latter can be increased by tuning the laser frequency to resonances that arise due to
quasi-stationary states.

The paper is organized as follows. In section 2 the 2D-eigenvalue problem for the
Schrödinger equation, describing a hydrogen atom in an axially symmetric magnetic field, is
considered in the cylindrical coordinates together with the appropriate classification of states.
The reduction of the 2D-eigenvalue problem to a 1D-eigenvalue problem for a set of closed
longitude equations via both the Kantorovich and Galerkin methods is described briefly. It
is shown that the Galerkin expansion follows from the Kantorovich expansion at z → ±∞.
In section 2.3 the relation between the function with given parity and the function having the
physical scattering asymptotic form in the cylindrical coordinates is established. In section 3
the same problem as in section 2 is considered in the spherical coordinates. The reduction of
the 2D-eigenvalue problem to a 1D-eigenvalue problem for a set of closed radial equations via
four steps of the KM is described briefly in section 3.1. The asymptotic forms of the matrix
element and radial solutions are considered in sections 3.2–3.5. The asymptotic expressions
using regular and irregular Coulomb functions needed to find the solutions and the reaction
matrix by means of the R-matrix method are presented in section 3.6. The correspondence
of asymptotic total wavefunctions at large r and |z| is shown explicitly in section 3.7. The
method is applied to the ionization of low-lying states of a hydrogen atom in section 4. In
section 5 the numerical results obtained within the framework of the finite-element method
are discussed. The estimates of the laser-induced recombination rate based on the calculated
photoionization cross sections are also presented. In conclusion we outline the perspectives
of further applications of this approach. The detailed analysis of asymptotic calculations is
given in appendix A, B and C.

2. Statement of the problem in cylindrical coordinates

In the cylindrical coordinates (ρ, z, ϕ) (see figure 1) the wavefunction

�̂(ρ, z, ϕ) = �(ρ, z)
exp(ımϕ)√

2π
(1)
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of a hydrogen atom in an axially symmetric magnetic field �B = (0, 0, B) satisfies the 2D
Schrödinger equation

− ∂2

∂z2
�(ρ, z) +

(
Âc − 2Z√

ρ2 + z2

)
�(ρ, z) = ε�(ρ, z), (2)

Âc = − 1

ρ

∂

∂ρ
ρ

∂

∂ρ
+

m2

ρ2
+ mγ +

γ 2ρ2

4
, (3)

in the region �c: 0 < ρ < ∞ and −∞ < z < ∞. Here m = 0,±1, . . . is the
magnetic quantum number, γ = B/B0, B0 ∼= 2.35 × 105T is a dimensionless parameter
which determines the field strength B. We use the atomic units (au) h̄ = me = e = 1 and
assume the mass of the nucleus with a charge Z to be infinite. In these expressions ε = 2E

is the twice energy (expressed in Rydbergs, 1 Ry = (1/2) au) of the bound state |mσ 〉 with
fixed values of m and z-parity σ = ±1 and �(ρ, z) ≡ �mσ (ρ, z) = σ�mσ (ρ,−z) is the
corresponding wavefunction. The boundary conditions in each mσ subspace of the full Hilbert
space have the form

lim
ρ→0

ρ
∂�(ρ, z)

∂ρ
= 0, for m = 0, and �(0, z) = 0, for m �= 0, (4)

lim
ρ→∞ �(ρ, z) = 0. (5)

The wavefunction of the discrete spectrum obeys the asymptotic boundary condition.
Approximately this condition is replaced by the boundary condition of the first type at large,
but finite |z| = zmax 	 1, namely,

lim
z→±∞ �(ρ, z) = 0 → �(ρ,±zmax) = 0. (6)

These functions satisfy the additional normalization condition∫ zmax

−zmax

∫ ∞

0
|�(ρ, z)|2ρ dρ dz = 1. (7)

The asymptotic boundary condition for the continuum wavefunction will be considered in
section 2.3.

2.1. Kantorovich expansion

Consider a formal expansion of the partial solution �Emσ
i (ρ, z) of equations (2)–(5),

corresponding to the eigenstate |mσi〉, expanded in the finite set of one-dimensional basis
functions

{
�̂m

j (ρ; z)
}jmax

j=1

�Emσ
i (ρ, z) =

jmax∑
j=1

�̂m
j (ρ; z)χ̂

(mσi)
j (E, z). (8)

In equation (8) the functions χ̂(i)(z) ≡ χ̂(mσ i)(E, z), (χ̂(i)(z))T = (χ̂
(i)
1 (z), . . . , χ̂

(i)
jmax

(z))

are unknown and the surface functions Φ̂(ρ; z) ≡ Φ̂
m
(ρ; z) = Φ̂

m
(ρ;−z), (Φ̂(ρ; z))T =

(�̂1(ρ; z), . . . , �̂jmax(ρ; z)) form an orthonormal basis for each value of the variable z which
is treated as a parameter.
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In the Kantorovich approach the wavefunctions �̂j (ρ; z) and the potential curves Êj (z)

(in Ry) are determined as the solutions of the following one-dimensional parametric eigenvalue
problem (

Âc − 2Z√
ρ2 + z2

)
�̂j (ρ; z) = Êj (z)�̂j (ρ; z), (9)

with the boundary conditions

lim
ρ→0

ρ
∂�̂j (ρ; z)

∂ρ
= 0, for m = 0, and �̂j (0; z) = 0, for m �= 0, (10)

lim
ρ→∞ �̂j (ρ; z) = 0. (11)

Since the operator in the left-hand side of equation (9) is self-adjoint, its eigenfunctions are
orthonormal

〈�̂i(ρ; z)|�̂j (ρ; z)〉ρ =
∫ ∞

0
�̂i(ρ; z)�̂j (ρ; z)ρ dρ = δij , (12)

where δij is the Kronecker symbol. Therefore, we transform the solution of the above problem
into the solution of an eigenvalue problem for a set of jmax ordinary second-order differential
equations that determines the energy ε and the coefficients χ̂(i)(z) of expansion (8)(

−I
d2

dz2
+ Û(z) + Q̂(z)

d

dz
+

dQ̂(z)

dz

)
χ̂(i)(z) = εiIχ̂(i)(z). (13)

Here I, Û(z) = Û(−z) and Q̂(z) = −Q̂(−z) are the jmax × jmax matrices whose elements are
expressed as

Ûij (z) = Êi(z) + Êj (z)

2
δij + Ĥ ij (z), Iij = δij ,

Ĥ ij (z) = Ĥ ji(z) =
∫ ∞

0

∂�̂i(ρ; z)

∂z

∂�̂j (ρ; z)

∂z
ρ dρ, (14)

Q̂ij (z) = −Q̂ji(z) = −
∫ ∞

0
�̂i(ρ; z)

∂�̂j (ρ; z)

∂z
ρ dρ.

The discrete spectrum solutions obey the asymptotic boundary condition and the
orthonormality conditions

lim
z→±∞ χ̂(i)(z) = 0 → χ̂(i)(±zmax) = 0,

∫ zmax

−zmax

(χ̂(i)(z))T χ̂(j)(z) dz = δij . (15)

The application of this approach to the calculation of low-excited bound states of the hydrogen
atom for γ > 1 and −m = 0, . . . , 10 will be presented in the forthcoming paper [26] for
jmax ∼ 10, while the cases of laboratory fields of γ ∼ 6 T and −m < 150 were considered
in [27].

2.2. Galerkin expansion

Consider a formal expansion of the partial solution �Emσ
i (ρ, z) of equations (2)–(5)

corresponding to the eigenstate |mσi〉, in terms of the finite set of one-dimensional basis
functions

{
�̃m

j (ρ)
}jmax

j=1

�Emσ
i (ρ, z) =

jmax∑
j=1

�̃m
j (ρ)χ̃

(mσi)
j (E, z). (16)
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In the Galerkin approach the wavefunctions �̃j (ρ) = �̃m
j (ρ) and the potential curves Ẽj (in

Ry) are determined as the solutions of the following one-dimensional eigenvalue problem

Âc�̃j (ρ) = Ẽj �̃j (ρ), (17)

with the boundary conditions

lim
ρ→0

ρ
∂�̃j (ρ)

∂ρ
= 0, for m = 0, and �̃j (0) = 0, for m �= 0, (18)

lim
ρ→∞ �̃j (ρ) = 0. (19)

The above eigenvalue problem has the exact solution at fixed m, normalized like (12)

�̃j (ρ) =
√

γNρ!

(Nρ + |m|)! exp

(
−γρ2

4

)(
γρ2

2

) |m|
2

L
|m|
Nρ

(
γρ2

2

)
,

Ẽj = γ (2Nρ + |m| + m + 1),

(20)

where Nρ = j − 1 is the transversal quantum number and L
|m|
Nρ

(x) is the associated Laguerre
polynomial [20]. Note that the Galerkin expansion follows from the Kantorovich expansion
at z → ±∞, i.e.,

�̃j (ρ) = lim
z→±∞ �̂j (ρ; z), lim

z→±∞ Êj (z) = Ẽj = εth
mj (γ ) = γ (2Nρ + |m| + m + 1). (21)

Therefore, we transform the solution of the above problem into the solution of an eigenvalue
problem for a set of jmax ordinary second-order differential equations that determines the
energy ε and the coefficients χ̃(i)(z) of expansion (16)(

−I
d2

dz2
+ Ũ(z)

)
χ̃(i)(z) = εiIχ̃(i)(z), (22)

and the matrix Ũ(z) = Ũ(−z) is expressed as

Ũij (z) = Ẽi + Ẽj

2
δij −

∫ ∞

0
�̃i(ρ)

2Z√
ρ2 + z2

�̃j (ρ)ρ dρ. (23)

The discrete spectrum solutions obey the asymptotic boundary condition and the
orthonormality condition

lim
z→±∞ χ̃(i)(z) = 0 → χ̃(i)(±zmax) = 0,

∫ zmax

−zmax

(χ̃(i)(z))T χ̃(j)(z) dz = δij . (24)

The application of this approach to the calculation of bound states of the hydrogen atom for
γ > 1 is well known in [28]. The calculation of photoionizations of hydrogen in a strong
magnetic field of B ∼ 600–2000 T was considered within the frameworks of the multichannel
quantum defect theory [29], while for the cases of laboratory fields of B ∼ 6 T such a type of
calculations is of course not practicable, because jmax ∼ 200.

2.3. Relation between the parity functions and the functions having physical scattering
asymptotic form in cylindrical coordinates

The asymptotic form of the coefficients χ̃(n)(z) of expansion (16) (or χ̂(n)(z) of expansion (8))
with fixed m, σ and ε = 2E for the nth solution in open channels is

χEmσn′n(z → ±∞) =




a+1n′n√
pn′

cos

(
pn′z +

Z

pn′

z

|z| ln(2pn′ |z|) +
z

|z|δ+1n

)
, σ = +1,

a−1n′n√
pn′

sin

(
pn′z +

Z

pn′

z

|z| ln(2pn′ |z|) +
z

|z|δ−1n

)
, σ = −1,

(25)
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(a) (b)

Figure 2. Schematic diagrams of the continuum spectrum states’ waves having the asymptotic
form: (a) ‘incident wave + outgoing wave’, (b) ‘incident wave + ingoing wave’.

where pn = √
2E − εth

mn � 0 and n, n′ = 1, . . . , No, δσn = δσ
n + δc

n − (σ + 1)π/4 are the phase
shifts, δσ

n and δc
n are the eigenchannel short-range and Coulomb phase shifts, aσn′n = Cσ

n′n are
the amplitudes or mixed parameters defined in section 4 and No = max2E�εth

mn
n is the number

of open channels. Equation (25) may be rewritten in the matrix form, so that

χEσ (z → ±∞) =







1

2
X(+)(z)A+1 +

1

2
X(−)(z)A∗

+1, σ = +1,

1

2ı
X(+)(z)A−1 − 1

2ı
X(−)(z)A∗

−1, σ = −1,

, z > 0,




1

2
X(+)(z)A∗

+1 +
1

2
X(−)(z)A+1, σ = +1,

1

2ı
X(+)(z)A∗

−1 − 1

2ı
X(−)(z)A−1, σ = −1,

, z < 0,

(26)

where coefficients of matrices X(±)(z) and A±1 take the form

X
(±)
n′n (z) = p

−1/2
n′ exp

(
±ıpn′z ± ı

Z

pn′

z

|z| ln(2pn′ |z|)
)

δn′n, (27)

Aσn′n = aσn′n exp(ıδσn). (28)

On the other hand, the function that describes the incidence of the particle and its scattering,
having the asymptotic form ‘incident wave + outgoing wave’ (see figure 2(a)), is

χ
(+)
Ev̂(z → ±∞) =




{
X(+)(z)T̂, z > 0,

X(+)(z) + X(−)(z)R̂, z < 0,
, v̂ =→,{

X(−)(z) + X(+)(z)R̂, z > 0,

X(−)(z)T̂, z < 0,
, v̂ =←,

(29)

where T̂ and R̂ are the transmission and reflection amplitude matrices, T̂†T̂ + R̂†R̂ = Ioo, v̂

denotes the initial direction of the particle motion along the z axis and Ioo is the unit No × No

matrix. Note that due to the symmetry of the scattering potential the transmission and reflection
coefficients are independent of the direction of the incident wave vector.

This wavefunction may be presented as a linear combination of the solutions having
positive and negative parities:

χ
(+)

E
→←(z) = χE,+1(z)B+1 ± ıχE,−1(z)B−1. (30)

It is easy to show that Bσ = [A∗
σ ]−1, and T̂ and R̂ are defined by

T̂ = 1
2 (A+1B+1 + A−1B−1) = 1

2 (−Š+1 + Š−1),

R̂ = 1
2 (A+1B+1 − A−1B−1) = 1

2 (−Š+1 − Š−1),
(31)
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where Šσ is the scattering matrix at fixed σ defined by (28). However, to calculate the
ionization cross section it is necessary to use the function having the reverse asymptotic form
‘incident wave + ingoing wave’ (see figure 2(b)), that is

χ
(−)
Ev̂ (z → ±∞) =




{
X(+)(z) + X(−)(z)R̂†, z > 0,

X(+)(z)T̂†, z < 0,
, v̂ =→,{

X(−)(z)T̂†, z > 0,

X(−)(z) + X(+)(z)R̂†, z < 0,
, v̂ =←,

(32)

or

χ
(−)

E
→←(z) = χE,+1(z)B

∗
+1 ± ıχE,−1(z)B

∗
−1. (33)

Note that
(
χ

(−)

E
→←(z)

)∗ = χ
(+)

E
←→(z). The functions are normalized so that

jmax∑
n′′=1

∫ ∞

−∞

(
χ

(±)
E′mv̂′n′′n′(z)

)∗
χ

(±)
Emv̂n′′n(z) dz = 2πδ(E′ − E)δv̂′v̂δn′n. (34)

The Ŝ-matrix may be composed of the transmission and reflection amplitudes

Ŝ =
(

T̂ R̂
R̂ T̂

)
. (35)

This matrix is unitary, since T̂†T̂ + R̂†R̂ = Ioo and R̂†T̂ + T̂†R̂ = 0. These conditions will
be used to check the accuracy of numerical multichannel calculations of continuous spectrum
wavefunctions in section 5.

To calculate the ionization it is convenient to use the function renormalized to δ(E′ − E),
i.e., divided by

√
2π :

|Ev̂mNρ〉 = exp(ımϕ)

2π

jmax∑
n′=1

�̃n′(ρ)χ̃
(−)
Emv̂n′n(z) (36)

or

|Ev̂mNρ〉 = exp(ımϕ)

2π

jmax∑
n′=1

�̂n′(ρ; z)χ̂
(−)
Emv̂n′n(z), (37)

where Nρ = n − 1. The expression for the cross section of ionization by the light linearly
polarized along the axis z is

σd
Nlm(ω) = 4π2αω

No−1∑
Nρ=0

∑
v̂

|〈Ev̂mNρ |z|Nlm〉|2a2
0 . (38)

In the above expressions ω = E − ENlm is the frequency of radiation, ENlm is the energy of
the initial bound state |Nlm〉 specified by the spherical quantum numbers N, l,m defined in
section 3, α is the fine-structure constant, a0 is the Bohr radius.

For recombination the wavefunction should be renormalized to one particle per unit length
in the incident wave

|vmNρ〉 = √
pn

exp(ımϕ)√
2π

jmax∑
n′=1

�̃n′(ρ)χ̃
(+)
Emv̂n′n(z) (39)

or

|vmNρ〉 = √
pn

exp(ımϕ)√
2π

jmax∑
n′=1

�̂n′(ρ; z)χ̂
(+)
Emv̂n′n(z), (40)
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where v = v̂pn and Nρ = n − 1. The expression for the rate of recombination induced by
the light linearly polarized along the axis z for the particle, initially moving in the channel Nρ

with the velocity v has the form

λrec
NNρ

(v) = 4π2αI

N−1∑
l=0

0∑
m=−l

|〈Nlm|z|vmNρ〉|2δ(E − ENlm − ω)a2
0, (41)

I being the intensity of the incident light.
For the light circularly polarized in the plane xOy the above expressions read as

σ
p

Nlm(ω) = 4π2αω

No−1∑
Nρ=0

∑
v̂

|〈Ev̂m ± 1Nρ |�e±�r|Nlm〉|2a2
0, (42)

λrec
NNρ

(v) = 4π2αI

N−1∑
l=0

0∑
m=−l

|〈Nlm ± 1|�e±�r|vmNρ〉|2δ(E − ENlm − ω)a2
0, (43)

where the complex unit vectors are �e± = 1√
2
�i ± ı√

2
�j .

3. Statement of the problem in spherical coordinates

In the spherical coordinates (r, θ, ϕ) (see figure 1) equation (2) can be rewritten as [31](
− 1

r2

∂

∂r
r2 ∂

∂r
+

1

r2
Â(p) − 2Z

r

)
�(r, η) = ε�(r, η) (44)

in the domain �: 0 < r < ∞ and −1 < η = cos θ < 1. Here Â(p) is the parametric
Hamiltonian

Â(p) = − ∂

∂η
(1 − η2)

∂

∂η
+

m2

1 − η2
+ 2pm + p2(1 − η2), (45)

p = γ r2/2 and �(r, η) ≡ �mσ (r, η) = σ�mσ (r,−η). The sign of z-parity σ = (−1)Nη is
defined by the number of nodes Nη of the solution �(r, η) as a function of η. We will also use
the scaled radial variable r̂ = r

√
γ , the effective charge Ẑ = Z/

√
γ and the scaled energy

ε̂ = ε/γ or Ê = E/γ . Practically it means replacing γ with 1 and multiplying Z by 1/
√

γ

and ε or E by 1/γ in all equations above.
The boundary conditions in each mσ subspace of the full Hilbert space have the form

lim
η→±1

(1 − η2)
∂�(r, η)

∂η
= 0, for m = 0, and �(r,±1) = 0, for m �= 0,

(46)

lim
r→0

r2 ∂�(r, η)

∂r
= 0. (47)

The wavefunction of the discrete spectrum obeys the asymptotic boundary condition.
Approximately this condition is replaced by the boundary condition of the first type at large,
but finite r = rmax, namely,

lim
r→∞ r2�(r, η) = 0 → �(rmax, η) = 0. (48)
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Figure 3. Profiles of the even �i ≡ �mσ=+1(η; r) and odd �i ≡ �mσ=−1(η; r) basis functions
at m = 0 and γ = 1 for i = 1, 2 in the zx plane.

In the Fano-Lee R-matrix theory [14, 15] the wavefunction of the continuum �(r, η) obeys
the boundary condition of the third type at fixed values of the energy ε and the radial variable
r = rmax

∂�(r, η)

∂r
− µ�(r, η) = 0. (49)

Here the parameters µ ≡ µ(rmax, ε), determined by the variational principle, play the role
of eigenvalues of the logarithmic normal derivative matrix of the solution of the boundary
problem (44)–(47) and (49).

3.1. Kantorovich expansion

Consider a formal expansion of the partial solution �Emσ
i (r, η) of equations (44)–(47) with

conditions (48) and (49), corresponding to the eigenstate |mσi〉, in terms of the finite set of
one-dimensional basis functions {�mσ

j (η; r)}jmax
j=1

�Emσ
i (r, η) =

jmax∑
j=1

�mσ
j (η; r)χ

(mσi)
j (E, r). (50)

In equation (50) the functions χ(i)(r) ≡ χ(mσ i)(E, r), (χ(i)(r))T = (χ
(i)
1 (r), . . . , χ

(i)
jmax

(r))

are unknown and the surface functions Φ(η; r) ≡ Φmσ (η; r) = σΦmσ (−η; r), (Φ(η; r))T =
(�1(η; r), . . . , �jmax(η; r)) form an orthonormal basis for each value of r which is treated as
a parameter (see figure 3).

In the Kantorovich approach the wavefunctions �j(η; r) and the potential curves Ej(r)

(in Ry) are determined as the solutions of the following one-dimensional parametric eigenvalue
problem

Â(p)�j (η; r) = Ej(r)�j (η; r), (51)
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Figure 4. Potential curves Ej (r), j = 1, 2, . . . at m = 0 and γ = 1 for some first even
j = (l − |m|)/2 + 1 (marked by ‘e’) and odd j = (l − |m| + 1)/2 states. Dotted lines display the
asymptotic behavior at large r.

with the boundary conditions

lim
η→±1

(1 − η2)
∂�j (η; r)

∂η
= 0, for m = 0 and �j(±1; r) = 0, for m �= 0. (52)

Since the operator in the left-hand side of equation (51) is self-adjoint, its eigenfunctions are
orthonormal,

〈�i(η; r)|�j(η; r)〉η =
∫ 1

−1
�i(η; r)�j (η; r) dη = δij . (53)

Note that the solutions of this problem with shifted eigenvalues, Ěj (r) = Ej(r) − 2pm,
correspond to the solutions of the eigenvalue problem for the AOSF [20]

A(p)�j (η; r) = Ěj (r)�j (η; r), (54)

where A(p) = Â(p)−2pm. At fixed values σ = ±1 and |m| the eigenfunctions �j(θ; r) are
sought in the form of a series expansion over the normalized associated Legendre polynomials
P

|m|
|m|+s(η) [20] with unknown coefficients c

|m|σ
sj (r),

�j(η; r) =
smax∑

s=(1−σ)/2

c
|m|σ
sj (r)P

|m|
|m|+s(η), (55)

where s is an even (odd) integer at σ = (−1)s = ±1. The calculations of eigenfunctions
�j(θ; r) and of eigenvalues Ei(r) were performed by a special choice of value smax to
achieve a relative computer accuracy using the code POTHMF realizing in FORTRAN [23].
Their plots are presented in figures 3 and 4. For small p the asymptotic behavior of the
eigenvalues Ej(r), j = 1, 2, . . . at fixed values of m and σ is determined by the values of the
orbital quantum number l labeled by a conventional sequences of {s, p, d, f, g, h, i, k, l, . . .} :
Ej(0) = l(l +1), l = 0, 1, . . . , where j = (l −|m|)/2+1 for even states, σ = +1 = (−1)l−|m|

and j = (l − |m| + 1)/2 for odd states, σ = −1 = (−1)l−|m|, defined by �j(η; 0) = P
|m|
l (η).

Taking into account the fact that the number of nodes Nη of the eigenfunction �j(η; r) at fixed
m and σ = (−1)Nη does not depend on the parameter p, we find a one-to-one correspondence
between these sets, i.e., Nη = l − |m|.

For large r the asymptotic behavior of the eigenfunctions �j(η; r) and eigenvalues Ej(r)

at fixed values of m and σ is determined by the value of the transversal quantum number,
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Figure 5. Profiles of the left �i ≡ �m→(η; r) and right �i ≡ �m←(η; r) basis functions at
m = 0 and γ = 1 for i = 1, 2 in the zx plane.

Nρ = j − 1 (see equations (20) and (21) and section 3.4)

�̃j (ρ) = lim
r→∞,|η|∼1

r−1�j(|η|; r),

lim
r→∞ r−2Ej(r) = εth

mj (γ ) = γ (2Nρ + |m| + m + 1).
(56)

The transversal quantum number Nρ , i.e., the number of nodes of the eigenfunction Φmσ (η; r)

in the subinterval 0 < η < 1 or −1 < η < 0, can be expressed via Nη as follows: Nρ = Nη/2
for the even states, σ = +1 and Nρ = (Nη − 1)/2 for the odd states, σ = −1. It means that
the eigenfunctions

Φmv̂(η; r) = Φmσ=+1(η; r) ± Φmσ=−1(η; r)√
2

, (57)

labeled by v̂ =←→ at large r are localized in the vicinity of η = ±1 (i.e., at z → +∞ and
z → −∞) and have Nρ nodes in the subintervals 0 < η < 1 and −1 < η < 0, respectively
(see figure 5). Such asymptotic functions Φmv̂(η; r) correspond to Φ̃m

(ρ) in equations (20)
and (21). Their asymptotic behavior is considered in section 3.4. Taking into account the
above-mentioned correspondence rules between the quantum numbers Nη and Nρ and number
j at fixed values m and σ , we will use the unified number, j , without pointing out explicitly a
concrete type of quantum numbers.

From here on we transform the solution of problem (44) into the solution of an eigenvalue
problem for a set of jmax ordinary second-order differential equations that determine the energy
ε and the coefficients χ(i)(r) of expansion (50) (the radial wavefunctions):

(
−I

1

r2

d

dr
r2 d

dr
+

U(r)

r2
+ Q(r)

d

dr
+

1

r2

dr2Q(r)

dr

)
χ(i)(r) = εiIχ(i)(r), (58)

lim
r→0

r2

(
dχ(i)(r)

dr
− Q(r)χ(i)(r)

)
= 0. (59)
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Here U(r) and Q(r) are jmax × jmax matrices with the elements expressed as

Uij (r) = Ei(r) + Ej(r)

2
δij − 2Zrδij + r2Hij (r),

Hij (r) = Hji(r) =
∫ 1

−1

∂�i(η; r)

∂r

∂�j (η; r)

∂r
dη, (60)

Qij (r) = −Qji(r) = −
∫ 1

−1
�i(η; r)

∂�j (η; r)

∂r
dη.

The calculations of radial coupling matrix elements Hij (r) and Qij (r) were performed by a
special choice of value of matching point rmatch of their asymptotic form from section 3.4 to
achieve a relative computer accuracy using the code POTHMF realizing in FORTRAN [23].
Their plots are presented in figures 6 and 7. The peculiarities of behavior of the plots and the
corresponding asymptotics are considered in section 3.4.
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The discrete spectrum solutions obey the asymptotic boundary condition and the
orthonormality conditions

lim
r→∞ r2χ(i)(r) = 0 → χ(i)(rmax) = 0,

∫ rmax

0
r2(χ(i)(r))T χ(j)(r) dr = δij . (61)

The continuous spectrum solution χ(i)(r) satisfies the third-type boundary condition

dχ(r)

dr
= Rχ(r), r = rmax, (62)

where the nonsymmetrical matrix R is calculated using the method of [21].
Thus, within the framework of the Kantorovich approach the original problem is reduced

to the following steps.

• The calculation of the potential curves Ej(r) and eigenfunctions �j(θ; r) of the spectral
problem (51)–(53) for a given set of r ∈ ωr at fixed values m and γ = 1.

• The calculation of the derivatives ∂Φ(θ; r)/∂r and the corresponding integrals (see (60))
for the radial coupling matrices U(r) and Q(r).

• The calculation of the scaled energies ε̂ and radial wavefunctions χ(i)(r) as solutions
of 1D-eigenvalue problem (58)–(60) with the conditions (61) at fixed m, γ = 1 and the
effective charge Ẑ = Z/

√
γ . Analysis of the convergence of the solutions depending on

the number of channels jmax. Recalculation of the scaled energies into the initial ones
ε = ε̂γ or E = Êγ .

• The calculation of the matrix R and the reaction matrix K (equations (62) and (100)),
corresponding to the radial wavefunctions χ(i)(r), as solutions of 1D-eigenvalue problem
(58)–(60) with the condition (62) at fixed m, γ = 1, the effective charge Ẑ = Z/

√
γ and

the scaled energy ε̂ or Ê. The analysis of the convergence of the solutions depends on the
number of channels jmax.

Taking into account the above rules of correspondence and the asymptotic behavior of
the eigenvalues Ei(r) at large r (see also section 3.4), we can express the values of the
binding energy E via the eigenvalues εi of the problem (58)–(61) numbered by a vibration
quantum number, v = 0, 1, 2, . . ., in ascending order εi = εiv: εi0 < εi1 < εi2 < · · ·, as
E = (

εth
mi(γ ) − εiv

)/
2 (in au), where εth

mσi(γ ) is the true threshold shift (56) or the reduced
one εth

m(γ ) = γ (|m| + m + 1). Then for γ → 0 one can mark eigenvalues εi = εiv by a set
of quantum numbers (NNrmσ), where N is a principal quantum number of a free-hydrogen-
like atom and Nr is an integer that numerates in ascending order the zero-order degenerate
perturbation theory energy, εiv = 2E

(0)
N + 2E

(1)
NNrmσ γ 2 + O(γ 4) at fixed N. The corresponding

zero-order approximation states, |NNrmσ 〉, are determined by a linear combination of free-
hydrogen atom states |Nlm〉 and are labeled by Nr = 0, 2, . . . , 2[(N −1−|m|)/2] for σ = +1
and Nr = 1, 3, . . . , 2[(N − |m|)/2] − 1 for σ = −1. The latter can be marked also by a
set of spherical quantum numbers (Nlm) because of the correspondence of the number of
radial nodes, Nr = N − l − 1, of the free-hydrogen states and the number of changing sign,
[Nr/2], of coefficients of the linear combination |NNrmσ 〉. To show this correspondence
visually, we display in figures 8 and 9, as an example, a comparison of the three-dimensional
plots of the normalized wavefunctions in the zx plane of the free-hydrogen atom spherical
states |Nlm〉 and anisotropic zero-order approximation states |NNrmσ 〉 separated by parity
σ = ±1 for a manifold with N = 9 and m = 0, for which the convergence of the method for
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Figure 8. The three-dimensional plots of the normalized even wavefunctions (σ = +1) in the zx

plane of free-hydrogen atom states |Nlm〉 and zero-order approximation states |NNrmσ 〉 for a
manifold with N = 9 and m = 0.
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Figure 9. Same as in figure 8 but odd wavefunctions (σ = −1).

the energy of states by jmax has been studied in paper [9]. One can see that for anisotropic
states belong to the lower part of the spectrum the so-called vibrational states (with minimum
energy corrections E

(1)
NNrmσ ) are distributed mainly along the z-axis while for anisotropic

states belong to the upper part of the spectrum the so-called rotational states (with maximum
energy corrections E

(1)
NNrmσ ) are distributed mainly across the z-axis. An appearance of

anisotropy of such states in the photoionization cross-section calculations will be shown
explicitly in section 5. Indeed, for γ → 0 it is sufficient to cut jmax � 2[(N − |m|)/2]
in (58)–(61), while for γ → ∞ a diagonal approximation of equations (16) and (8) or an
effective approximation of equations (58)–(61) given in appendix B is sufficient to yield the
known adiabatic classification by [NρNz] or [NρN|z|] with fixed m, σ . Here adiabatic quantum
numbers Nz = 2N|z| + (1 − σ)/2 and N|z| can be determined as a sum of the number of nodes,
Nr , and the number of changing sign of coefficients of the linear combination |NNrmσ 〉, i.e.
N|z| = [(N + 1 − |m| − (1 − σ)/2)/2][(N − |m| − (1 − σ)/2)/2] + [Nr/2].
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3.2. Expansion of the matrix elements at small r

In accordance with [22] the asymptotic values of the potential curves Ej(r), radial matrix
elements Hjj ′(r) and Qjj ′(r) at small r characterized by l = 2j − 2 + |m| for even states
(σ = +1) and l = 2j − 1 + |m| for odd states (σ = −1) are given by expansion in powers of
r with finite l, l′:

Ej(r) = Ē
(0)
j + Ē

(2)
j r2 +

[kmax/4]∑
k=1

r4kĒ
(4k)
j , Hjj ′(r) =

[kmax/4]∑
k=2

r4k−2H̄
(4k−2)
jj ′ ,

Qjj ′(r) =
[kmax/4]∑

k=1

r4k−1Q̄
(4k−1)
jj ′ , r � min(l, l′)γ /2.

(63)

Note that all

Q̄
(4k−1)
jj ′ ≡ 0 and H̄

(4k−2)
jj ′ ≡ 0 if |j − j ′| > 2k. (64)

The calculation was performed using the algorithm implemented in MAPLE up to kmax = 36.
Below we display several first coefficients of the matrix elements expansions:

Ē
(0)
j = l(l + 1), Ē

(2)
j = γm, Ē

(4)
j = γ 2

2

l2 + l − 1 + m2

(2l − 1)(2l + 3)
,

Q̄
(3)
jj+2 = γ 2

2

√
(l + 1)2 − m2

√
(l + 2)2 − m2

√
2l + 1(2l + 3)2

√
2l + 5

,

H̄
(6)
jj = γ 4

2
((16l4 + 32l3 + 248l2 + 232l + 201)m4

+ (−10l2 − 224l4 − 96l5 + 118l − 288l3 − 32l6 − 195)m2 + 16l8 + 64l7

+ 46l + 40l6 − 127l4 − 104l5 + 71l2 − 6l3 − 6)/((2l − 3)(2l − 1)4(2l + 3)4(2l + 5)),

H̄
(6)
jj+4 = −γ 4

√
(l + 1)2 − m2

√
(l + 2)2 − m2

√
(l + 3)2 − m2

√
(l + 4)2 − m2

4
√

2l + 1(2l + 3)2(2l + 5)(2l + 7)2
√

2l + 9
.

(65)

Such asymptotic behavior of the effective potentials allows us to find regular and bound
solutions at r → 0 that satisfied the boundary conditions (59).

3.3. Expansion of the regular solutions in power series

The asymptotics of the regular solutions χ
(io)
j (r) ≡ χjio (r), j = 1, . . . , jmax, io =

1, . . . , No � jmax of equation (58) are sought as expansions in powers of r up to an finite order
kmax :

χjio (r) = cio

kmax∑
k=0

χ
(k)
jio

rµio +k, χ
(0)
j io

= δjio , χ
(k<0)
j io

≡ 0, (66)

where cio are normalized constants, µio is an unknown characteristic parameter. Substituting
expansion (66) into (58) with equations (63)–(65) taken into account, we obtain the following
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system of recurrence relations for the set of the unknown coefficients χ
(k)
jio

:

−(l′ + 1 + µio + k)(µio − l′ + k)χ
(k)
jio

= 2Zχ
(k−1)
j io

− (mγ − ε)χ
(k−2)
j io

−
k∑

s=4

Ē
(s)
j χ

(k−s)
j io

−
k−2∑
s=4

H̄
(s)
jj χ

(k−s−2)
j io

−
k−1∑
s=3

min(jmax,io+[s/4])∑
j ′=max(1,io−[s/4]),j ′ �=j

(2l + 2k − s)Q̄
(s)
jj ′χ

(k−s−1)
j ′io

−
k−2∑
s=4

min(jmax,io+[s/4])∑
j ′=max(1,io−[s/4]),j ′ �=j

H̄
(s)
jj ′ χ

(k−s−2)
j ′io ,

(67)

where the indices l′ and l are defined by

l′ = 2(j − 1) + |m| + (1 − σ)/2, l = 2(io − 1) + |m| + (1 − σ)/2. (68)

As follows from equations (66) and (67) at k = 0, the conventional characteristic equation
gives two roots for the unknown µio : µio = −l − 1 and µio = l. The value µio = −l − 1
corresponds to irregular unbound solutions and is not considered here. The value µio = l

corresponds to the required regular and bound solutions.
Note that the components of the vector

{
χ

(k)
jio

}jmax

j=1 at fixed io in the lhs of equation (67)

is equal to zero if j − io = k. In this case we can put χ
(k)
io+kio

= 0, because this term will
be determined as the leading term of the asymptotic form of the (io + k) th solution. A more
detailed analysis of (67) with the account of (64) shows that the rhs of equation (67) is equal
to zero and all χ

(k)
jio

are equal to zero if |j − io| > k/2.
Thus, the system (67) can be solved sequentially for k = 1, 2, . . . , kmax. Below we

display several first non-zero coefficients of the regular solutions expansions:

χ
(0)
ioio

= 1, χ
(1)
ioio

= − Z

l + 1
, χ

(2)
ioio

= −−2Z2 + (ε − mγ )(l + 1)

2(l + 1)(2l + 3)
,

χ
(3)
ioio

= Z(−2Z2 + (ε − mγ )(3l + 4))

6(l + 1)(l + 2)(2l + 3)
,

χ
(4)
io−2io

= Q̄
(3)
io−2io

(2l + 5)

6(2l + 3)
,

χ
(4)
ioio

= Ē
(4)
io

4(2l + 5)
+

(ε − mγ )2

8(2l + 3)(2l + 5)
+

Z4 − Z2(ε − mγ )(3l + 5)

6(l + 1)(l + 2)(2l + 3)(2l + 5)
,

χ
(4)
io+2io

= Q̄
(3)
io+2io

(2l + 5)

2(2l + 7)
.

(69)

In the case of γ = 0 these coefficients transform into conventional ones for the expansion
of the free regular Coulomb function Fl(r) up to the factor r−1 with a known value of the
coefficient cio (γ = 0) = cl from [20]. The latter gives us the opportunity to estimate the ratio∣∣cio (γ )/cio (0)

∣∣2 of a probability density,
∣∣cio (γ )

∣∣2, extracted from the calculated solution of
equations (58)–(60) with boundary conditions (61) (or (62)) using asymptotic (66) and a free
probability density,

∣∣cio (0)
∣∣2, in the vicinity of r = 0.
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3.4. Asymptotic form of basis functions and matrix elements at large r

Let us describe briefly the evaluation of the matrix elements at large r as expansions in powers
of p−1 till the order of kmax. For this purpose we use the eigenfunctions labeled by v̂ =←→ and
localized at large r in the vicinity of η = ±1 (see figure 3)

Φmσ=±1(η; r) = Φm→(η; r) ± Φm←(η; r)√
2

. (70)

These functions have Nρ ≡ n = 0, 1, 2, . . . , nodes in the subintervals 0 < η < 1
and −1 < η < 0, Nρ = Nη/2 for even states, σ = +1 and Nρ = (Nη − 1)/2 for
the odd states, σ = −1, Nη being the number of nodes of Φmσ (η; r) in the interval
−1 < η < 1 and the parity σ = (−1)Nη . Note that Φm←(η; r) = Φm→(−η; r) and
Φm←(η < 0; r) = Φm→(η > 0; r) = O(exp(−p(1 + |η|)) at r → ∞ and |η| ∼ 1 which will
be used in the construction of the scattering wavefunctions defined by equation (105).

We find the matrix elements expanded in inverse powers of r with finite j = nl − 1, j ′ =
nr − 1 and with the exponential terms omitted [22]

r−2Ej(r) = E
(0)
j +

kmax∑
k=1

r−2kE
(2k)
j , Hjj ′(r) =

kmax∑
k=1

r−2kH
(2k)
jj ′ ,

Qjj ′(r) =
kmax∑
k=1

r−2k+1Q
(2k−1)
jj ′ , r 	 max(nl, nr)γ /2.

(71)

The calculation was performed using the algorithm describing in appendix A and implemented
in MAPLE up to kmax = 8. Below we display the first several coefficients of the potential
curves Ej(r) at fixed m:

E
(0)
j = γ (2n + |m| + m + 1),

E
(2)
j = −2n2 − 2n − 1 − 2|m|n − |m|, (72)

E
(4)
j = (2γ )−1(−4n3 − 6n2 − 4n − 6|m|n2 − 6|m|n − 2m2n − 2|m| − m2 − 1),

and the matrix elements Qjj ′(r),Hjj ′(r):

Q
(1)
jj ′ = (nr − nl)

√
n + 1

√
n + |m| + 1δ|nl−nr |,1,

Q
(3)
jj ′ = (4γ )−1(nr − nl)

√
n + 1

√
n + |m| + 1

(
2(2n + |m| + 2)δ|nl−nr |,1

+
√

n + 2
√

n + |m| + 2δ|nl−nr |,2
)
, (73)

H
(2)
jj ′ = (2n2 + 2n + 2|m|n + |m| + 1)δ|nl−nr |,0

−
√

n + 1
√

n + |m| + 1
√

n + 2
√

n + |m| + 2δ|nl−nr |,2,

H
(4)
jj ′ = γ −1

(
(2n + |m| + 1)(2n2 + 2n + 2|m|n + |m| + 2)δ|nl−nr |,0

+
√

n + 1
√

n + |m| + 1(n2 + 2n + |m|n + |m| + 2)δ|nl−nr |,1
−
√

n + 1
√

n + |m| + 1
√

n + 2
√

n + |m| + 2(2n + |m| + 3)δ|nl−nr |,2
−
√

n + 1
√

n + |m| + 1
√

n + 2
√

n + |m| + 2
√

n + 3
√

n + |m| + 3δ|nl−nr |,3
)
, (74)

where n = min(nl, nr). Note that all Q
(2k+1)
jj ′ ≡ 0 and H

(2k)
jj ′ ≡ 0 if |j − j ′| > k + 1.

Moreover, for second-order coefficients the identity E
(2)
j + H

(2)
jj = 0 takes place, i.e., at large

r the centrifugal terms are eliminated from equation (58). It means that the leading terms
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of the radial solutions χjio (r) have the asymptotic form of the Coulomb functions with zero
angular momentum. If the scaled radial variable r̂ is used, we put γ = 1 and use the effective
charge Ẑ and the scaled energy ε̂ = ε/γ or Ê = E/γ in the above expressions. Note that
the convergence domain of expansions (63) and (71) at small and large r is limited to the
range of avoided crossing of the eigenvalues and maxima of the matrix elements versus r
(see figures 4–7), that correspond to the known branching points in the complex plane of
the parameter p [30]. This remark can be taken into account in the construction of the
corresponding asymptotic solutions. To show explicitly the region where expansion (71)
is valid the asymptotic values of potentials and matrix elements are displayed by dotted
lines in figures 4–7. One can compare them with the corresponding numerical values
calculated as mentioned above by the computer relative accuracy in the finite interval of
the radial variable. The exponentially small corrections improving the convergence can
be calculated by means of the additional series expansion of the solution in the region
D2 = [0, 1 − η2], η2 < η1, η2 = o(p−1/2−ε) [24].

3.5. Asymptotic radial solution with exponential and inverse power series

The radial solutions χ
(io)
j (r) ≡ χjio (r), j = 1, . . . , jmax, io = 1, . . . , No � jmax of

equation (58) at large r without the centrifugal terms (i.e., with zero angular momentum)
have the asymptotic form

χ
(as)
jio

(r) = exp(ıpio r + ıζ ln(2pior) + ıδc
io
)

2r
√

pio

δjio , (75)

where pio is the relative momentum in the channel, ζ ≡ ζio is a Zommerfeld-type parameter,
δc
io

= arg �(1−ıζ ) is the phase defined by the known Coulomb phase shift. The values of these
characteristic parameters will be adapted to find the formal asymptotic solutions expanding
the functions φjio (r) in inverse powers of r:

χjio (r) = φjio (r)χ
(as)
ioio

(r), φjio (r) =
kmax∑
k=0

φ
(k)
jio

r−k. (76)

Substituting expansion (76) into equation (58) and equating the coefficients at the same powers
of r we arrive at the recurrence relations for the unknown coefficients φ

(k)
jio

[22](
p2

io
− 2E + E

(0)
j

)
φ

(k)
jio

+ (2pioζ − 2Z + 2ıpio (k − 1))φ
(k−1)
j io

+ (ζ − 2ı + ık)(ζ − ı + ık)φ
(k−2)
j io

+
k∑

k′=1

(
E

(k′)
j + H

(k′)
jj

)
φ

(k−k′)
j io

=
jmax∑

j ′=1,j ′ �=j

k∑
k′=1

(−2ıpioQ
(k′)
jj ′ + (2k − k′ − 1 − 2ıζ )Q

(k′−1)
jj ′ − H

(k′)
jj ′

)
φ

(k−k′)
j ′io . (77)

From the first three equations of the set (77) for φ
(0)
ioio

, φ
(0)
j0io

, φ
(1)
ioio

we get the leading terms of the
eigenfunction, the eigenvalue of the relative momentum, pio , and the characteristic parameter,
ζ , i.e., the initial data for solving the recurrence equations (77),

φ
(0)
j0io

= δj0io , p2
io

= 2E − E
(0)
io

→ pio =
√

2E − E
(0)
io

, ζ = Z

pio

. (78)

For open channels p2
io

� 0, while for closed channels p2
io

< 0. Suppose there are No � jmax

open channels, i.e., p2
io

� 0 for io = 1, . . . , No and p2
io

< 0 for io = No + 1, . . . , jmax.
Substituting these initial data into the sequent equations of the set (77), we get a step-by-step



Calculation of a hydrogen atom photoionization in a strong magnetic field 11505

procedure for determining the coefficients φ
(k)
jio

till k = kmax. For example, for k = 1 the
coefficients have the form

φ
(1)
j1io

= 2ıpioQ
(1)
j1io

E
(0)
io

− E
(0)
j1

, φ
(1)
ioio

= ı(Z2 + ıZpio )

2p3
io

−
min(jmax,io+1)∑

j1=max(1,io−1),j1 �=io

Q
(1)
ioj1

φ
(1)
j1io

. (79)

Substituting the asymptotic expressions (71) into equation (79), one can express the coefficients
φ

(k)
jio

explicitly via the number of the state (or of the channel) io = no + 1 and the number of
the current equation j = 1, . . . , jmax. Note that if jmax � io + k, then all nonzero terms in the
sums in equations (79) will be included into the evaluation of each nonzero element φ

(k)
jio

of
the order k. The calculation was performed using the algorithm implemented in MAPLE up
to kmax = 15. For example, at jmax � io + k and k = 0, 1 the substitution of (73) into (79)
yields

φ
(0)
ioio

= 1,

φ
(1)
io−1io

= ı
pio

√
no

√
no + |m|

γ
,

φ
(1)
ioio

=
[
ı

Z2

2p3
io

− Z

2p2
io

]
− ı

pio (2no + |m| + 1)

γ
,

φ
(1)
io+1io

= ı
pio

√
no + 1

√
no + |m| + 1

γ
.

(80)

If we use the scaled radial variable r̂ , we put γ = 1 and use the effective charge Ẑ, the
scaled energy ε̂ = ε/γ and the momentum p̂io = pio/

√
γ , (ζ = ζ̂ = Ẑ/p̂io ) in the above

expressions. For r̂max 	 max
(
Ẑ2

/(
2p̂2

io

)
, no

/
2
)

we can use expansion (75) .

3.6. Asymptotic radial solution with Coulomb functions and inverse power series

Now let us consider the asymptotic solution χ
(io)
j (r) ≡ χjio (r), j = 1, . . . , jmax, io =

1, . . . , No � jmax of equation (58) following [32]:

χjio (r) = R
(
pio , r

)
φjio (r) +

dR
(
pio , r

)
dr

ψjio (r), (81)

where R
(
pio , r

) = p
−1/2
io

r−1
(
ıF0

(
pio , r

)
+ G0

(
pio , r

))/
2, F0

(
pio , r

)
and G0

(
pio , r

)
are the

Coulomb regular and irregular functions, respectively [20], that satisfy the condition

G0
(
pio , r

)dF0
(
pio , r

)
dr

− dG0
(
pio , r

)
dr

F0
(
pio , r

) = pio . (82)

The function R
(
pio , r

)
satisfies the differential equation

d2R
(
pio , r

)
dr2

+
2

r

dR
(
pio , r

)
dr

+

(
p2

io
+

2Z

r

)
R
(
pio , r

) = 0. (83)

Substituting function (81) into equation (58), using equation (83) and extracting the coefficients
for the Coulomb function and its derivative, we arrive at an axillary set of two coupled
differential equations with respect to the unknown functions φjio (r)ψjio (r) and the relative
momentum pio [22]. Then we expand the functions φjio (r) and ψjio (r) in inverse powers of r:

φjio (r) =
kmax∑
k=0

φ
(k)
jio

r−k, ψjio (r) =
kmax∑
k=0

ψ
(k)
jio

r−k. (84)
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After substituting expansions (84) into these axillary equations and equating the coefficients
at the same powers of r we arrive at the recurrence relations for the unknown coefficients φ

(k)
jio

and ψ
(k)
jio

:

(
p2

io
− 2E + E

(0)
j

)
φ

(k)
jio

− 2p2
io
(k − 1)ψ

(k−1)
j io

− (k − 2)(k − 3)φ
(k−2)
j io

− 2Z(2k − 3)ψ
(k−2)
j io

+
k∑

k′=1

(
E

(k′)
j + H

(k′)
jj

)
φ

(k−k′)
j io

=
jmax∑

j ′=1,j ′ �=j

k∑
k′=1

[(
(2k − k′ − 3)Q

(k′−1)
jj ′ − H

(k′)
jj ′

)
φ

(k−k′)
j ′io

+
(
2p2

io
Q

(k′)
jj ′ + 4ZQ

(k′−1)
jj ′

)
ψ

(k−k′)
j ′io

]
, (85)

(
p2

io
− 2E + E

(0)
j

)
ψ

(k)
jio

+ 2(k − 1)φ
(k−1)
j io

− k(k − 1)ψ
(k−2)
j io

+
k∑

k′=1

(
E

(k′)
j + H

(k′)
jj

)
ψ

(k−k′)
j io

=
jmax∑

j ′=1,j ′ �=j

k∑
k′=1

[(
(2k − k′ + 1)Q

(k′−1)
jj ′ − H

(k′)
jj ′

)
ψ

(k−k′)
j ′io − 2Q

(k′)
jj ′ φ

(k−k′)
j ′io

]
. (86)

The summation indices jk, k = 0, 1, . . . , kmax possess integer values, except io and jk+1, i.e.,
jk = 1, 2, . . . , jmax, jk �= io, jk �= jk+1. From the first four equations of the set (85) and (86)
for φ

(0)
ioio

, φ
(0)
j0io

, ψ
(0)
ioio

, ψ
(0)
j0io

we get the leading terms of the eigenfunction and eigenvalue of the
relative momentum, pio , i.e., the initial data for solving the recurrence equations (85) and (86),

φ
(0)
j0io

= δj0io , ψ
(0)
j0io

= 0, p2
io

= 2E − E
(0)
io

, (87)

that correspond to the leading term of χjio (r) satisfying the asymptotic expansion (75) at large
r. Substituting these initial data into equations (85) and (86), we get a step-by-step procedure
for the coefficients φ

(k)
jio

and ψ
(k)
jio

till k = kmax. For example, for k = 1 these coefficients have
the form

φ
(1)
j1io

= 0, ψ
(1)
j1io

= 2Q
(1)
j1io

E
(0)
io

− E
(0)
j1

,

φ
(1)
ioio

= 0, ψ
(1)
ioio

= −
min(jmax,io+1)∑

j0=max(1,io−1),j0 �=io

Q
(1)
ioj0

ψ
(1)
j0io

.

(88)

Substituting the asymptotic expressions (71) into equation (88), we get the explicit expression
of the coefficients φ

(k)
jio

and ψ
(k)
jio

via the number of the state (or of the channel) io = no + 1
and the number of the current equation j = 1, . . . , jmax. The calculation was performed using
the algorithm implemented in MAPLE up to kmax = 15. For example, at jmax � io + k and
k = 0, 1, substituting (73) into (88) such elements take the form

φ
(0)
ioio

= 1, ψ
(0)
ioio

= 0,

φ
(1)
io−1io

= 0, ψ
(1)
io−1io

=
√

no

√
no + |m|
γ

,

φ
(1)
ioio

= 0, ψ
(1)
ioio

= −2no + |m| + 1

γ
,

φ
(1)
io+1io

= 0, ψ
(1)
io+1io

=
√

no + 1
√

no + |m| + 1

γ
.

(89)



Calculation of a hydrogen atom photoionization in a strong magnetic field 11507

If we use the scaled radial variable r̂ , we put γ = 1 and use the effective charge Ẑ and the
scaled momentum p̂io

(
ζ = Ẑ/p̂io

)
in the above expressions.

Similar to [32], in each order k the recurrence relation (85) includes implicitly only
the factor Z/pio , while the recurrence relation (77) includes explicitly the quadratic factor(
Z/pio

)2
. This allows us to expect that for small values of p̂io or large values of the effective

charge Ẑ and, therefore, of the parameter |ζ | = |Ẑ/p̂io | 	 1, one can use expansion (81) at
as substantially smaller distance r̂max/|ζ | rather than expansion (75) at the essentially larger
distance r̂max.

Taking the convergence domain of the matrix elements into account, we find that the
convergence domain of expansion (81) is r̂max 	 no/2 and r̂max 	 Ẑ/p̂io (2no + |m| + 1), as
follows from the asymptotic behavior of the matrix elements which does not depend on pio .
This is the main goal of expansion (81).

In addition, it should be noted that at large r the linearly independent matrix functions
χ(r) ≡ {χ(io)(r)}No

io=1 of (76) and (81) satisfy the Wronskian-type relation

Wr(Q(r); χ∗(r), χ(r)) = ı

2
Ioo, (90)

where Wr(•; χ∗(r), χ(r)) is a generalized Wronskian with the long derivative defined as

Wr(•; χ∗(r), χ(r)) = r2

[
(χ∗(r))T

(
dχ(r)

dr
− •χ(r)

)
−
(

dχ∗(r)
dr

− •χ∗(r)
)T

χ(r)

]
.

(91)

These relations are used to analyze the desirable accuracy of the above expansion [23].

3.7. Correspondence of asymptotic total wavefunctions at large r and |z|
To clarify the geometric sense of expansion (81) and (84) we recalculate the first four
coefficients (88) and (89) for jmax � io + 1 using the functions |j 〉 = �̃j (ρ) =
limr→∞,|η|∼1 r−1�j(|η|; r) from (56):

φ
(1)
j1io

= 0,

ψ
(1)
j1io

= −1

2
〈j1|ρ2|io〉 =

√
no

√
no + |m|
γ

δj1,io−1 +

√
no + 1

√
no + |m| + 1

γ
δj1,io+1,

φ
(1)
ioio

= 0, ψ
(1)
ioio

= −1

2
〈io|ρ2|io〉 = −2no + |m| + 1

γ
.

(92)

Taking into account the orthogonality 〈j |io〉 = 〈
�̃m

j (ρ)
∣∣�̃m

io
(ρ)

〉 = δjio and completeness∑
j

∣∣�̃m
j (ρ ′)

〉〈
�̃m

j (ρ)
∣∣ = δ(ρ ′ −ρ) of the basis functions (56), the asymptotic form of the total

wavefunction at pioρ
2/(2r) � 1 can be written as

�mv̂(r, η) = r
∑

j

∣∣�̃m
j (ρ)

〉 [〈
�̃m

j (ρ)
∣∣�̃m

io
(ρ)

〉 − 1

2r

〈
�̃m

j (ρ)
∣∣ρ2

∣∣�̃m
io
(ρ)

〉 d

dr

]
χ

(as)
ioio

(
pio , r

)

= r
∑

j

∣∣�̃m
j (ρ)

〉〈
�̃m

j (ρ)
∣∣ [∣∣�̃m

io
(ρ)

〉 − 1

2r
ρ2
∣∣�̃m

io
(ρ)

〉 d

dr

]
χ

(as)
ioio

(
pio , r

)

≈ r�̃m
io
(ρ)χ

(as)
ioio

(
pio , r(1 − ρ2/(2r2))

) ≈ 1

2
�̃m

io
(ρ)X

(+)
ioio

(|z|) exp
(
ıδc

io

)
. (93)

In the last transformation we use the relation |z| = r(1−ρ2/(2r2))+O(r−2) and the definitions
(21), (57) and (27). Thus, the matrix of coefficients (81), (84) and (89) corresponds to the
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overlap matrix between the asymptotic fundamental solutions (16) and (27) of equation (2)
in cylindrical coordinates z = r cos θ, ρ = r sin θ at large |z| and the asymptotic basis
functions of the independent variable η = cos θ at large r. In appendix B we present detailed
explanation of the effective approximation in the KM including the explicit construction of
the corresponding effective mass and potentials versus the radial variable r and the results of
calculation of their asymptotic values up to the order of r−4.

4. Scattering states and photoionization cross sections

Consider the ejected electron above the first threshold εth
m1(γ ) = εth

m(γ ) = γ (|m| + m + 1).
We express the corresponding eigenfunction �Emσ

i (r, η) of the continuous spectrum with the
energy ε = 2E as

�Emσ
i (r, η) =

jmax∑
j=1

�mσ
j (η; r)χ̂

(mσ)
ji (E, r), i = 1, . . . , No, (94)

where χ̂(mσ)(E, r) is the radial part of the ‘incoming’ or eigenchannel wavefunction. The
normalization condition for �Emσ

i (r, η) is

〈
�Emσ

i (r, η)
∣∣�E′m′σ ′

i ′ (r, η)
〉 = jmax∑

j=1

∫ ∞

0
r2dr

(
χ̂

(mσ)
ji (E, r)

)∗
χ̂

(m′σ ′)
j i ′ (E′, r)

= δ(E − E′)δmm′δσσ ′δii ′ . (95)

The function χ̂(mσ)(E, r) is expressed as

χ̂(mσ)(E, r) =
√

2

π
χ(p)(r)C cos δ. (96)

The function χ(p)(r) is a numerical solution of equation (58) that satisfies the ‘standing-wave’
boundary conditions (62) and has the standard asymptotic form [33]

χ(p)(r) = χs(r) + χc(r)K, KC = C tan δ, CCT = CT C = Ioo. (97)

Here χs(r) = 2 Im(χ(r)) and χc(r) = 2 Re(χ(r)), χ(r) is the asymptotic solution defined in
section 3.5 or 3.6, K ≡ Kσ is the numerical short-range reaction matrix with the eigenvalue
tan δ and the orthogonal matrix C of the corresponding eigenvectors. The regular and irregular
functions satisfy the generalized Wronskian relation (91) at large r

Wr(Q(r); χc(r), χs(r)) = Ioo. (98)

Using R-matrix calculus [21], we obtain the equation expressing the reaction matrix K via the
matrix R at r = rmax(

Rχc(r) − dχc(r)

dr

)
K =

(
dχs(r)

dr
− Rχs(r)

)
. (99)

When some channels are closed, the matrices in equation (99) are rectangular. Hence, the
reaction matrix K may be presented as

K = −X−1(rmax)Y(rmax), (100)

where

X(r) =
(

dχc(r)

dr
− Rχc(r)

)
oo

, Y(r) =
(

dχs(r)

dr
− Rχs(r)

)
oo

, (101)

are square No × No matrices.
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The radial part of the ‘incoming’ wavefunction is expressed via the numerical ‘standing’
wavefunction and the short-range reaction matrix K by the relation

χ̂(mσ)(E, r) =
√

2

π
χ−(r) = ı

√
2

π
χ(p)(r)(Ioo + ıK)−1, (102)

and has the asymptotic form

χ̂(mσ)(E, r) =
√

2

π
(χ(r) − χ∗(r)S†). (103)

Here S is the short-range scattering matrix, expressed via the scattering matrix Šσ (31) and
Coulomb phase shift δc as S ≡ Sσ = exp(−ıδc)Šσ exp(−ıδc), for which

S†S = SS† = Ioo, K = ı(Ioo + S)−1(Ioo − S), S = (Ioo + ıK)(Ioo − ıK)−1. (104)

The total wavefunction has the asymptotic form reverse to the common scattering problem,
namely, ‘incident wave + ingoing wave’,

Ψ(−)
Emv̂(r, η) ≡ Ψ(−)

Em
→←(r, η) = 1√

2
(ΨEmσ=+1(r, η) ± ΨEmσ=−1(r, η)) exp(−ıδc), (105)

that corresponds to the function (36) (see details in appendix C). Now the expression (38) for
the cross section σd

Nlm(ω) of photoionization by the light linearly polarized along the axis z

can be written as

σd
Nlm(ω) = 4π2αω

No∑
i=1

∣∣Dmσσ ′
i,N,l (E)

∣∣2a2
0, (106)

where Dmσσ ′
i,N,l (E) ≡ Dmσσ ′

i,i ′,v′ (E) are the matrix elements of the dipole moment

Dmσσ ′
i,i ′,v′ (E) = 〈

�Emσ=∓1
i (r, η)

∣∣rη∣∣�mσ ′=±1
i ′v′ (r, η)

〉 = jmax∑
j=1

∫ rmax

0
r2 drχ̂

(mσ=∓1)
j i (E, r)d

(mσσ ′)
j i ′v′ (r),

(107)

and d
(mσσ ′)
j i ′v′ (r) are the matrix elements of the partial dipole moments

d
(mσσ ′)
j i ′v′ (r) =

jmax∑
j ′=1

〈
�mσ=∓1

j (η; r)
∣∣rη∣∣�mσ ′=±1

j ′ (η; r)
〉
η
χ

(mσ ′=±1)
j ′i ′v′ (r). (108)

In the above expressions ω = E − ENlm is the frequency of radiation, ENlm ≡ Emσ ′i ′v′ is
the energy of the initial bound state |Nlm〉 = �mσ ′

i ′v′ (r, η) below half of the first true threshold
shift εth

m1(γ )/2 from formula (56) at i ′ = 1. The continuous spectrum solution χ(p)(r) having
the asymptotic form of a ‘standing’ wave and the reaction matrix K required for calculating
(96) or (103), as well as the discrete spectrum solution χ(r) and the eigenvalue Emσ ′i ′=1v′ ,
can be calculated using the program KANTBP [33]. Figure 10 shows an example of the
wavefunctions of the continuous spectrum calculated using equations (94)–(96) in the basis
of functions (51) shown in figure 3 for σ = −1, Z = 1,m = 0 and γ = 1 with the energy
E = 1.7 au above the second threshold 1/2εth

m2 = 1.5. One can see that equations (96) and
(103) yield the same result when used to calculate the absolute value in equation (106), as well
as equation (105) performing the summation over v̂ in accordance with equation (38). Hence,
equation (96) is preferable for using real arithmetic. For the light circularly polarized in the
plane xOy similar expression can be written using (42) with (�e±�r) = r√

2

√
1 − η2 exp(±ıϕ).
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Figure 10. Profiles of wavefunctions �1 and �2 in the zx plane of the first (a) and the second (b)
open channels having the asymptotic form (96) for σ = −1, Z = 1,m = 0 and γ = 1 with the
energy E = 1.7 au above the second threshold 1/2εth

m2 = 1.5.
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Figure 11. Cross sections of photoionization from the states 1s0 (a) and 3d0 (b) versus the energy
for γ = 1 × 10−1, and for the final state with σ = −1, Z = 1, m = 0. The arrows indicate the
successive Landau thresholds Ej = 1/2εth

mj (71).

5. Numerical results and discussion

In our calculations we used the following values of the physical constants [34]: 1 cm−1 =
4.556 33 × 10−6 au, the Bohr radius a0 = 5.291 77 × 10−11 m and the fine-structure constant
α = 7.297 35 × 10−3.

Figure 11 displays the calculated photoionization cross section from the states 1s0 and 3d0

at B0 = 2.35 × 104T (γ = 1 × 10−1) in the energy interval from E = 0.05 au to E = 0.25 au
with the final state σ = −1,m = 0. We used ten eigenfunctions (jmax = 10) of the problem
(51)–(53) which requires to solve ten equations of the system (58). The finite element grids
of r̂ = √

γ r have been chosen as 0 (200) 3 (200) 20 (200) 100 for the discrete spectrum and 0
(200) 3 (200) 20 (200) 100 (1000) 1000 for the continuous one. Enclosed in parentheses are the
numbers of finite elements of the order k = 4 in each interval. The number of nodes in the grids
is 2400 and 6401, so that the maximum number of unknowns in equation (58) is 24 000 and
64 010, respectively. Figure 12 displays the continuous spectrum states (in scaled coordinates)
with the energies E = 0.0596 au and E = 0.0903 au that correspond to δo = 0 and δo = π/2,
respectively. The corresponding series of quasi-stationary states imbedded in the continuum,
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Figure 12. Profiles of the eigenfunctions �Emσ
1 in the zx plane of the continuous spectrum with

σ = −1, Z = 1, m = 0 and γ = 1 × 10−1. The states with the energies E = 0.0596 au and
E = 0.0903 au correspond to δo = 0 and δo = π/2, respectively.
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Figure 13. Phase shift δ of odd (a) and even (b) continuum states for Z = 1, m = 0 and
γ = 1 × 10−1 versus (Ẽ2 − 2E)−1/2. The arrow points at the energy of the first Landau threshold
(Ẽ2 − Ẽ1)

−1/2 = 51/2 ≈ 2.236.

defined by the short-range phase shifts δo = noπ + π/2, are plotted in figure 13(a) versus
(Ẽ2−2E)−1/2 = no +�no

, where Ẽj = εth
mj . The existence of such states allows one to explain

the nonmonotonic dependence of the photoionization cross section upon the energy between
the thresholds. The short-range phase shifts δe = neπ + π/2 of the even continuum states are
plotted in figure 13(b) versus (Ẽ2 − 2E)−1/2 = ne + �ne

. The corresponding transmission
|T̂|2 = sin2(δe − δo) and reflection |R̂|2 = cos2(δe − δo) coefficients (31) versus the energy E
(a) and (Ẽ2 − 2E)−1/2 (b) are shown in figure 14. Nonmonotonic behavior of |T̂| and |R̂| is
seen to include the cases of resonance transmission |T̂| = 1 and |R̂| = 0 and total reflection
|T̂| = 0 and |R̂| = 1. As an example, we display the absolute values of the total wavefunctions
(105) of the continuous spectrum Ψ(−)

Em→ and Ψ(−)
Em← in figure 15 (in scaled coordinates). The

profiles of the states with the energy E = 0.05885 au and E = 0.11692 au demonstrate the
resonance transmission and total reflection, respectively. They agree with appendix C and
with the proper longitudinal solutions combined with the left and right basis functions (see
figures 2(b) and 5).

Figure 16 demonstrates the dependence on the energy E (a) and (Ẽ2 − 2E)−1/2 (b) of
the following quantities: the squared modulus of the matrix element (SMME) Ť11 = S11 − 1,
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Figure 14. Transmission |T̂|2 and reflection |R̂|2 coefficients, even δe and odd δo phase shifts
versus the energy E (a) and (Ẽ2 − 2E)−1/2 (b) for continuum states with Z = 1, m = 0 and
γ = 1 × 10−1.
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Figure 15. Profiles of total wavefunctions |�(−)
Em→| (a, c) and |�(−)

Em←| (b, d) in the zx plane of
the continuous spectrum with Z = 1,m = 0 and γ = 1 × 10−1. The states with the energy
E = 0.05885 au (a, b) correspond to the resonance transmission, while those with the energy
E = 0.11692 au (c, d) correspond to the total reflection.

characterizing the elastic scattering of the electron, the odd phase shift (OPS) δo, and the cross
section σd(ω) (106) of photoionization from the initial even state 1s0 ((Nlm) = (100)) with
the energy E100 = −0.497 526 480 40 au, ω = E − E100 being the frequency of radiation.
The final scattering state with σ = −1 and m = 0 in the magnetic field B0 = 2.35 ×
104 T (γ = 1 × 10−1) is considered. The first two quantities are normalized to fit the plot
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Figure 16. Squared modulus of the matrix element Ť11, multiplied by 7/4, odd phase shift δo

multiplied by 14/π and cross section σd(ω) (106) of photoionization from the initial state 1s0 versus
the energy E (a) and (Ẽ2 − 2E)−1/2 (b) for the final scattering state with σ = −1, Z = 1, m = 0
and γ = 1 × 10−1.

range. The comparison of the three curves shows that the maxima of the SMME of elastic
scattering coincide with the jumps of the OPS. The minima of SMME coincide with zeros of
OPS exactly, while the minima of the photoionization cross section (PCS) occur with some
delay. Figure 16(b) shows that in the scale (Ẽ2 − 2E)−1/2 SMME is periodical, while PCS
is quasi-periodical. The maxima of PCS occur after each phase jump when the OPS has
approximately the same value of −0.35/π , while the maxima of SMME coincide exactly
with these jumps that, as mentioned above, correspond to quasi-stationary states imbedded
in the continuum. The minima of PCS correspond approximately to the same value 0.1/π

of the phase. The figures show only the first fragment of the infinite sequence of maxima
and minima that corresponds to the existence of the infinite and countable series of Coulomb
quasi-stationary states below the second threshold, induced by the confinement potential of
the magnetic field, in accordance with the multichannel quantum defect theory.

For the initial state 1s0 in the whole energy interval the results are in good agreement with
those of R-matrix calculations within the frameworks of the multichannel quantum defect
theory [6]. We also compared our results with those of the complex-rotation method using the
expansion over the basic set of 10 000 complex spherical Sturmian-type functions [11] and the
basic set of 450 mixed Slater-Landau functions [8]. In this case the agreement is good only
between the thresholds, but not near them. The agreement with [6] proves that our method is
valid to describe the true threshold behavior of the photoionization cross section, i.e., one of
the goals of elaborating the new approach is achieved.

Figure 17 displays the cross section of photoionization by the light linearly polarized
along the axis z from the vibrational state 3d0 (a) and the rotational state 3s0 (b) at B0 =
6.10 T (γ = 2.595 × 10−5) in the energy interval between E = 6.0 cm−1 and E = 8.0 cm−1.
In this case we increased jmax up to 35 and the finite element grids of r̂ = √

γ r were chosen
as 0 (200) 0.03 (200) 0.2 (200) 1 for the discrete spectrum and 0 (200) 0.03 (200) 0.2 (200) 1
(2000) 100 (4000) 1000 for the continuous one. The number of nodes in these grids is 2400
and 26 401, respectively. The corresponding maximal number of unknowns in equation (58)
is 84 000 and 924 035. Figure 18(a) shows the absolute maximum values of the continuum
wavefunctions χ̂

(01)
j1 (E, r̂) at E = 6.0 cm−1. We calculated the cross sections with the
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Figure 17. The cross section of photoionization from the states 3d0 (a) and 3s0 (b) versus the
energy for γ = 2.595 × 10−5 and for the final state with σ = −1, Z = 1, m = 0.
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Figure 18. (a) Absolute maximum values, max χj1, of the continuum wavefunctions χ̂
(01)
j1 (E, r̂)

at γ = 2.595 × 10−5, E = 6.0 cm−1 and jmax = 35. (b) Laser-stimulated radiative recombination
rate into the bound state N ′ = 3, l′ = 0, m′ = 0 versus the energy of the initially free positron.

energy step 5 × 10−4 cm−1 in all the region except the vicinity of peaks, where the step was
5 × 10−6 cm−1.

The relation between the photoionization cross section and the induced radiative
recombination rate [5] makes it possible to apply the results of this section to an urgent
problem of the production of cold antihydrogen atoms in magnetic traps [3]. The idea is to use
the resonances due to the quasi-stationary states arising in the magnetic field in order to enhance
the laser-induced radiative recombination into a given bound state by choosing the proper laser
frequency. Let us consider the recombination into the state N ′ = 3, l′ = 0,m′ = 0, that may
be stimulated by a titanium-sapphire laser, under the conditions typical for positron–antiproton
plasma in magnetic traps used for antihydrogen production, namely, the temperature of the
plasma T = 4 K, the positron density ne = 1 × 108 cm−3, the magnetic induction B =
6.10 T. The laser intensity is taken such that at 4 K without the magnetic field the rate of
induced recombination is equal to that of the spontaneous one. In particular , for N = 3
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Figure 19. Profiles of the wavefunctions in the zx plane of the bound states |Nlm〉 with
σ = +1, Z = 1 and γ = 2.595 × 10−5: (a) the vibrational state |320〉 with the minimal energy
correction; (b) the rotational state |300〉 with the maximal energy correction.

this intensity is I = 24 W cm−2 [4]. Figure 18(b) shows the dependence of the laser-
stimulated recombination rate per one antiproton λSRR upon the initial energy of the positron
E = ENlm + ω. For comparison the horizontal dashed line displays the rate λRR of the
spontaneous radiative recombination into all the states with N = 3, which at the intensity
considered is equal to the rate of the laser-stimulated recombination without the magnetic field.
Obviously, there are narrow resonances for which the rate of recombination into the state with
fixed l = 0,m = 0 in magnetic field is appreciably higher than the rate of recombination into
all nine states with different l and m possible for N = 3 without the magnetic field.

Note that states 3d0, 3p0 and 3s0 with energies E320 = −0.055 555 552 07 au, E310 =
−0.055 555 549 49 au and E300 = −0.055 555 542 37 au, respectively, are nearly degenerate.
To calculate these energies we used three equations of the system (58) (jmax = 3); increasing
jmax keeps them stable. We also compared the energies with those calculated by means of
the second-order algebraic perturbation theory [35]. The results coincide with each other to
the 13th digit. The wavefunctions of the bound states |Nlm〉 with even parity σ = +1 in
a homogenous magnetic field are shown in figure 19. Values of functions scaled by factor
γ 3/4 versus scaled coordinates r̂ . From here one can find an evident explanation of the fact
that the cross section of photoionization by the light linearly polarized along the axis z (see
figure 17) from the vibrational state 3d0 distributed along the z axis exceeds in four times the
cross section from the rotational state 3s0 distributed along the x axis.

6. Conclusions

A new efficient method for calculating both the discrete and the continuous spectrum
wavefunctions of a hydrogen atom in a strong magnetic field is developed based on the
Kantorovich approach to the parametric eigenvalue problems in spherical coordinates. The
2D spectral problem for the Schrödinger equation with fixed magnetic quantum number and
parity is reduced to a 1D spectral parametric problem for the angular variable and a finite set of
ordinary second-order differential equations for the radial variable. The rate of convergence
is analyzed numerically and is illustrated with a number of typical examples. The results
are in good agreement with calculations of photoionization cross sections by other authors.
It is shown that the calculated photoionization cross sections has the true threshold behavior
and that the recombination cross sections can be recalculated using the relations presented.
The recurrence relations for the calculation of the coefficients of asymptotic expansions of
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fundamental solutions of a set of the radial equations or the overlap matrix open the way to
study the threshold phenomena using the known asymptotic expansion of Coulomb functions
[36, 37].

The main advantages of the elaborated approach from the calculation and the theoretical
viewpoints consist of the following.

The calculations on all steps of the Kantorovich approach are realized with the help of
stable calculation schemes and with prescribed accuracy. The economy of computer resources
is achieved by means of analytic calculation of all needed asymptotic forms of adaptive basis
functions, matrix elements of radial coupling and radial solutions, which makes it possible to
reduce the interval of integration in the corresponding boundary problems.

For the first time resonance transmission and total reflection effects for scattering processes
of electrons on protons in a homogenous magnetic field are manifested.

The approach developed provides a useful tool for calculations of threshold phenomena
in the formation and ionization of (anti)hydrogen-like atoms and ions in magnetic traps,
quantum dots in magnetic field [38], channeling processes [39] and potential scattering with
confinement potentials [40].
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Appendix A. Asymptotic expansions of basis functions and matrix elements at large r

Following [20, 24], at step 1 we change the coordinate η ∈ [0, 1] (or η ∈ [−1, 0]) for the new
coordinate y according to

y = 2p(1 − η) (or y = 2p(1 + η)). (A.1)

For our purposes it is sufficient to consider η ∈ [0, 1]. We suppose that the coordinate y lies in
the interval corresponding to η ∈ D1,D1 = [1 − η1, 1], η1 = o(p1/2−ε), 0 < ε < 1/2. Now
the eigenvalue problem (54) takes the form[

(y2 − 4py)
∂2

∂y2
+ (2y − 4p)

∂

∂y
−
(

16p2(m2 + y2) + y3(y − 8p)

4y(y − 4p)
+ λn

)]
�j(y) = 0.

(A.2)

The corresponding matrix elements (60) read as

Qjj ′(r) = −I01;jj ′(r), Hjj ′(r) = I11;jj ′(r). (A.3)

where the integrals Idd ′;jj ′(r) with d, d ′ = 0, 1 are calculated as follows:

Idd ′;jj ′(r) = 1

2p

∫ 2p

0
dy

[(
∂

∂r
+

2y

r

∂

∂y

)d

�j (y)

][(
∂

∂r
+

2y

r

∂

∂y

)d ′

�j ′(y)

]
. (A.4)
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In these expressions the asymptotic quantum number n denotes the transversal quantum
numbers that are connected with the unified numbers j and j ′ as nl = j − 1 and nr = j ′ − 1.
At steps 2–3 from the set of functions �j(y) we turn to the set of functions Fn(y)

�j (y) = fm(y)Fn(y), fm(y) = exp
(
−y

2

)
y|m|/2

(
1 − y

4p

)|m|/2

, (A.5)

the latter presented as a sum of the associated Laguerre polynomials [20]

Fn(y) = (2p)1/2
∑

s

Cn(s, r)L
|m|
n+s(y). (A.6)

Using the knowing properties of the associated Laguerre polynomials [20], we find that the
coefficients Cn(s, r) satisfy the recurrence relations(

n + s +
|m| + 1

2
− λn + 2(n + s)2 + 2(n + s)(|m| + 1) + |m| + 1

4p

)
Cn(s, r)

+
(n + s + 1)(s + 1 + n + |m|)

4p
Cn(s + 1, r)

+
(s + n)(s + |m| + n)

4p
Cn(s − 1, r) = 0. (A.7)

As a result of this step we get the matrix elements as a sum of integrals with the associated
Laguerre polynomials

Idd ′;jj ′(r) =
∑
sl sr

∫ 2p

0
dyf 2

m(y)C̃(d)
nl ,sl

C̃(d ′)
nr ,sr

, (A.8)

where the coefficients C̃(d)
nr ,sr

are obtained by differentiation of (A.5) and (A.6) and formation
of a given weight factor, f 2

m(y), such that

C̃(0)
nl ,sl

= Cnl
(sl, r)L

|m|
nl+sl

(y), C̃(0)
nr ,sr

= Cnr
(sr , r)L

|m|
nr +sr

(y),

C̃(1)
nr ,sr

= dCnr
(sr , r)

dr
L|m|

nr +sr
(y) +

Cnr
(sr , r)

r

[
(nr + sr + 1)L

|m|
nr +sr +1(y)

− (nr + sr + |m|)L(m|
nr +sr−1(y)

]
. (A.9)

At step 4 for the evaluation of the integrals (A.8) we change the domain from [0, 2p] to [0,∞)

and then omit the exponentially small terms. Using the approximated relation up to the order
of kmax < |m|, that is exact if kmax � |m|(

1 − y

4p

)|m|
=

kmax∑
k=0

|m|!
k!(|m| − k)!

( y

4p

)k

+ O((4p)−kmax−1), (A.10)

and the orthonormality condition for the associated Laguerre polynomials∫ ∞

0
dy exp(−y)y|m|L|m|

nl+sl
(y)L|m|

nr +sr
(y) = (nl + sl + |m|)!

(nl + sl)!
δnl+sl ,nr +sr

, (A.11)

we obtain the matrix elements in the algebraic form. For example, if kmax = 1 the matrix
element I00;jj ≡ Ijj ≡ 1 takes the form

I00;jj (r) =
∑

s

[
1 − |m|(2n + 2s + |m| + 1)

4p

]
Cn(s, r)

2 (n + s + |m|)!
(n + s)!

. (A.12)
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At step 5 we expand Cn(s, r) and λn as

Cn(s, r) = c(0)
s,n +

kmax∑
k=1

(
1

4p

)k

c(k)
s,n, λn = 4p

[
|m| + 1

2
+ β(0)

n +
kmax∑
k=1

(
1

4p

)k

β(k)
n

]
.

(A.13)

Substituting (A.13) into (A.7) and equating the coefficients at equal powers of p, we arrive at
the set of recurrence relations for evaluating the coefficients β(k)

n and c(k)
s,n (except c

(k)
0,n)

sc(k)
s,n = ((n + s + |m| + 1)(2n + 2s + |m| + 1) − (n + s + |m|)(|m| + 1))c(k−1)

s,n

− (n + s)(n + s + |m|)c(k−1)
s−1,n − (n + s + |m| + 1)(n + s + 1)c

(k−1)
s+1,n +

k−|s|∑
k′=1

β(k′)
n c(k−k′)

s,n ,

(A.14)

with the initial conditions

β(0)
n = n, c(0)

s,n = δs0

√
n!

(n + |m|)! . (A.15)

Note that all c(k)
s,n ≡ 0 if |s| > k. For kmax = 1 the output is the following:

c
(1)
−1,n = n(n + |m|)c(0)

0,n, β(1)
n = −1 − 2n − 2|m|n − 2n2 − |m|,

c
(1)
1,n = −(n + 1)(n + |m| + 1)c

(0)
0,n.

(A.16)

Substituting (A.13) into (A.12) and equating it to unity, we find the coefficients c
(k)
0,j

c
(1)
0,n = |m|(2n + |m| + 1)

2
c
(0)
0,n. (A.17)

At step 6, substituting (A.13) with the coefficients c
(k)
s,j evaluated at step 5 into the expressions

of the matrix elements, evaluated at step 4 by means of equation (A.3), we easily find the
matrix elements expanded in inverse powers of r with finite j = nl − 1, j ′ = nr − 1 and with
the exponential terms omitted [22] in the form (71).

Appendix B. The effective approximation for the Kantorovich method

Consider the set of close-coupled radial equations (58) and neglect the coupling of the states
|j 〉 and |j ′〉 disconnected from the open channel |io〉. This can be useful for sufficiently large
effective charge Ẑ = Z/

√
γ , when the contribution of the adiabatic correction is sufficiently

small. From the physical viewpoint this may help to understand the asymptotic boundary
conditions in the open channel. We introduce the so-called effective adiabatic approximation,
in which we project the radial equations onto the open channel |i〉 = |io〉 by means of a
canonical transformation. The new solution χnew

ii ≡ χnew
ii (r) is related to the old solutions

χji ≡ χji(r) of equations (58) as

χnew
ii =

∑
j

Tijχj ≈
jmax∑

j,j ′=1

〈i| exp(ıS(2))|j ′〉〈j ′| exp(ıS(1))|j 〉χji . (B.1)

Restricting the expansion of the exponentials to the second order exp(iS(1)) ≈ 1 + ıS(1) +
(ıS(1))2/2 and exp(ıS(2)) ≈ 1 + ıS(2), we define the nondiagonal matrix elements of the
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generators S(1) and S(2) in the following way:

ıS
(1)
ij = (1 − δij )�

−1
ij

(
Hij + Qij

d

dr
+

1

r2

d

dr
r2Qij

)
,

ıS
(2)
ij = (1 − δij )2�−2

ij QijV
′
jj , (B.2)

�ij = �ij (r) = Vii − Vjj , Vii = Uiir
−2.

This approximation eliminates the rhs of equation (58) with the accuracy O
(

maxij

∣∣�−3
ij

∣∣)
and generates the inverse operator for the open channel |io〉

χj = T −1
jio

χnew
io

, χnew
io

=
∑

j

Tiojχj ,

〈io|T |io〉 = 〈io|T −1|io〉 = 1 = 〈io|io〉.
(B.3)

As a result we get the projection of equations (58) onto the channel |io〉∑
ij

Tioi(H
old − 2E)ijT

−1
jio

χnew
io

= (
H new

ioio
− 2E

)
χnew

io
= 0, (B.4)

where

H new
ioio

= H old
ioio

+ 1
2 [ıS(1), H old]ioio + 1

2 [ıS(1) + ıS(2), H 1]ioio , (B.5)

and H 1
ij = �ij ıS

(2)
ij . We can write equation (B.4) in the explicit form

− 1

r2

d

dr

r2

µ(r)

dχnew
io

(r)

dr
+

µ′(r)
µ2(r)r

χnew
io

(r) + [Ûeff − 2E]χnew
io

(r) = 0. (B.6)

The new solution ψ ≡ µ−1/2χnew
ii (r) in such a diagonal representation satisfies the following

equation

− 1

r2
(r2ψ ′)′ + µ1/2(µ−1/2)′′ψ + µ[Ûad + δU − 2E]ψ = 0, lim

r→0
r2 dψ

dr
= 0, (B.7)

where the modified scalar product and the adiabatic potential are defined as

〈ψ |ψ〉 =
∫ ∞

0
drr2µψψ, Ûad = Vii .

The effective potential Ûeff(r) is the sum of the adiabatic potential Ûad(r) and the effective
non-adiabatic correction δU(r). µ(r) can be considered as the effective mass, expressed as

µ−1(r) = 1 + Wii(r), Wii(r) = −4
jmax∑
j �=i

Qij (r)Qji(r)�
−1
ij (r),

δU(r) =
jmax∑
j �=i

(
�−1

ij V
(1)
ij + �−2

ij V
(2)
ij + �−3

ij V
(3)
ij

)
.

(B.8)

Here Wii(r) is the effective mass correction and

V
(1)
ij = H 2

ij − (Q′
ij )

2 + 2QijH
′
ij − 2QijQ

′′
ij ,

V
(2)
ij = HijQij (�

′
ij − �′

ij ) + QijQ
′
ij (�

′
ij + 3�′

ij ) + Q2
ij (�

′′
ij + �′′

ij ),

V
(3)
ij = Q2

ij (�
′
ij + �′

ij )(�
′
ij − 2�′

ij ),

�ij = �ij (r) = Vii + Vjj .

(B.9)
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Figure B1. The effective mass correction W11, its derivative W ′
11 and the inverse effective mass

µ−1 at γ = 1 and m = 0 for the first even (a) and odd (b) states.

In the above expressions all terms are functions of r; the dash denotes the derivative with
respect to r. At large r the leading terms of Wii(r) and δU(r) calculated using the asymptotic
basis functions read as

Wii(r) = Was
ii r−2 + O(r−4), δU(r) = δUasr−4 + O(r−6), (B.10)

where the effective mass correction

−Was
ii = 〈i|ρ2|i〉 = 2(2n + |m| + 1)γ −1 (B.11)

is the mean value of the transversal variable, ρ2 = (r sin θ)2, characterizing the electron
precession around the z axis in the magnetic field γ (see figure 1), while

δUas = −(4n3 + 5n2 − 4n − 3 + |m|(6n2 + 5n − 2) + m2(2n + 1))(2γ )−1 (B.12)

is the asymptotic value correction of the electron polarizability,

U = Uasr−4 = (E(4) + H(4))r−4, (B.13)

where coefficients E(4) and H(4) are given by (72) and (74). The plots of the above effective
mass and effective potentials having essentially nonmonotonic behavior in a reaction region
and given asymptotic form for large r are shown in figures B1 and B2.

For elastic scattering states with given 2E
(
pio

) = p2
io

+ E
(0)
io

we reformulate the problem
as(
Ĥ eff − p2

io

)
ψ ≡ − 1

r2
(r2ψ ′)′ + µ1/2(µ−1/2)′′ψ + µ

[
Ûeff − 2E

(
pio

)]
ψ = 0. (B.14)

For the function χ eff = rµ1/2ψ this equation has the conventional form(
d

dr
µ−1(r)

d

dr
− Ueff(r) + p2

io

)
χ eff

ioio
(r) = 0, (B.15)

where the effective potential is given by

Ueff(r) = Vioio (r) + δU(r) − 2Z

r
− E

(0)
io

. (B.16)

For large r, using the asymptotic values W
(jmax)

ioio
of r2W(r) and δU

(jmax)

ioio
of r4δU(r) from (B.8)

we have (
− d

dr

(
1 +

W
(jmax)

ioio

r2

)
d

dr
− 2Z

r
+

δU
(jmax)

ioio

r4
− p2

io

)
χ̄ as

ioio
(r) = 0, (B.17)
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Figure B2. The adiabatic potential Ûad(r), the effective adiabatic potential Ûeff(r), the effective
non-adiabatic correction δU , the potential curve E1(r) and the radial potential H11 at γ = 1 and
m = 0 for the first even (a) and odd (b) states.

and to the order of O(r−3) equation (B.15) may be written as(
d2

dr2
− 2W

(jmax)

ioio

r3

d

dr
+

(
2Z

r
+ p2

io

)(
1 − W

(jmax)

ioio

r2

))
χ̄ as

ioio
(r) = 0. (B.18)

For pioW
(jmax)

ioio

/
(2r) � 1 the solutions belonging to the continuous spectrum can be written

in the form

χ̄ as
ioio

(r) ≈ 1√
2πpio

sin

(
pior1 +

Z

pio

ln(2pior1) + δc + δ(jmax)

)

≈ 1√
2πpio

[
sin

(
pior +

Z

pio

ln(2pior) + δc + δ(jmax)

)

+ pio

W
(jmax)

ioio

2r
cos

(
pior +

Z

pio

ln(2pior) + δc + δ(jmax)

)]
, (B.19)

where r1 = r
(
1 + W

(jmax)

ioio

/
(2r2)

)
and r1 = r(1 − 〈io|ρ2|io〉/(2r2)) at jmax � io + 1 and

δ(jmax) ≡ δ(jmax)
(
pio

)
is the required phase shift of the elastic scattering in the open channel |io〉

count off the known Coulomb phase shift δc = arg �
(
1 − ıZ/pio

)
.

Remembering that r2 = ρ2 + z2 and |z| ∼ r(1 − ρ2/(2r2)) in the asymptotic region
ρ/r � 1 one can introduce the mean position operator in the new representation χnew = T χ

rnew
mean = 〈

χnew
∣∣r̂new

mean

∣∣χnew
〉 = 〈χ |T −1r̂new

meanT |χ〉 = 〈χ |r̂mean|χ〉 = rmean. (B.20)

The mean position operator r̂new
mean = r plays the role of the longitudinal coordinate z in the new

representation χnew. In other words, the z-delocalization is accounted for in the new radial
functions χnew = T χ . In the old representation χ the mean position operator r̂mean is defined
as

r̂mean = T −1r̂new
meanT = T −1rT = r + δr̂, (B.21)

where δr̂ is the delocalization of the longitudinal coordinate z that has the order of ρ2/(2r) in
the asymptotic region ρ/r � 1 (see figure 1)

r̂mean → T −1rT ≈ 〈z〉. (B.22)
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Note that the transformation affects only the form of the radial solutions and the longitudinal
coordinate z enters only the total expansion of the wavefunction. If we omit the non-adiabatic
terms, the solution takes the adiabatic form

χ ad ∼ sin

(
pior +

Z

pio

ln(2pior) + δc + δad

)
. (B.23)

Then the difference between the true phase shift δ, jmax th approximation δ(jmax) and the
adiabatic phase shift δad can be expressed as

δ(jmax) = δad − pio

W
(jmax)

ioio

2r
, δ = lim

jmax→∞
δ(jmax) = δad + pio

〈io|ρ2|io〉
2r

. (B.24)

The asymptotic solutions χ̄j (r) of equations (58) are related to the solution χ̄new
ioio

(r) of the
effective equation (B.7) via the inverse asymptotic transformation that reveals weak asymptotic
coupling of the closed channels

χ̄ as
jio

(r) = T −1
jio

χ̄new
ioio

(r) ∼ exp

[
−〈j |ρ2|io〉(1 − δjio )

2r

d

dr

]
χ̄new

ioio
(r). (B.25)

Making use of equation (B.25), we arrive at the asymptotic solutions for equations (58)

χ̄ as
ioio

(r) = χ̄new
ioio

(r), χ̄as
jio

(r) = T −1
j0 χ̄new

ioio
(r)

≈ −〈j |ρ2|io〉(1 − δjio )

2
√

2πpior
pio cos

(
pior +

Z

pio

ln(2pior) + δc + δ(jmax)

)
. (B.26)

The expansion of the partial wavefunction �io in the open channel |io〉 over the set of asymptotic
angular functions �j(θ; r) = r−1�̃j (ρ)(1 + o(1)) for ρ/r � 1,

�io =

∣∣�̃io

〉〈
�̃io

∣∣�̃io

〉
+

jmax→∞∑
j �=io

|�̃j 〉〈�̃j |T −1
∣∣�̃io

〉 χ̄new
ioio

(r), (B.27)

subject to the completeness condition takes the form

�io ≈ �̃io (ρ)√
2πpio

[
sin

(
pior +

Z

pio

ln(2pior) + δc + δ

)

−pio

ρ2

2r
cos

(
pior +

Z

pio

ln(2pior) + δc + δ

)]
. (B.28)

For pioρ
2/(2r) � 1 , to the accuracy of O(r−1), we have the true separable representation in

cylindrical coordinates (ρ, z)

�io (r, ρ) ∼ �̃io (ρ)√
2πpio

sin

(
pio

(
r − ρ2

2r

)
+

Z

pio

ln

(
2pio

(
r − ρ2

2r

))
+ δ

(
pio

))

→ �̃io (ρ)√
2πpio

sin

(
pio |z| +

Z

pio

ln 2pio |z| + δ
(
pio

)) ∼ �̃io (ρ)√
2πpio

χ̄
(0)
ioio

(|z|). (B.29)

Taking equation (56) and |z| ∼ r(1 − ρ2/2r2) into account, one can see that it is compatible
with asymptotic expressions (75) and (81) to the order kmax of truncation of expansions (76)
and (84).
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Appendix C. Asymptotic function ‘incident wave + ingoing wave’

Let us express the wavefunction (105) as

Ψ(−)

Em
→←(r, η) = 1√

2

(
(Φmσ=+1(η; r))T χ̂(mσ=+1)(E, r)

± (Φmσ=−1(η; r))T χ̂(mσ=−1)(E, r)
)

exp(−ıδc). (C.1)

As mentioned above, asymptotically this function consists of waves going into the center and
an outgoing plane wave (reverse to the case of an incident plane wave and waves going out of
the center in scattering theory). Using (57) equation (C.1) can be rewritten in the form

Ψ(−)

Em
→←(r, η) = 1

2

(
(Φm←(η; r))T [χ̂(mσ=+1)(E, r) ± χ̂(mσ=−1)(E, r)]

+ (Φm→(η; r))T [χ̂(mσ=+1)(E, r) ∓ χ̂(mσ=−1)(E, r)]
)

exp(−ıδc). (C.2)

At r → ∞, |η| ∼ 1 it has the asymptotic form

Ψ(−)
Em→(r, η) →

√
2

π
((Φm←(η; r))T [χ̌(r) + χ̌∗(r)R̂†] + (Φm→(η; r))T χ̌∗(r)T̂†), (C.3)

Ψ(−)
Em←(r, η) →

√
2

π
((Φm←(η; r))T χ̌∗(r)T̂† + (Φm→(η; r))T [χ̌(r) + χ̌∗(r)R̂†]), (C.4)

where T̂† and R̂† are the conjugate transmission and reflection amplitude matrices from (31),
and the fundamental solutions χ̌(r) are related to the asymptotic solutions χ(r) from (76) or
(81)

T̂† = 1
2

(−Š†
+1 + Š†

−1

)
, R̂† = 1

2

(−Š†
+1 − Š†

−1

)
, χ̌(r) = χ(r) exp(−ıδc). (C.5)

Note that Φm←(η; r) = Φm→(−η; r) and Φm←(η < 0; r) = Φm→(η > 0; r) =
O(exp(−p(1 + |η|)) at r → ∞ and |η| ∼ 1. Equations (C.3) and (C.4) may be rewritten in
the matrix form(

Ψ(−)
Em→(r, η+) Ψ(−)

Em←(r, η+)

Ψ(−)
Em→(r, η−) Ψ(−)

Em←(r, η−)

)
→

√
2

π

(
Φm←(η+; r) 0

0 Φm→(η−; r)

)T

×
[(

χ̌(r) 0
0 χ̌(r)

)
+

(
0 χ̌∗(r)

χ̌∗(r) 0

)
Ŝ†
]

, (C.6)

where η± = ±|η|, |η| ∼ 1 and Ŝ† = Ŝ−1 is the inverse of the scattering matrix corresponding
to (35):

Ŝ† =
(

T̂† R̂†

R̂† T̂†

)
. (C.7)
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Application of the adiabatic method and program packages for solving the boundary problem for a discrete
and continuous spectrum of a hydrogenlike atom in a homogeneous magnetic field is presented. Based on this
the estimation of the photoionization cross section and laser-induced recombination rate is carried out. Effects
of resonance transmission and total reflection of oppositely charged particles in a homogeneous magnetic field
are demonstrated.
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In a recent paper �1� an alternative mechanism of laser-
induced recombination of antihydrogen from cold anti-
proton-positron plasma in a magnetic trap was revealed. This
resonance mechanism makes use of quasistationary states
embedded in the continuum. These states arise due to the
transverse confinement potential induced by the magnetic
field. The optimization of laser and magnetic field param-
eters in the case when the Coulomb energy is comparable
with that of the magnetic field can be studied by means of
the adiabatic approach in spherical coordinates using the ba-
sis of angular oblate spheroidal functions �2�. An attractive
feature of this approach is that the electron wave function is
accurately evaluated near the origin irrespective of the field
strength �3,4�. However, the key point for the scattering
problem is how to match the spherically symmetric wave
functions near the origin with the wave functions possessing
the cylindrical symmetry which are more appropriate in the
area located far enough from the origin �5�. This problem
was resolved in the appropriate calculation scheme and pro-
gram packages aimed at the solution of the boundary prob-
lems for discrete and continuous spectrum of a hydrogenlike
atom in a homogeneous magnetic field developed by the au-
thors earlier �6–8�.

In this Brief Report we apply this approach to the calcu-
lation of the optical transitions between the bound and the
autoionization states both of discrete and continuous spec-
trum. Our analysis revealed the effects of resonance trans-
mission and total reflection of oppositely charged particles in
a homogeneous magnetic field related to the existence of
quasistationary states embedded in the continuum.

The Schrödinger equation for the wave function �̂���
=��r ,��exp�ım�� /�2� of a hydrogen atom with the charge
Z of the nucleus in the axially symmetric magnetic field B
= �Bx=0,By =0,Bz=B� written in spherical coordinates �
= �r ,�=cos � ,�� is reduced to the two-dimensional �2D�
equation for the partial component ��r ,����m��r ,��
=��m��r ,−�� at fixed values of the magnetic quantum num-
ber m=0, �1, . . . and z parity �= �1,

�−
1

r2

�

�r
r2 �

�r
+

1

r2 Â�p� −
2Z

r
���r,�� = 	��r,�� . �1�

Here we use the atomic units �a.u.� 
=me=e=1 and put the
mass of the nucleus to be infinite, 	=2E, E is the energy

�expressed in Rydbergs, 1 Ry= �1 /2� a.u.� of the state 	m�
.
The operator Â�p� is defined by

Â�p� = −
�

��
�1 − �2�

�

��
+

m2

1 − �2 + 2pm + p2�1 − �2� ,

where p=�r2 /2 is the confinement potential induced by the
magnetic field, �=B /B0 is a dimensionless parameter deter-
mined by the field B, and B0�2.35�105 T.

Let us consider a formal adiabatic expansion of the partial
solution �i

Em��r ,�� of Eq. �1� in terms of one-dimensional
basis functions � j

m��� ;r� j=1
jmax,

�i
Em��r,�� = � j=1

jmax  j
m���;r�� j

�m�i��E,r� . �2�

The radial wave functions ��i��r����m�i��E ,r�, ���i��r��T

= (�1
�i��r� , . . . ,� jmax

�i� �r�) are unknown, the orthonormal basis
wave functions  j�r ,��� j

m��� ;r�=� j
m��−� ;r� and the

potential curves Ej�r� �in Ry� are the solutions of the para-
metric eigenvalue problem

Â�p� j��;r� = Ej�r� j��;r� . �3�

The solutions of this problem with shifted eigenvalues

Ěj�r�=Ej�r�−2pm correspond to the angular oblate spheroi-
dal functions �9�.

By using the expansion �2� we reduce the initial problem
�1� to a boundary problem for a set of jmax coupled second-
order ordinary differential equations that determine the radial
wave functions ��i��r� of the expansion �2� in the finite inter-
val r� �0,rmax�,

�−
1

r2I
d

dr
r2 d

dr
+

U�r�
r2 + Q�r�

d

dr
+

1

r2

dr2Q�r�
dr

���i��r�

= 	iI��i��r� , �4�

with the boundary condition at r=0,

lim
r→0

r2�d��i��r�
dr

− Q�r���i��r�� = 0. �5�

Here I, U�r�, and Q�r� are jmax� jmax matrices with the ele-
ments

Uij�r� =
Ei�r� + Ej�r� − 4Zr

2
�ij + r2Hij�r�, Iij = �ij ,
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Hij�r� = Hji�r� = �
−1

1 �i��;r�
�r

� j��;r�
�r

d� ,

Qij�r� = − Qji�r� = − �
−1

1

i��;r�
� j��;r�

�r
d� , �6�

where �ij is the Kronecker symbol. The eigenfunctions
 j�� ;r�, potential curves Ej�r�, and radial coupling matrix
elements Hij�r� and Qij�r� were calculated using the program
POTHMF �8�.

The discrete spectrum solutions ��i��r� obey the first-type
boundary condition, ��i��rmax�=0, which makes it possible to
calculate the energy eigenvalues E�Em�iv ,v=0, vmax and
the corresponding eigenfunctions �iv

m��r ,����i
Em��r ,�� of

Eq. �2� at i=1 using the program KANTBP �7�. The orthogo-

nality and normalization condition for �̂iv
m���� is

��̂iv
m����	�̂i�v�

m������
 = �vv��mm������ii�. �7�

The continuous-spectrum solutions ��i��r� obey the third-
type boundary condition at fixed energy 	=2E above the first
Landau threshold Ej����	mj

th ���=��2j−1+m+ 	m	� with
j=1,

d��r�
dr

= R��r�, r = rmax, �8�

where R is a nonsymmetric jmax� jmax matrix which was
calculated using the program KANTBP �7�. The orthogonality

and normalization condition for �̂i
Em���� is

��̂i
Em����	�̂i�

E�m������
 = ��E − E���mm������ii�. �9�

We express the corresponding eigenfunction �i
Em��r ,�� of

the continuous spectrum with the energy 	=2E in open chan-
nels, i=1,No, No=max2E�	mj

th j� jmax, in the form of Eq. �2�,
where �̂�m���E ,r�����io��r�io=1

No is now the radial part of the
eigenchannel or “incoming” wave function. The eigenchan-
nel wave function �̂�m���E ,r� is expressed as

�̂�m���E,r� = �2/��1/2��p��r�C cos � . �10�

The function ��p��r� is a numerical solution of Eq. �4� that
satisfies the “standing-wave” boundary conditions �8� and
has the standard asymptotic form �7�

��p��r� = �s�r� + �c�r�K, KC = C tan � . �11�

Here K�K� is the symmetric numerical short-range reac-
tion matrix with the diagonal eigenvalue matrix tan �
���ij tan � jij=1

No depending on the short-range even or odd
phase shift vector ����= �� j

� j=1
No , and the orthogonal matrix

CTC=Ioo of the corresponding eigenvectors C, where Ioo is
the unit No�No matrix. Note that in Eq. �10� cos � is the
diagonal matrix defined in the same terms. The regular
�s�r�=2 Im���r�� and irregular �c�r�=2 Re���r��
asymptotic functions are expressed via the fundamental
asymptotic solution ��r� with the leading terms at r→�,

� jio
�r� =

exp�ıpio
r + ı� ln�2pio

r� + ı�io
c �

2r�pio

� jio
, �12�

where pio
is the relative momentum in the channel

io, ���io
=Z / pio

is a Sommerfeld-type parameter, �io
c

=arg ��1− ı�� is the known Coulomb phase shift �9�. Using
R-matrix calculus �7�, we obtain the equation expressing the
reaction matrix K via the matrix R at r=rmax,

K = − X−1�rmax�Y�rmax� , �13�

where X�r� and Y�r� are square No�No matrices depending
on the open-open matrix �channels�

X�r� = �d�c�r�
dr

− R�c�r��
oo

,

Y�r� = �d�s�r�
dr

− R�s�r��
oo

. �14�

The radial part of the “incoming” wave function �̂�m���E ,r�
= �2 /��1/2�−�r� is expressed via the numerical “standing”
wave function and the short-range reaction matrix K by the
relation

�−�r� = ı��p��r��Ioo + ıK�−1 �15�

and has the asymptotic form

�̂�m���E,r� = �2/��1/2���r� − ���r�S†� . �16�

Here S�S� is the unitary short-range scattering matrix,
S†S=SS†=Ioo, which can be expressed via the calculated K
matrix as

S = �Ioo + ıK��Ioo − ıK�−1. �17�

The ionization wave function �Emv̂
�−� �r ,����Em�

�−� �r ,�� has
the asymptotic form reverse to the common scattering prob-
lem, namely, “incident wave+ingoing wave”

�Emv̂
�−� �r,�� =

�Em,+1�r,�� � �Em,−1�r,��
�2

exp�− ı�c� .

�18�

The function �Emv̂
�−� �r ,�� corresponds to the function

	Ev̂mN�
 defined in the cylindrical coordinates �� ,z ,��,

	Ev̂mN�
 =
exp�ım��

2�
�n�=1

jmax n�����Emv̂n�n
�−� �z� . �19�

Here N�=n−1, v̂ denotes the initial direction of the particle
motion along the z axis, and n���� is the eigenfunction of a
two-dimensional oscillator that corresponds to  j

mv̂�r ,��
= � j

m,+1�r ,��� j
m,−1�r ,��� /�2 at r→�. At z→ �� the

function �Emv̂n�n
�−� �z� has the following asymptotic form:
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�Ev̂
�−��z� =��

X�+��z� + X�−��z�R̂†, z � 0,

X�+��z�T̂†, z � 0,
� v̂ = → ,

�X�−��z�T̂†, z � 0,

X�−��z� + X�+��z�R̂†, z � 0,
� v̂ = ← ,�

�20�

where the matrix elements of X����z� are

Xn�n
����z� = exp��ıpn�z � ı�n�

z

	z	
ln�2pn�	z	�� �n�n

�pn�

, �21�

T̂ and R̂ are the transmission and reflection amplitude matri-

ces, T̂†T̂+ R̂†R̂=Ioo. It is easy to show that T̂ and R̂ may be

expressed in terms of the long-range scattering matrices Š�

=exp�ı�c�S� exp�ı�c� as

T̂ = 2−1�− Š+1 + Š−1� ,

R̂ = 2−1�− Š+1 − Š−1� . �22�

Therefore the cross section �Nlm
d ��� of photoionization of the

atom by the light, linearly polarized along the axis z, is ex-
pressed as

�Nlm
d ��� = 4�2���i=1

No 	Di,N,l
m����E�	2a0

2, �23�

where � is the fine-structure constant, a0 is the Bohr radius,

and Di,N,l
m����E��Di,i�,v�

m����E� are the dipole moment matrix el-
ements

Di,i�,v�
m����E� = ��i

Em�=�1�r,��	r�	�i�v�
m��=�1�r,��
 . �24�

In the above expressions �=E−ENlm is the frequency of ra-
diation and ENlm�Em��i�v� is the energy of the initial bound

state 	Nlm
=�i�v�
m���r ,�� below the first threshold shift

	m1
th ��� /2 at i�=1. The continuous spectrum solution ��p��r�

having the asymptotic form of a “standing” wave and the
reaction matrix K required for using Eq. �10� or Eq. �16�,
as well as the discrete spectrum solution ��r� and the
eigenvalue Em��i�=1v�, were calculated using the program
KANTBP �7�.

Profiles of the wave function �18� for Z=1, m=0, �=0.1,
jmax=10, and No=1 are shown in Fig. 1 at two fixed values
of energy E, corresponding to resonance transmission

	T̂	2=sin2��e−�o�=1 and total reflection 	R̂	2=cos2��e−�o�
=1. Here �e��1

+1 and �o��1
−1 are the short-range phase

shifts for even and odd states from Eq. �11�, respectively. The
transmission and reflection coefficients are explicitly shown
in Fig. 2 together with the even �e and odd �o phase shifts

versus the energy E �Fig. 2�a�� and �Ẽ2−2E�−1/2 �Fig. 2�b��,
where Ẽ2=	m2

th ��� is the second threshold shift. The quasis-
tationary states imbedded in the continuum correspond to the

short-range phase shifts �o�e�=no�e��+� /2 at �Ẽ2−2E�−1/2

=no�e�+�no�e�
. Nonmonotonic behavior of 	T̂	 and 	R̂	 is seen

to include the cases of resonance transmission and total re-
flection, related to the existence of these quasistationary
states.
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FIG. 1. Profiles 	�Em→
�−� 	 of the total wave function �18� in the zx

plane with Z=1, m=0, �=0.1 and the energies E=0.058 85 a.u. �a�
and E=0.116 92 a.u. �b�, demonstrating resonance transmission
and total reflection, respectively.
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FIG. 2. Transmission 	T̂	2 and reflection 	R̂	2 coefficient �22�,
even �e and odd �o short-range phase shifts �11� versus the energy

E �a� and �Ẽ2−2E�−1/2 �b� for Z=1, m=0, �=0.1. Arrow marks the
first threshold E1=� /2.
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Figure 3 clarifies the behavior of the cross section of
photoionization by the light, linearly polarized along
the axis z, from the rotational state 3s0 at B0=6.1 T
��=2.595�10−5� in the energy interval E=6.0–8.0 cm−1 at
jmax=35. The cross sections have been calculated with the
energy step 5�10−4 cm−1 in all the regions except the
vicinity of peaks, where the step was 5�10−6 cm−1. From
our numerical experiments it follows that the absolute maxi-
mal values of the continuum wave functions �̂ j1

�01��E ,r� de-
crease from 10−4 to 10−6 when the number of components j
is increased from 30 to 35, thus demonstrating the linear rate
of convergence of the expansion �2� in the energy interval
considered. The relation between the photoionization cross
section and the induced radiative recombination rate �1�
makes it possible to apply the above results to the urgent
problem of production of cold antihydrogen atoms in mag-
netic traps �10�.

As an example, consider the recombination into the state
N�=3, l�=0, m�=0 that may be stimulated by a titanium-
sapphire laser, under the conditions typical for positron-
antiproton plasma in magnetic traps used for antihydrogen
production, namely, the temperature of the plasma T=4 K,
the positron density ne=1�108 cm−3, and the magnetic in-
duction B=6.10 T. The laser intensity is taken such that at 4
K without the magnetic field the rate of induced recombina-
tion is equal to that of the spontaneous one. In particular, for
N=3 this intensity is I=24 W /cm2 �11�. Figure 4�b� shows

the dependence of the laser-stimulated recombination rate
�SRR per one antiproton upon the initial energy E=ENlm+�
of the positron. For comparison the horizontal dashed line
displays the rate �RR of the spontaneous radiative recombi-
nation into all the states with N=3, which at the intensity
considered is equal to the rate of the laser-stimulated recom-
bination without the magnetic field �11�. One can see narrow
resonances for which the rate of recombination into the state
with fixed l=0, m=0 in the magnetic field is appreciably
higher than the rate of recombination into all nine states with
different l and m possible for N=3 without the magnetic
field. Thus we demonstrated the efficiency of the proposed
approach and program packages in calculations of photoion-
ization and laser-induced recombination of a �anti�hydrogen
atom in the magnetic field and the effects of resonance trans-
mission and total reflection of oppositely charged particles in
the magnetic field.

Further applications of the method may be associated with
calculations of laser-induced recombination of antihydrogen
in magnetic traps �1,6�, channeling of light nuclei in thin
doped films �12�, and potential scattering with confinement
potentials �13�.
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Abstract

 

—The problem of interaction of two channeling similarly charged particles in the center-of-mass sys-
tem has been reduced to the Schrödinger equation in spherical coordinates with an additional oscillator poten-
tial. Preliminary estimations have been obtained and nonmonotonic behavior of the multiplication factor of
nuclear reactions on the collision energy is established.
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INTRODUCTION

The interaction of channeling particles is considered
as a possible solution to the problem of synthesis of
light elements and interaction of low-energy nuclei
[1, 2]. It is suggested that the effect of focusing of a
channeling beam can significantly change the behavior
of the nuclear reaction cross section, depending on the
energy of colliding particles and lattice parameters. To
estimate the cross section, it is necessary to calculate
the wave function of the continuous spectrum, which
describes the interaction of channeling particles at the
point of their pair collision rather than only the reflec-
tances and transmittances within the model [3, 4]. One
of known approaches to solving such problems was
proposed in [5, 6] and applied in [7] to calculate the
quasi-stationary states, providing total reflection and
resonant transmission of electrons and protons in a uni-
form magnetic field at resonant energies [7].

In this study, the approach of [5–7] is used to solve
the problem of scattering of channeling similarly
charged particles in a crystal within the model [3, 4] in
order to calculate the wave function of continuous spec-
trum and estimate the energy dependence on the
nuclear reaction multiplication factor: the ratio of the
probability densities of the wave functions at the point
of pair collision with an additional confinement poten-
tial and without it.

STATEMENT OF THE PROBLEM

We use the model of two similarly charged particles
in the channeling mode, which are described by the
Schrödinger equation

 

(1)

1
2M
--------∆R–

1
2µ
------∆r– U12 r1 r2–( ) U1 r1( ) U r2( )+ + +⎝ ⎠

⎛ ⎞

× Ψ r1 r2,( ) EGΨ r1 r2,( ),=

 

where 

 

,

 

 and  are the radius vectors of the particles
with masses 

 

m

 

1

 

 and 

 

m

 

2

 

 and charges 

 

z

 

1

 

 and 

 

z

 

2

 

, respec-
tively; 

 

M

 

 and 

 

µ

 

 are the total and reduced masses of the
two particles and R and r are the Jacobian radius vec-
tors. The potentials 

 

U

 

1

 

( ), 

 

U

 

2

 

( )

 

, and 

 

U

 

12

 

(

 

|

 

 – 

 

|

 

)

 

determine the interaction of particles with the crystal
and their Coulomb interaction in atomic units. Approx-
imation of the interaction potential of the particles and
crystal by a continuous potential, its expansion in a
series in powers of distance from the channeling axis
(

 

ρ

 

), and consideration of only the main term [8], pro-
vided that the ratios of charges and masses of the inter-
acting particles are equal, make it possible to separate
the part corresponding to the center-of-mass motion in
Eq. (1) [3, 4]. Then, the wave function directly describ-
ing the interaction between the particles obeys the 3D
Schrödinger equation in atomic units:
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is the expansion parameter of the particle–crystal inter-
action potential, and 
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/
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 is the Coulomb
potential of particle interaction.

In Eq. (2), we can perform partial separation of vari-
ables, specifically, separate the dependence on the
angle 

 

ϕ

 

 in cylindrical (

 

z

 

, 

 

ρ

 

, 

 

ϕ

 

) or spherical (

 

r

 

, 

 

θ

 

, 

 

ϕ

 

)
coordinates (the distance from the channeling axis
coincides with the coordinate 

 

ρ

 

).
Numerical analysis showed that the scattering prob-

lem for Eq. (2) can be solved in the cylindrical coordi-
nate system in the range 
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 = (0 
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if the solution must be calculated in the asymptotic

region 

 

Ω

 

as
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Ω\Ωas, the solution to the problem is unstable. In [4],
this problem was solved using a matrix sweep with dis-
cretization of the initial equation according to the
Numerov method. The transmittances and reflectances
were obtained by direct sweep for the corresponding
scattering problem on specified grids of energy values.
However, the reverse sweep, successfully reconstruct-
ing the wave function in the larger part of Ω, fails to
yield a solution in the region Ω0 = |z2 + ρ2| < 1, because
it is necessary to take into account a large number of
rapidly oscillating functions in this region. With due
regard to the fact that the wave function in Ω0 is deter-
mined by the dominant spherically symmetric Cou-
lomb potential, one can obtain an estimate for the steps
∆z and ∆ρ of the crowding grid Ω:

(3)

where lmax and lz are, respectively, the maximum angu-
lar momentum (taken into account) and its conserved
projection on the z axis. The alternative method [5–7],
which makes it possible to solve the problem in spher-
ical coordinates and takes into account the cylindrical
symmetry in the asymptotic region Ωas, is described
below.

KANTOROVICH METHOD

Equation (2) in spherical coordinates, at a fixed
magnetic quantum number m and z parity, can be writ-
ten as

(4)

where the operator A(0)(r, θ), dependent on the parame-
ter r, has the form

(5)

Here, the quantities γ2 = 8µα', Z = µz1z2 and E = µEint

are determined from Eq. (2). Furthermore, we use the

scale transformation r → , Z → Z/ , and E →
E/γ. The solution to Eq. (4) is sought in the form of a
Kantorovich expansion of the function Ψ(r, θ) in angu-
lar oblate spheroidal functions Φi(r, θ) of the operator
A(0)(r, θ), which are calculated using the POTHMF pro-
gram on the specified grid r ∈ Ωr of radial variables [6].

lmax lz+( ) ∆z( )2 ∆ρ( )2+
2π

------------------------------------------------------------- � z2 ρ2+ ,

1

r2
---- ∂

∂r
-----r2 ∂

∂r
-----– A 0( ) r θ,( )

r2
---------------------- 2Z

r
------ 2E–+ +⎝ ⎠

⎛ ⎞ Ψ r θ,( ) 0,=

A 0( ) r θ,( )

=  
1

θsin
----------- ∂

∂θ
------ θ ∂

∂θ
------ m2

θsin
2

------------
1
4
---γ 2r4 θ.sin

2
+ +sin–

γ r γ

The expansion coefficients χij(r) of the function Ψ(r, θ)
satisfy the system of N differential equations

(6)

where I is the unit matrix; V and Q are matrices with a
dimension of N × N, calculated on the specified grid r ∈
Ωr using the POTHMF program [6]; and χ(r) =

 is a rectangular N × N0 matrix, composed

of columns χi(r) =  (N0 is the number of open
channels with the energy 2E > Ei(∞) = 2i–1 + |m| > 0, i =
1, …, N0). The boundary-value problems of continuous
spectrum for the system of N equations (6) with N0

open channels are solved using the KANTBP program
[5], which implements the finite-element method of
high accuracy on the grid Ωr, including the vicinity of
r = 0.

PRELIMINARY ESTIMATIONS
OF THE MULTIPLICATION FACTOR

Using the KANTBP and POTHMF programs at dif-
ferent energies E and effective charges Z, we calculated
the multiplication factors |C(2E)/C0(2E)|2 =

, where Ci(2E) = χ1i (r = 0) are
the numerical values of solutions to Eq. (6) at the pair
impact point and C0(2E) = χ11(r = 0) is the Coulomb
function with the effective charge Z at energy 2E – 1.

1

r2
----I

d
dr
-----r2 d

dr
-----– V r( ) 2Z

r
------+ +⎝

⎛

+ Q r( )
d
dr
----- 1

r2
----dr2Q r( )

dr
-------------------+ 2EI– ⎠

⎞ χ r( ) 0,=

χi r( ){ }i 1=

N0

χ ji r( ){ } j 1=
N

Ci 2E( )/C0 2E( ) 2

i 1=

N0∑

3

0 8
2E–1

|C/C0|2

2

1

642

1 2 3 4

Dependence of the total multiplication factor (solid line)
and the multiplication factor in each open channel (1–4,
dotted lines) on the doubled energy 2E, counted from the
first threshold E1 = 1, i.e. 2E –1 at the effective charge Z = 6.
The doubled barrier height is 2U0 = 6.24.
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Figure shows the estimate of the total multiplication
factor and the multiplication factors in each open chan-
nel (1–4) as functions of the energy 2E – 1, counted
from the first threshold, at the effective charge Z = 6 for
the even solution component at m = 0. The maximum
total multiplication factor is obtained at 2E – 1 = 5.9,
between the third and fourth channels at transmission
through the barrier 2U0 = 6.24 and almost total reflec-
tion. Such behavior is a consequence of superstrong
focusing effects, accompanying astrophysical magnetic
fields. The interaction of particles in a channel involves
two competing processes: defocusing (Coulomb inter-
action) and focusing (oscillator interaction, effectively
decreasing the dimension of the problem); therefore,
there is the energy range where the probability density
of the wave function at the pair collision point has a
maximum for quasi-stationary continuous-spectrum
states. To study the interaction of channeling particles
at real values of the effective charge Z, for example, for
identical particles with the mass and charge of deuteron
nucleus, it is necessary to set the effective charge Z ≈
100 and solve the problem with a large number of open
channels N0 ≈ U0 = 3(Z/2)2/3, which requires significant
computational resources.

CONCLUSIONS
We have determined the optimal conditions under

which the problem of interaction of channeling parti-
cles can be solved. Preliminary estimates of the multi-
plication factor are obtained. The energy dependence of
the multiplication factor is nonmonotonic, which is
explained by the presence of two potentials: defocusing

Coulomb potential (interaction between similarly
charged particles) and focusing oscillator potential
(interaction of particles with the crystal). These poten-
tials maintain quasi-stationary continuous-spectrum
states and provide almost total reflection.
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We consider a new method for the description of the penetration of A identical
quantum particles, coupled by short-range oscillator-like interaction, through a
repulsive potential barrier. We assume that the spin part of the wave function
is known, so that only the spatial part of the wave function is to be consid-
ered, which may be symmetric or antisymmetric with respect to a permutation
of A identical particles. The initial problem is reduced to the penetration of a
composite system with the internal degrees of freedom, describing an (A−1)×d-
dimensional oscillator, and the external degrees of freedom describing the center-
of-mass motion of A particles in d-dimensional Euclidian space. For simplicity,
we restrict our consideration to the so-called s-wave approximation [1] corre-
sponding to one-dimensional Euclidean space (d = 1).

We seek for the solution in the form of Galerkin expansion in terms of clus-
ter functions in the new symmetrized coordinate representation (SCR) [18] with
unknown coefficients having the form of matrix functions of the center-of-mass
variable. As a result, the problem is reduced to a boundary-value problem for
a system of ordinary second-order differential equations with respect to the
center-of-mass variable. Conventional asymptotic boundary conditions involv-
ing unknown amplitudes of reflected and transmitted waves are imposed on the
desired matrix solution. Solving the problem was implemented as a complex of
the symbolic-numeric algorithms and programs in CAS MAPLE and FORTRAN
environment. The results of calculations are analyzed with particular emphasis
on the effect of quantum transparency that manifests itself as nonmonotonic
energy dependence of the transmission coefficient due to resonance tunnelling of
the bound particles in S (A) states through the repulsive potential barriers.

The paper is organized as follows. In Section 2, we present the problem state-
ment in symmetrized coordinates. In Section 3, we introduce the SCR of the clus-
ter functions of the considered problem and the asymptotic boundary conditions
involving unknown amplitudes of reflected and transmitted waves. In Section 4,
we formulate the boundary-value problem for the close-coupling equations in the
Galerkin form using the SCR. In Section 5, we analyze the results of numerical
experiment on the resonance transmission of a few coupled identical particles in
S(A) states, whose energies coincide with the resonance eigenenergies of the bar-
rier quasi-stationary states embedded in the continuum. In Conclusion, we sum
up the results and discuss briefly the perspectives of application of the developed
approach.

2 Problem Statement

We consider a system of A identical quantum particles having the mass m and
a set of the Cartesian coordinates xi ∈ Rd in d-dimensional Euclidian space,
considered as vector x̃ = (x̃1, ..., x̃A) ∈ RA×d in A×d-dimensional configuration
space. The particles are coupled by the pair potentials Ṽ pair(x̃ij) depending
upon the relative coordinates, x̃ij = x̃i − x̃j , similar to a harmonic oscillator

potential Ṽ hosc(x̃ij) = mω2

2 (x̃ij)
2 with the frequency ω. The resulting clusters

are subject to the influence of the potentials Ṽ (x̃i) describing the external field
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of a target. The appropriate Schrödinger equation takes the form

⎡
⎣− h̄2

2m

A∑
i=1

∂2

∂x̃2
i

+

A∑
i,j=1;i<j

Ṽ pair(x̃ij)+

A∑
i=1

Ṽ (x̃i)−Ẽ
⎤
⎦ Ψ̃(x̃)=0,

where Ẽ is the total energy of the system of A particles, and P̃ 2 = 2mẼ/h̄2, P̃ is
the total momentum of the system, and h̄ is Planck constant. Using the oscillator

units xosc =

√
h̄/(mω

√
A), posc =

√
(mω
√
A)/h̄ = x−1osc, and Eosc = h̄ω

√
A/2 to

introduce the dimensionless coordinates xi = x̃i/xosc, xij = x̃ij/xosc = xi − xj ,

E = Ẽ/Eosc = P 2, P = P̃ /posc = P̃ xosc, V pair(xij) = Ṽ pair(xijxosc)/Eosc,

V hosc(xij) = Ṽ hosc(xijxosc)/Eosc = 1
A (xij)2 and V (xi) = Ṽ (xixosc)/Eosc, one

can rewrite the above equation in the form

⎡
⎣−

A∑
i=1

∂2

∂x2
i

+

A∑
i,j=1;i<j

1

A
(xij)

2+

A∑
i,j=1;i<j

Upair(xij)+

A∑
i=1

V (xi)−E
⎤
⎦Ψ(x)=0, (1)

where Upair(xij) = V pair(xij)−V hosc(xij), i.e., if V pair(xij) = V hosc(xij), then
Upair(xij) = 0.

The problem of tunnelling of a cluster of A identical particles in the sym-
metrized coordinates (ξ0, ξ), where ξ = {ξ1, ..., ξA−1}:

ξ0 =
1√
A

(
A∑

t=1

xt

)
, ξs =

1√
A

(
x1 +

A∑
t=2

a0xt +
√
Axs+1

)
, s = 1, ..., A− 1,(2)

in terms of total potential U(ξ0, ξ) = V (ξ0, ξ) + Ueff (ξ0, ξ) reads as [18]

[
− ∂2

∂ξ20
+

A−1∑
i=1

(
− ∂2

∂ξ2i
+ (ξi)

2

)
+ U(ξ0, ξ)− E

]
Ψ(ξ0, ξ) = 0, (3)

Ueff (ξ0, ξ) =

A∑
i,j=1;i<j

Upair(xij(ξ)), V (ξ0, ξ) =

A∑
i=1

V (xi(ξ0, ξ)),

which is invariant under permutations ξi ↔ ξj at i, j = 1, ..., A − 1, i.e., the
invariance of Eq. (1) under permutations xi ↔ xj at i, j = 1, ..., A survives the
transformation.

3 Cluster Functions and Asymptotic Boundary
Conditions

For simplicity we restrict our consideration to the so-called s-wave approxima-
tion [1], i.e., one-dimensional Euclidian space (d = 1). Cluster functions Φ̃j(ξ0, ξ),
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where ξ = {ξ1, ..., ξA−1}, corresponding to the threshold energies ε̃j(ξ0) depen-
dent on ξ0 as a parameter, are solutions of the parametric eigenvalue problem(

− ∂2

∂ξ2
+ ξ2 + U (ξ0, ξ)− ε̃j(ξ0)

)
Φ̃j(ξ0, ξ) = 0,

∫ +∞

−∞
Φ̃i(ξ0, ξ)Φ̃j(ξ0, ξ)d

A−1ξ = δij ,(4)

where U(ξ0, ξ) = V (ξ0, ξ)+Ueff (ξ0, ξ) is the total potential that enters Eq. (3).
The effective potential Ueff (ξ0, ξ) can be approximated also by the deformed
Wood–Saxon potential in the single-particle oscillator approximation [9]. We
seek for the cluster functions Φi(ξ0, ξ) in the form of an expansion over the

eigenfunctions Φ
S(A)
j′ (ξ), symmetric (S) or antisymmetric (A) with respect to a

permutation of the initial A Cartesian coordinates of A identical particles. These

functions correspond to eigenenergies E
S(A)
i of the (A−1)-dimensional oscillator,

generated by the algorithm SCR [18], with unknown coefficients α̃
(i)
j′ (ξ0):

Φ̃i(ξ0, ξ) =

j′max∑
j′=1

α̃
(i)
j′ (ξ0)Φ

S(A)
j′ (ξ). (5)

Thus, the eigenvalue problem (4) is reduced to a linearized version of the Hartree–
Fock algebraic eigenvalue problem

j′max∑
j′=1

(
δij′E

S(A)
i + Uij′ (ξ0)− δij′ ε̃i(ξ0)

)
α̃
(i)

j′ (ξ0) = 0,

j′max∑
j′=1

α̃
(i′)
j′ (ξ0)α̃

(i)

j′ (ξ0) = δii′ , (6)

where the potentials Upair
ij′ and Vij′ (ξ0) are expressed in terms of the integrals

Upair
ij′ =

∫
dA−1ξΦS(A)

i (ξ)Ueff (ξ)Φ
S(A)
j′ (ξ), (7)

Vij′ (ξ0) =

∫
dA−1ξΦS(A)

i (ξ)

(
A∑

k=1

V (xk(ξ0, ξ))

)
Φ
S(A)
j′ (ξ). (8)

The parametric algorithm SCR, i.e., algorithm PSCR, for solving the above para-
metric eigenvalue problem was implemented by means of subroutines [19, 20],
or in the single-particle approximation by means of the subroutine [9] in CAS
MAPLE and FORTRAN environment.
(G) If Uij′(ξ0) = Upair

ij′ are independent on ξ0, then ε̃i(ξ0) = ε̃i and α̃
(i)
j′ (ξ0) = α̃

(i)
j′

are also independent of ξ0, and (5) reduces to Φ̃i(ξ) =
∑j′max

j′=1 α̃
(i)
j′ Φ

S(A)
j′ (ξ).

(O) If V pair(xij) = V hosc(xij) and Upair
ij′ = 0, then ε̃i = E

S(A)
i and α̃

(i)
j′ = δij′ .

For the short-range barrier potentials V (ξ0, xi(ξ)) in terms of the asymp-
totic cluster functions Φ̃j(ξ)→ Φ̃j(ξ0, ξ) at |ξ0| → ∞ the asymptotic boundary

conditions for the solution Ψ(ξ0, ξ) = {Ψio(ξ0, ξ)}No

io=1 in the asymptotic region
|ξ|/|ξ0| � 1 have the form [16]

Ψ
←→
io (ξ0 → ±∞, ξ)→ Φ̃io(ξ)

exp (∓ı (pioξ0))√
pio

+

No∑
j=1

Φ̃j(ξ)
exp (±ı (pjξ0))√

pj
R
←→
jio (E),
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Fig. 1. The Gaussian-type potential (16) at σ = 0.1 (in oscillator units) and the
corresponding 2D barrier potential at α = 1/10, σ = 0.1

Ψ
←→
io (ξ0 → ∓∞, ξ)→

No∑
j=1

Φ̃j(ξ)
exp (∓ı (pjξ0))√

pj
T
←→
jio (E), (9)

Ψ
←→
io (ξ0, |ξ| → ∞)→ 0.

Here v =←,→ indicates the initial direction of the particle motion along the ξ0
axis, No is the number of open channels at the fixed energy E and momentum
p2io = E−Eio > 0 of cluster; R←jio = R←jio(E), R→jio = R→jio (E) and T←jio = T←jio(E),
T→jio = T→jio(E) are the unknown amplitudes of the reflected and transmitted

waves. We can rewrite Eqs. (9) in the matrix form Ψ = Φ̃
T
F describing the

incident wave and the outgoing waves at ξ+0 → +∞ and ξ−0 → −∞ as
(
F→(ξ+0 ) F←(ξ+0 )
F→(ξ−0 ) F←(ξ−0 )

)
=

(
0 X(−)(ξ+0 )
X(+)(ξ−0 ) 0

)
+

(
0 X(+)(ξ+0 )
X(−)(ξ−0 ) 0

)
S. (10)

Here the unitary and symmetric scattering matrix S

S =

(
R→ T←
T→ R←

)
, S†S = SS† = I, (11)

where S† is the conjugate transpose of S. It is composed of the matrices, whose
elements are reflection and transmission amplitudes that enter Eqs. (9) and
possess the following properties[16, 17]:

T†→T→ + R†→R→ = Ioo = T†←T← + R†←R←,

T†→R← + R†→T← = 0 = R†←T→ + T†←R→, (12)

TT
→ = T←, RT

→ = R→, RT
← = R←.

4 Close-Coupling Equations in the SCR

We seek for the solution of problem (3) in the symmetrized coordinates in the
form of Galerkin (G) expansion over the asymptotic cluster functions Φ̃j(ξ)
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Fig. 2. Diagonal Vjj (solid lines) and nondiagonal Vj1, (dashed lines) effective poten-
tials for A = 2, A = 3 and A = 4 of the S- (upper panels) and A- (lower panels) of the
particles at σ = 1/10

corresponding to the eigenvalues ε̃i, which are also independent of ξ0, from (6)
under the (G) condition, with unknown coefficient functions χjio(ξ0):

Ψio(ξ0, ξ) =

jmax∑
j=1

Φ̃j(ξ)χjio (ξ0), χjio (ξ0) =

∫
dA−1ξΦ̃j(ξ)Ψio(ξ0, ξ). (13)

The set of close-coupling Galerkin equations in the symmetrized coordinates
has the form

[
− d2

dξ20
+ ε̃i − E

]
χiio (ξ0) +

jmax∑
j=1

Ṽij(ξ0)χjio (ξ0) = 0, (14)

where the effective potentials Ṽij(ξ0) are calculated using the set of eigenvectors

α̃
(i)
j′ of the noparametric algebraic problem (6) under the above condition (G):

Uij′(ξ0) = Upair
ij′ 
= 0,

Ṽij(ξ0) =

j′max∑
j′=1

j′max∑
j′′=1

α̃
(i)
j′ Vj′j′′(ξ0)α̃

(j)
j′′ , (15)

and the integrals Vij′ (ξ0) are defined in (8) and calculated in CAS MAPLE. In

the examples considered below, we put Uij′ (ξ0) = Upair
ij′ = 0 in (6), then we have

the (O) condition: ε̃i = E
S(A)
i , α̃

(i)
j′ = δij′ and Ṽij(ξ0) = Vij(ξ0). The repulsive

barrier is chosen to have the Gaussian shape

V (xi) =
α√
2πσ

exp(−x2
i

σ2
). (16)
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Table 1. Resonance values of the energy ES (EA) for S (A) states for A = 2, 3, 4
(σ = 1/10, α = 20) with approximate eigenvalues ED

i , for the first ten states i =
1, ..., 10, calculated using the truncated oscillator basis (D) till jmax = 136, 816, 1820
at A = 2, 3, 4. The asterisk labels two overlapping peaks of transmission probability

i 1 2 3 4 5 6 7 8 9 10

A = 2

ES 5.72 9.06 9.48 12.46 12.57 13.46 15.74 15.78 16.65 17.41

EA 5.71 9.06 9.48 12.45 12.57 13.45 15.76∗ 15.76∗ 16.66 17.40

ED
i 5.76 9.12 9.53 12.52 12.64 13.52 15.81 15.84 16.73 17.47

A = 3

ES 8.18 11.11 12.60 13.93 14.84 15.79 16.67
8.31 11.23 14.00 14.88 16.73

EA 11.55 14.46 16.18
11.61 14.56 16.25

ED
i 8.19 11.09 11.52 12.51 13.86 14.42 14.74 15.67 16.11 16.53

A = 4

ES 10.12 11.89 12.71 14.86 15.19 15.41 15.86 16.37 17.54 17.76

ED31
i 10.03 12.60 14.71 15.04 16.18 17.34 17.56

ED22
i 11.76 15.21 15.64

Figure 1 illustrates the Gaussian potential and the corresponding barrier poten-
tials in the symmetrized coordinates at A = 2. This potential has the oscillator-
type shape, and two barriers are crossing at the right angle. In the case A ≥ 3,
the hyperplanes of barriers are crossing at the right angle, too.

The effective potentials Vij(ξ0) calculated using the algorithm SCR [18] and
algorithm DC (see Section 5), are shown in Fig. 2. In comparison with the
symmetric basis, for antisymmetric one the increase of the numbers i and/or j
results in stronger oscillation of the effective potentials Vij and weaker decrease
of them to zero at ξ0 →∞. At A = 2, all effective potentials are even functions,
and at A ≥ 3, some effective potentials are odd functions.

Thus, the scattering problem (3) with the asymptotic boundary conditions (9)
is reduced to the boundary-value problem for the set of close-coupling equations
in the Galerkin form (14) under the boundary conditions at d = 1, ξ0 = ξmin

and ξ0 = ξmax:

dF (ξ0)

dξ0

∣∣∣∣
ξ0=ξmin

= R(ξmin)F (ξmin),
dF (ξ0)

dξ0

∣∣∣∣
ξ0=ξmax

= R(ξmax)F (ξmax), (17)

whereR(ξ) is an unknown jmax×jmax matrix function, F (ξ0) = {χio(ξ0)}No

io=1 =

{{χjio(ξ0)}jmax

j=1 }No

io=1 is the required jmax × No matrix solution, and No is the
number of open channels, No = max

2E≥ε̃j
j ≤ jmax, calculated using the third version

of KANTBP 3.0 program [21, 22], implemented in CAS MAPLE and FORTRAN
environment and described in [16, 17].
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Fig. 3. The total transmission probability |T |211 vs energy E (in oscillator units) for the
system of A = 2, 3, 4 S- (upper panels) and A- (lower panels) particles coupled by the
oscillator potential and being initially in the ground cluster state penetrating through
the repulsive Gaussian-type potential barriers (16) with σ = 0.1 and α = 2, 5, 10, 20

5 Resonance Transmission of a Few Coupled Particles

In the (O) case, i.e., V pair(xij) = V hosc(xij), the solution of the scattering prob-
lem described above yields the reflection and transmission amplitudes Rjio (E)
and Tjio (E) that enter the asymptotic boundary conditions (9) as unknowns.
|Rjio (E)|2 (|Tjio(E)|2) is the probability of a transition to the state described
by the reflected (transmitted) wave and, hence, will be referred as the reflection
(transmission) coefficient. Note that |Rjio (E)|2 + |Tjio(E)|2 = 1.

In Figs. 3 and 4, we show the energy dependence of the total transmission
probability |T |2ii =

∑No

j=1 |Tji(E)|2. This is the probability of a transition from a
chosen state i into any of No states found from Eq. (13) by solving the boundary-
value problem in the Galerkin form, (14) and (17), using the KANTBP 3.0
program [21, 22] on the finite-element grid Ωξ{−ξmax

0 , ξmax
0 } with Nelem fourth-

order Lagrange elements between the nodes. For S-solutions at A = 2, 3, 4
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Fig. 4. The total transmission probability |T |2ii vs the energy E (in oscillator units) for
the system of A = 2, 3, 4 particles, coupled by the oscillator potential and being initially
in the ground and excited S-states, penetrating through the repulsive Gaussian-type
potential barriers (16) with σ = 0.1 and α = 10. We use the notation of the S-states,
[i1, ..., iA−1] = 1/

√
Nβ

∑
i′1,...,i

′
A−1

∏
Φ̄i′

k
(ξk), with summation over all (Nβ) multiset

permutations of i1, ..., iA−1 of A− 1-dimensional oscillator functions [18]

the following parameters were used: jmax = 13, 21, 39, ξmax
0 = 9.3, 10.5, 12.8,

Nelem = 664, 800, 976, while for A-solutions we used jmax = 13, 16, 15, ξmax
0 =

9.3, 10.5, 12.2, Nelem = 664, 800, 976 that yield an accuracy of the solutions of an
order of the fourth significant figures.

Figure 3 demonstrates non-monotonic behavior of the total transmission
probability versus the energy, and the observed resonances are manifestations of
the quantum transparency effect. With the barrier height increasing, the peaks
become narrower, and their positions shift to higher energies. The multiplet
structure of the peaks in the symmetric case is similar to that in the antisym-
metric case. For three particles, the major peaks are double, while for two and
four particles, they are single. For A = 2 and α = 10, 20, one can observe the
additional multiplets of small peaks.

Figure 4 illustrates the energy dependence of the total transmission probabil-
ities from the exited states. As the energy of the initial excited state increases,
the transmission peaks demonstrate a shift towards higher energies, the set of
peak positions keeping approximately the same as for the transitions from the
ground state and the peaks just replacing each other, like it was observed in
the model calculations [12]. For example, for A = 3, the position of the third
peak for transitions from the first two states (E = 10.4167 and E = 10.4156)
coincides with the position of the first peak for the transitions from the second
two states (E = 10.4197 and E = 10.4298).

Calculation of Energy Position of the Barrier Quasistationary States.
In the considered case, the potential barrier V (xi) is narrow, and V pair(xij) =
V hosc(xij), so that we solve Eq. (1) in the Cartesian coordinates x1, ..., xA in one
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Fig. 5. The probability densities |χi(ξ0)|2 for the coefficient functions of the decom-
position (13), representing the incident wave function of the ground S-state of the
particles at the values of the collision energy E corresponding to individual maxima
and minima of the transmission coefficient in Fig. 3. The parameters of the Gaussian
barrier are α = 10 and σ = 0.1

of the 2A−2 subdomains, defined as pixi > 0, pi = ±1, under the Dirichlet condi-
tions (DC): Ψ(x1, ..., xA)|∪A

i=1{xi=0} = 0 at the internal boundaries ∪Ai=1{xi = 0}.
Here the value pi = ±1 indicates the location of the ith particle at the right or
left side of the barrier, respectively. Thus, in the DC procedure we seek for the
solution in the form of a Galerkin expansion over the orthogonal truncated os-
cillator basis, ΨD

i (x) =
∑jmax

j=1 Φ̄j(x)ΨD
ji composed of A-dimensional harmonic

oscillator functions Φ̄j(x), odd in each of the Cartesian coordinates x1, ..., xA

in accordance with the above DCs, with unknown coefficients ΨD
ji . As a result,

we arrive at the algebraic eigenvalue problem DΨD = ΨDED with a dense
real-symmetric jmax × jmax matrix. So, in the DC procedure we seek for an
approximate solution in one of the potential wells, i.e., we neglect the tunnelling
through the barriers between wells. Therefore, we cannot observe the splitting
inherent in exact eigenvalues corresponding to S and A eigenstates, differing in
permutation symmetry. However, we can explain the mechanism of their appear-
ance and give their classification, which is important, too. This algorithm DC
was implemented in CAS MAPLE and FORTRAN environment.
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Remark. The DC procedure is similar to solving Eq. (3) in the symmetrized
coordinates ξ0, ξ related to the Cartesian ones by Eq. (2), implemented the
following two steps:

(i) we approximate the narrow barriers by impenetrable walls xk(ξ0, ξ) = 0;
(ii) we superpose these mutually perpendicular walls with the coordinate hyper-
planes using rotations.

Actually, the two approaches yield the same boundary-value problem formulated
in different coordinates (1), (3).

The algorithm DC :

Input:
A is the number of identical particles;
xk, k = 1, ..., A are the Cartesian coordinates of the identical particles;
pk = ±1 indicates the location of the kth particle ;
jmax is the number of the eigenfunctions of A-dimensional harmonic oscillator;

Output:
D = {Dj′j} is the jmax × jmax matrix ;
ED

i and ΨD
ji are the real-value eigenenergies and eigenvectors;

Local:
Φj =

√
2A
∏A

k=1 Φ̄ik(xk);

I(i′k, ik) =
∫∞
0 Φ̄i′k (x)Φ̄ik (x)dx =

2
(i′

k
+ik)/2

2F1(i
′
k,ik;(2−i′k−ik)/2;1/2)

Γ ((2−i′k−ik)/2)
√

i′k!ik!
;

Γ (∗) is the gamma-function, 2F1(∗, ∗; ∗; ∗) is the hypergeometric function;

1: Eq := (−Δ +
∑

(pkxk − pk′xk′ )/2A);
2: Eq :=

√
A/(A− 1)(Eq,Δ→ Δ/(A/(A− 1)), xk → xk

4
√
A/(A− 1);

3: Eq := Eq, p2k → 1, Δ =
∑

k(x2
k − (2nk + 1));

4: Eq := Eq
∏

Φ̄ik(xk);
5: Eq := xk = (

√
ik + 1Φ̄ik+1(xk) +

√
ikΦ̄ik−1(xk))/(

√
2Φ̄ik(xk));

6: for j, j′ = 1, ..., jmax do
Dj′j := Φik(xk)→ I(i′k, ik);
end for

7: DΨD
ji = ΨD

jiE
D
i → ED

i and ΨD
ji ;

In Table 1, we present the resonance values of the energy ES (EA) calculated
by solving the boundary-value problem (14) and (17), using the KANTBP 3.0
program, for S (A) states at A = 2, 3, 4 σ = 1/10, α = 20 that correspond to
the maxima of transmission coefficients |T |2ii in Fig. 3 up to values of energy
E < 18 and corresponding resonance values of the energy ED calculated by
means of the algorithm DC. One can see that the accepted approximation of
the narrow barrier with impermeable walls using in the algorithm DC provides
the appropriate approximations ED

i of the above high accuracy results ES (EA)
with the error smaller than 2%. Below we give a comparison and qualitative
analysis of the obtained results.
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Fig. 6. a. The comparison of convergence rate of Galerkin (cc*) and Kantorovich (k*)
close-coupling expansions in calculations of transmission coefficient |T |211 for the S-
states, A = 2 at α = 10, σ = 0.1, like epure of the first peak from Fig. 3. b. The
comparison of Galerkin and Kantorovich methods (G=K) with Finite-Difference Nu-
merov method (N)

For two particles, A = 2 (see Fig. 1), there are two symmetric potential wells.
In each of them both symmetric and asymmetric wave functions are constructed.
Since the potential barrier separating the wells is sufficiently high, the appro-
priate energies are closely spaced, so that each level describes the states of both
S and A type. The lower energy levels form a sequence “singlet-doublet-triplet,
etc.”, which is seen in Fig. 3. The resonance transmission energies for a pair of
particles in S states are lower than that for a pair of those in A states. This is due
to the fact that in the vicinity of the collision point, the wave function is zero.
When A = 3 there are six similar wells, three of them at each side of the plane
ξ0 = 0. The symmetry with respect to the plane ξ0 = 0 explains the presence
of doublets. The presence of states with definite symmetry is associated with
the fact that the axis ξ0 is a third-order symmetry axis. However, in contrast
to the case A = 2, one can obtain either S or A combinations of states. For
example, the first four solutions of the problem, in one of the wells (e.g., the one
restricted with the pair-collision planes “13” and “23”) possess the dominant
components 2

√
2Φ̄1(x1)Φ̄1(x2)Φ̄1(x3), 2(Φ̄1(x1)Φ̄3(x2) + Φ̄3(x1)Φ̄1(x2))Φ̄1(x3),

2(Φ̄1(x1)Φ̄3(x2)− Φ̄3(x1)Φ̄1(x2))Φ̄1(x3), 2
√

2Φ̄1(x1)Φ̄1(x2)Φ̄3(x3). Note that the
first, second, and fourth of these functions are symmetric with respect to the
permutation x1 ↔ x2, while the third one is antisymmetric. Hence, in all six
wells using the first four solutions one can obtain six S and two A states.

When A = 4 there are 14 wells. Six wells at the center correspond to the case
when two particles are located at one side of the barrier and the rest two at the
other side. The corresponding eigenenergy is denoted ED22

i . The rest eight wells
correspond to the case when one particle is located at one side of the barrier
and the rest three at the other side. The corresponding eigenenergy is denoted
ED31

i . For these states, doublets must be observed, similar to the case of three
particles. However, the separation between the energy levels is much smaller,
because the 4-well groups are strongly separated by two barriers, instead of only
one barrier in the case A = 3.



Tunneling of Clusters through Repulsive Barriers 439

ξ

ξ1 

�����

����
��	
	��
��	��

ξ

ξ
1 

0 

����� ����
��	
	��
��	��

ξ

ξ1 

0 

����� ����
��	
	��
��	��

ξ

ξ 1 

0 

����� ����
��	
	��
��	��

��������
���		

��	�	����

ξ

ξ1 

0 

����� ����
��	
	��
��	��

��������
���		

�����	���

ξ

ξ

1 

0

����� ����
��	
	��
��	��

��������
���		

������	��

Fig. 7. The profiles of probability densities |Ψ(ξ0, ξ1)|2 for the S- (upper panel) and
A- (lower panel) states of A = 2 particles, revealing resonance transmission and total
reflection at resonance energies, shown in Figs. 3

The necessary condition for the quasi-stationary state being symmetric (anti-
symmetric) is that the wave functions must be symmetric (antisymmetric) with
respect to those coordinates xi and xj , for which pi = pj .

The effect of quantum transparency is caused by the existence of barrier qua-
sistationary states imbedded in the continuum. Fig. 5 shows that in the case
of resonance transmission, the wave functions depending on the center-of-mass
variable ξ0 are localized in the vicinity of the potential barrier center (ξ0 = 0).

For the energy values corresponding to some of the transmission coefficient
peaks in Fig. 3 at α = 10 within the effective range of barrier potential action,
the wave functions demonstrate considerable increase (from two to ten times)
of the probability density in comparison with the incident unit flux. This is a
fingerprint of quasistationary states, which is not a quantitative definition, but
a clear evidence in favor of their presence in the system[23]. In the case of total
reflection, the wave functions are localized at the barrier side, on which the wave
is incident, and decrease to zero within the effective range of the barrier action.

Note that the explicit explanation of the quantum transparency effect is
achieved in the framework of Kantorovich close-coupling equations because of
the multi-barrier potential structure of the effective potential, appearing explic-
itly even in the diagonal or adiabatic approximation, in particular, in the S case
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for A = 2 [1, 16]. Nevertheless, in Galerkin close-coupling equations, the multi-
barrier potential structure of the effective potential is observed explicitly in the
A case (see Fig. 2).

As an example, Fig. 6a, which is an epure of Fig. 3, shows the comparison of
convergence rates of Galerkin (13) and Kantorovich close-coupling expansions
in calculations of transmission coefficient |T |211 for S wave functions, A = 2 at
α = 10, σ = 0.1. One can see that the diagonal approximation of the Kan-
torovich method provides better approximations of the positions of the trans-
mission coefficient |T |211 resonance peaks. With the increasing number of basis
functions, i.e., the number jmax of close-coupling equations with respect to the
center-of-mass coordinates in Galerkin (14) and Kantorovich form, respectively,
the convergence rates are similar and confirm the results obtained by solving the
problem by means of the Finite-Difference Numerov method in 2D domain [1],
see Fig. 6 b. This is true for the considered short-range potentials (16), while
for long-range potentials of the Coulomb type, the Kantorovich method can be
more efficient [16].

Figure 7 shows the profiles of |Ψ |2 ≡ |Ψ (−)
Em→|2 for the S and A total wave

functions of the continuous spectrum in the (ξ0, ξ1) plane with A = 2, α = 10,
σ = 1/10 at the resonance energies of the first and the second maximum and
the first minimum of the transmission coefficient demonstrating resonance trans-
mission and total reflection, respectively. It is seen that in the case of resonance
transmission, the redistribution of energy from the center-mass degree of free-
dom to the internal (transverse) ones takes place, i.e., the transverse oscillator
undergoes a transition from the ground state to the excited state, while in the to-
tal reflection, the redistribution of energy is extremely small, and the transverse
oscillator returns to infinity in the same state.

6 Conclusion

We considered a model cluster of A identical particles bound by the oscillator-
type potential that undergo quantum tunnelling through the short-range repul-
sive barrier potentials. The model was formulated in the new representation,
which we referred as the Symmetrized Coordinate Representation (SCR, see
forthcoming paper [18]), that implies construction of symmetric (asymmetric)
combinations of oscillator wave functions in new coordinates. The approach was
implemented as a complex of the symbolic-numeric algorithms and programs.

For clarity, a system of several identical particles was considered in one-
dimensional Euclidian space (d = 1). We calculated only the spatial part of
the wave function, symmetric or antisymmetric under permutation of A identi-
cal particles. If necessary, the spin part of the wave function can be introduced
using the conventional procedure for more rigorous calculation.

We analyzed the effect of quantum transparency, i.e., the resonance tunnelling
of several bound particles through repulsive potential barriers. We demonstrated
that this effect is due to the existence of sub-barrier quasistationary states imbed-
ded in the continuum. For the considered type of symmetric Gaussian barrier
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potential, the energies of the S and A quasistationary states are slightly different
because of the similarity of the multiplet structure of oscillator energy levels at
a fixed number of particles. This fact explains a similar behavior of transmis-
sion coefficients for S and A states shifted by threshold energies. The multiplet
structure of these states is varied with increasing the number of particles, e.g.,
for three particles, the major peaks are double, while for two and four parti-
cles, they are single. Our calculations have also shown that with increasing the
energy of the initial excited state of few-body clusters, the transmission peaks
demonstrate a shift towards higher energies, the set of peak positions keeping
approximately the same as for the transitions from the ground state and the
peaks just skipping from one position to another.

The proposed approach can be adapted and applied to tetrahedral-symmetric
nuclei, quantum diffusion of molecules and micro-clusters through surfaces, and
fragmentation mechanism in producing very neutron-rich light nuclei. In con-
nection with the intense search for superheavy nuclei, a particularly significant
application of the proposed approach is the mathematically correct analysis of
mechanisms of sub-barrier fusion of heavy nuclei and the study of fusion rate
enhancement by means of resonance tunnelling.

The authors thank Professors V.P. Gerdt, A. Góźdź, and F.M. Penkov for
collaboration. The work was supported by grants 13-602-02 JINR, 11-01-00523
and 13-01-00668 RFBR, 0602/GF MES RK and the Bogoliubov-Infeld program.
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Abstract. For parabolic quantum well problem with hydrogen-like im-
purity a two-dimensional boundary-value problem is formulated in spher-
ical coordinates at fixed magnetic quantum number. Calculational
scheme using modified angular prolate spheroidal functions is presented.
Symbolic-numerical algorithms for solving the problem are elaborated.
The efficiency of the algorithms and their implementation is demon-
strated by solving typical test examples and proving the compatibility
conditions for asymptotic solutions of scattering problems in spherical
and cylindrical coordinates.

Keywords: Symbolic-numerical algorithms, parabolic quantum well,
hydrogen-like impurity, modified prolate angular spheroidal functions.

1 Introduction

In [1] optical absorption into the ground state of GaAs parabolic quantum well
and rectangular quantum well with infinitely high walls in the presence of a
hydrogen-like impurity was considered. Calculation of the ground state of these
quantum wells was carried out using single-parameter variational functions in
the cylindrical coordinate system. The upper bounds of these energies were ob-
tained depending on the shift of the Coulomb potential center. The analysis of
more complex quantum mechanical models leads to boundary-value problems
in a non-standard domain of the configuration space with complex boundary,
solved using finite-element method [2,3], or by means of reducing the problem
to ordinary differential equations following Kantorovich method [4], known in
physics as the adiabatic approach to quantum mechanical problems with slow
and fast variables. In the Kantorovich method, the basis functions depend upon
the slow variables as parameters and obey the boundary conditions that account
for all specific features of the original problem. This provides the efficiency of
the method for solving boundary-value problems in a non-standard domain, e.g,
in a sector of a circle with mixed boundary conditions [5], as well as in the
presence of singular potential against the background of confining potentials of
the oscillator type with respect to some independent variables [6,7]. The latter
determines the potentialities of using the method to analyze low-dimensional
quantum mechanical models of semiconductor nanostructures [8].
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c© Springer-Verlag Berlin Heidelberg 2009
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In this paper we present a scheme for solving the boundary-value problem for a
parabolic quantum well in the adiabatic representation and in the spherical co-
ordinates. For efficient application of the Kantorovich method we elaborated the
following symbolic-numerical algorithms to compute the appropriate quantities
to a prescribed accuracy:

• numerical solution of the parametric self-adjoined Sturm-Liouville problem
on a bounded interval of the parameter values and calculation of derivatives
with respect to the parameter of the eigenfunctions and of the matrix elements
(integrals of the eigenfunctions multiplied by their derivatives with respect to
the parameter) that appear as variable coefficients in the system of second-order
ordinary differential equations (ODPEVP, implemented in FORTRAN [9]),

• asymptotic forms of the eigenfunctions and of the matrix elements that ap-
pear as variable coefficients in asymptotic solutions of the boundary-value prob-
lem under consideration and in the asymptotic forms of the system of second-
order ordinary differential equations (MATRA, implemented in MAPLE),

• asymptotic forms of the solutions of the system of second-order ordinary
differential equations for small and large values of the radial variable needed for
solving the corresponding boundary-value problem with the third-type boundary
conditions (ASYMRS, implemented in MAPLE),

• numerical solutions of the boundary-value problem for a system of second-
order ordinary differential equations (KANTBP, implemented in FORTRAN[5]).

The paper is organized as follows. In Section 2, the statement of the boundary-
value problem is given. In Section 3, the procedure MATRA for analytic calcu-
lation of asymptotic form of basis functions and matrix elements at large values
of the radial variable is described. In Section 4, the procedure ASYMRS for the
calculation of asymptotic forms of fundamental solutions of a system of radial
equations at large values of radial variable in the analytic form is presented. In
Section 5, a test example of numerical calculation of the ground state energy and
wave functions with the help of ODPEVP and KANTBP programs is given. The
Conclusion outlines further applications of the above set of symbolic-numerical
algorithms and programs.

2 Problem Statement

The Schrödinger equation describing the parabolic quantum well problem with
shifted hydrogen-like impurity in the reduced atomic units and in the spherical
coordinates (r, η = cos θ, φ) at a fixed magnetic quantum number m reads as [4](

− 1
r2

∂

∂r
r2 ∂

∂r
+

1
r2

A(c, b) − 2q

r

)
ψm(r, η) = 2Eψm(r, η). (1)

Here A(c, b) ≡ A(0)(c, b)+c2+f is the operator of the modified angular functions,
which at b = f = 0 correspond to the angular prolate spheroidal functions [10]

A(0)(c, b) = − ∂

∂η
(1 − η2)

∂

∂η
+

m2

1 − η2
+ c2(η2 − 1) − bη, (2)
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where c = ωr2, b = −2ω2zcr
3, and f = (ωzcr)2 are real parameters depending

on the harmonic oscillator frequency ω and the shift zc of the Coulomb charge
q along z-axis from the origin of the cylindrical frame (ρ, z, φ) in R3, i.e., r =√

ρ2 + (z−zc)2. The wave functions ψm(r, η, b) ≡ ψmi(r, η, b) ≡ ψmi(r, η, zc) at
fixed m obey the following conditions at the boundary of the domain Ωr,η =
Ω(0 ≤ r < ∞,−1 ≤ η ≤ 1):

lim
η→±1

(1 − η2)
∂ψm(r, η)

∂η
= 0, for m = 0, and ψm(r,±1) = 0, for m �= 0,

lim
r→0

r2 ∂ψm(r, η)
∂r

= 0.

At large r = rmax � 1 the discrete-spectrum wave functions obey the Dirichlet
boundary condition that follows from the asymptotic behavior of the solution

lim
r→+∞

r2ψm(r, η) = 0 → ψm(rmax, η) = 0,

and also the orthonormality condition
∫ rmax

0

∫ 1

−1

ψmi(r, η)ψmj(r, η)r2drdη = δij . (3)

The solution of (1)–(3) at fixed m is sought in the form of the Kantorovich
expansion with respect to the single-parameter functions Φj(η; r) ≡ Φmj(η; r):

ψmi(r, η) =
∑jmax

j=1
Φmj(η; r)χji(r), (4)

Here the functions χji(r) are to be found, while the basis functions Φj(η; r) ∈
Fr ∼ L2[−1, 1] are solutions of the eigenvalue problem:

A(c, b)Φmj(η; r) = Ej(r)Φmj(η; r). (5)

The eigenfunctions Φmj(η; r) ≡ Φmj(r, η, zc) at fixed m obey the symmetry
condition Φmj(r, η, zc) = exp(ıπνmq)Φmj(r,−η,−zc), where νmq ≡ νmq(r, zc) is
the real phase, q is the number of zeros in η ∈ [−1, 1], in particular, νmq(r, 0) = q
at zc = 0, Ej(r, zc) = Ej(r,−zc), and the boundary conditions with respect to
the angular variable η at each fixed value of the parameter r ∈ R1

+

lim
η→±1

(1−η2)
∂Φmj(η; r)

∂η
= 0, for m = 0, and Φmj(r,±1) = 0, for m �= 0, (6)

as well as the orthonormality conditions in the interval Ωη = [−1, 1]:

〈
Φmi(η; r)

∣∣Φmj(η; r)
〉

Ωη
=

∫ 1

−1

Φmi(η; r)Φmj(η; r)dη = δij . (7)

Note that the eigenvalues Ej(r) of the operator A(c, b) from (5) are related
to the eigenvalues λj(r) of the operator A(0)(c, b) from (2) by the equality
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Ej(r) = λj(r)+c2 +f . The projection of Eq. (1), using expansion (4), is reduced
to the set of jmax ordinary second-order differential equations with respect to
the unknown vector function χ(i)(r) ≡ (χ1i(r), . . . , χjmaxi(r)):

(
− 1

rd−1
I

d

dr
rd−1 d

dr
+

U(r)
r2

+Q(r)
d

dr
+

1
rd−1

d rd−1Q(r)
dr

−2E I
)

χ(i)(r) = 0.(8)

Here d = 3 is the dimension of the above space R3, I, U(r), and Q(r) are
jmax × jmax matrices whose entries are defined by the following relations:

Uij(r) = r2Hij(r) +
Ei(r) + Ej(r)

2
δij − 2qrδij Iij = δij ,

Hij(r) = Hji(r) =
〈

∂Φi(η; r)
∂r

∣∣∣∣ ∂Φj(η; r)
∂r

〉
Ωη

, (9)

Qij(r) = −Qji(r) = −
〈

Φi(η; r)
∣∣∣∣ ∂Φj(η; r)

∂r

〉
Ωη

.

The discrete-spectrum solutions obey the asymptotic boundary conditions and
the orthonormality condition

lim
r→0

rd−1 dχ(i)(r)
dr

= 0, lim
r→∞

rd−1χ(i)(r) = 0 → χ(i)(rmax) = 0, (10)∫ rmax

0

rd−1
(
χ(i)(r)

)T

χ(j)(r)dr = δij . (11)

Remark 1. The continuity of the eigenfunction Φj(η; r) with respect to the
parameter r is very important for calculations of the potential matrix elements
(9) and their further applications for solution of boundary problems for a system
of coupled differential equations (8) as considered in [5]. Hence we required
Φj(η; r) > 0 in the vicinity of the right boundary point η = 1 [9].

Remark 2. The formulation of the boundary-value problem of continuous spec-
trum for the set of Eqs. (8) using asymptotic expansions of the solutions pre-
sented below is given in [5,7].

3 Symbolic Algorithm for Evaluating the Asymptotic
Forms of Matrix Elements

The procedure MATRA computes the asymptotic forms of solutions of the eigen-
value problem (5) together with the matrix elements (9) as expansions in powers
of r and 1/r for small and large values of r, respectively. Here we consider the
case of large r.

In step 1 we go from the coordinate η ∈ [−1, 1] to the new coordinate ẑ ∈
[
√

ω(−r + zc),
√

ω(r + zc)] using the formula rη ≡ z′ = z − zc = (ẑ − zc
√

ω)/
√

ω.
In step 2 we construct the asymptotic expansion defined in the domain

η ∈ [−η1, η1], where η1 = O((ωr2)−1/2+ε), 0 < ε < 1/2. It means that in
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the evaluation of the corresponding integrals we omit exponentially small terms
and change the domain from the finite interval [

√
ω(−r + zc),

√
ω(r + zc)] to the

infinite one (−∞, +∞).
In step 3 we find the asymptotic solution Φas

j (ẑ; r) and r−2Ej(r) =
r−2(λj(r) + c2 + f) = ωβj(r) as an expansion with j = n + 1

Φas
j (ẑ; r) = 4

√
ω
√

r

kmax∑
k=0

Φ
(2k)
n (ẑ)
r2k

, Ej(r) =
kmax∑
k=0

E
(2k)
n

r2k
, βj(r) =

kmax∑
k=0

β
(2k)
n

r2k
. (12)

Substituting Eq.(12) into Eq. (5) and equating the coefficients at the same powers
of r, we arrive at a system of recurrence differential equations for evaluating the
coefficients Φ

(2k)
n (ẑ) and β

(2k)
n , k = 1, . . . , kmax:

L(n)Φ(2k)
n = f (2k)

n (ẑ), L(n) = − d2

dẑ2
− (2n + 1)+ẑ2, (13)

with the initial data β
(0)
n = 2n+1, and Φ

(0)
n (ẑ) is a known solution of the problem

L(n)Φ(0)
n (ẑ) = 0,

∫ +∞

−∞
Φ(0)

n (ẑ)Φ(0)
n′ (ẑ)dẑ = δnn′ . (14)

In Eqs. (13) the right-hand sides f
(2k)
n (ẑ) are defined by the relations

f (2k)
n (ẑ) =

(ẑ − zc
√

ω)2

ω

d2Φ
(2k−2)
n (ẑ)
dẑ2

+
2(ẑ − zc

√
ω)

ω

dΦ
(2k−2)
n (ẑ)

dẑ

+
k∑

j=1

(a(2j)(ẑ, zc) − β(2j)
n )Φ(2k−2j)(ẑ) = 0,

where the coefficients a(2j)(ẑ, zc) are defined by Taylor expansion at large ωr2

m2

1 − η2
= m2

(
1 − (ẑ − zc

√
ω)2

ωr2

)−1

=
kmax∑
j=0

a(2j)(ẑ, zc)
r2j

. (15)

Note that the coefficients a(2j)(ẑ, zc) contain the terms of the order of ẑ2l till
l = j. The orthogonality and normalization conditions follow from (7) and (12)

I
(2k)
jj′ =

k∑
l=0

∫ ∞

−∞
Φ(2l)

nl
(ẑ)Φ(2k−2l)

nr
(ẑ)dẑ = δk0δnlnr (16)

where nl = j − 1, nr = j′ − 1.
We find the asymptotic expressions of the matrix elements Hjj′ (r) and Qjj′(r)

from (9) in the form of expansions

Qjj′ (r) =
kmax∑
k=1

Q
(2k−1)
jj′

r2k−1
, Hjj′ (r) =

kmax∑
k=1

H
(2k)
jj′

r2k
. (17)
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Table 1. Values of the partial sums (27) for r−2Ej(r) depending on kmax for ω = 3,
m = 0, zc = 0.4, and r = 8. The last row contains the corresponding numerical values
(n.v.) calculated by means of ODPEVP [9].

j r−2E1 r−2E2 r−2E3 r−2E4

r −0E
( 0)
j 3 9 15. 21.

+r −2E
( 2)
j 2.9845312 8.9614062 14.922656 20.868281

+r −4E
( 4)
j 2.9844843 8.9611764 14.922034 20.866998

+r −6E
( 6)
j 2.9844838 8.9611729 14.922022 20.866966

+r −8E
( 8)
j 2.9844838 8.9611729 14.922022 20.866965

+r−10E
(10)
j 2.9844838 8.9611729 14.922022 20.866965

(n.v.) 2.9844838 8.9611729 14.922022 20.866965

Here the coefficients Q
(2k+1)
jj′ and H

(2k+2)
jj′ are defined by the relations

Q
(2k+1)
jj′ = −

k∑
l=0

∫ +∞

−∞
Φ(2l)

nl
(ẑ)Q̂Φ(2k−2l)

nr
(ẑ)dẑ,

H
(2k+2)
jj′ =

k∑
l=0

∫ +∞

−∞
Q̂Φ(2l)

nl
(ẑ)Q̂Φ(2k−2l)

nr
(ẑ)dẑ, (18)

Q̂Φ(2l)
nl

(ẑ) =
(

1
2
− 2l

)
Φ(2l)

nl
(ẑ) + (ẑ − zc

√
ω)

dΦ
(2l)
nl (ẑ)
dẑ

.

In step 4 we construct Φ
(2k)
n (ẑ) as the expansion with unknown coefficients b

(2k)
n;s

Φ(2k)
n (ẑ) =

M(k)∑
s=−M(k)

b(2k)
n;s Φ

(0)
n+s(ẑ). (19)

Here the basis functions Φ
(0)
v (ẑ) are solutions of (14) expressed in terms of the

Hermite polynomials [10]

Φ(0)
v (ẑ) =

Hv(ẑ) exp(−ẑ2/2)
4
√

π
√

2v
√

v!
.

Using the known recurrence relation for Hermite polynomials Hv(ẑ)

ẑHv(ẑ) =
Hv+1(ẑ)

2
+ vHv−1(ẑ),

dHv(ẑ)
dẑ

= 2vHv−1(ẑ), (20)

we obtain the recurrence relations for the basis functions Φ
(0)
v (ẑ):

ẑΦ(0)
v (ẑ) = +

√
v + 1√

2
Φ

(0)
v+1(ẑ) +

√
v√
2
Φ

(0)
v−1(ẑ),

dΦ
(0)
v (ẑ)
dẑ

= −
√

v + 1√
2

Φ
(0)
v+1(ẑ) +

√
v√
2
Φ

(0)
v−1(ẑ), (21)
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Table 2. The same as in Table 1, but for Qij(r) at i �= j

i, j Q12, 10
−2 Q23, 10

−2 Q34, 10
−1 Q13, 10

−2 Q24, 10
−1 Q14, 10

−4

r−1Q
( 1)
ij 6.1237243 8.6602540 1.0606601 –8.8388347 –1.5309310 0

+r−3Q
( 3)
ij 6.2072876 8.8911941 1.1027551 –8.8450495 –1.5340009 –5.5338541

+r−5Q
( 5)
ij 6.2085282 8.8962122 1.1040117 –8.8447852 –1.5339440 –5.6676737

+r−7Q
( 7)
ij 6.2085518 8.8963403 1.1040530 –8.8447748 –1.5339400 –5.6710585

+r−9Q
( 9)
ij 6.2085523 8.8963441 1.1040545 –8.8447745 –1.5339398 –5.6711548

(n.v.) 6.2085523 8.8963442 1.1040546 –8.8447745 –1.5339398 –5.6711580

ẑ
dΦ

(0)
v (ẑ)
dẑ

= −1
2
Φ(0)

v (ẑ) −
√

v + 1
√

v + 2
2

Φ
(0)
v+2(ẑ) +

√
v − 1

√
v

2
Φ

(0)
v−2(ẑ),

L(n)Φ(0)
n+s(ẑ) ≡

(
− d2

dẑ2
− (2n + 1)+ẑ2

)
Φ

(0)
n+s(ẑ) = 2sΦ

(0)
n+s(ẑ).

From (13), (15), and (21) we obtain the needed value of M(k) = 2k + 1 in the
expansion (19) to provide the calculation of nonzero terms only.

Substituting Eq. (19) into Eq. (13), using Eq. (21) and equating coefficients
at the same powers of r, we arrive at a set of recurrence relations for evaluating
the coefficients β

(2k)
n and b

(2k)
n;s

2sb(2k)
n;s = f (2k)

n;s , (22)

f (2k)
n;s = −

4∑
t=−4

hn;s−t,tb
(2k−2)
n;s−t −

k∑
j=1

2j∑
t=−2j

a
(2j)
n;s−t,tb

(2k−2j)
n;s−t +

k∑
j=1

β(2j)
n b(2k−2j)

n;s ,

I
(2k)
jj′ =

k∑
l=0

2k+1∑
s=−2k−1

b(2l)
nl;sb

(2k−2l)
nr;s+nl−nr

= δk0δnlnr , (23)

with the initial data β
(0)
n = 2n + 1 and b

(0)
n;s = δs0. The coefficients hn;s,t and

a
(2j)
n;s,t in the relations (22) are calculated using (15), (21) from the relations

(ẑ − zc
√

ω)2

ω

d2Φ
(0)
n+s(ẑ)
dẑ2

+
2(ẑ − zc

√
ω)

ω

dΦ
(0)
n+s(ẑ)
dẑ

=
4∑

t=−4

hn;s,tΦ
(0)
n+s+t(ẑ),

a(2j)(ẑ, zc)Φ
(0)
n+s(ẑ) =

2j∑
t=−2j

a
(2j)
n;s,tΦ

(0)
n+s+t(ẑ). (24)

The corresponding coefficients Q
(2k+1)
jj′ and H

(2k+2)
jj′ from Eq. (18) have the

following explicit form:

Q
(2k+1)
jj′ = −

k∑
l=0

2k+1∑
s=−2k−1

b(2l)
nl;s

(
(−2k + 2l)b(2k−2l)

nr;s+nl−nr
(25)
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Table 3. The same as in Table 1, but for Hij(r) at i �= j

i, j H12, 10
−3 H23, 10

−2 H34, 10
−2 H13, 10

−3 H24, 10
−2 H14, 10

−2

r −2H
( 2)
ij –7.6546554 –2.1650635 –3.9774756 –5.3033008 –0.9185586 1.8750000

+r −4H
( 4)
ij –7.7794422 –2.2165683 –4.1102192 –5.6189439 –1.0089114 1.9299804

+r −6H
( 6)
ij –7.7817944 –2.2178064 –4.1142837 –5.6289351 –1.0129576 1.9313221

+r −8H
( 8)
ij –7.7818496 –2.2178410 –4.1144203 –5.6292488 –1.0131247 1.9313584

+r−10H
(10)
ij –7.7818511 –2.2178422 –4.1144255 –5.6292592 –1.0131316 1.9313595

(n.v.) –7.7818512 –2.2178422 –4.1144257 –5.6292596 –1.0131319 1.9313596

+
zc
√

ω
√

nl + s√
2

b
(2k−2l)
nr;s+nl−nr−1 −

zc
√

ω
√

nl + s + 1√
2

b
(2k−2l)
nr;s+nl−nr+1

−
√

nl + s − 1
√

nl + s

2
b
(2k−2l)
nr;s+nl−nr−2+

√
nl + s + 1

√
nl + s + 2

2
b
(2k−2l)
nr;s+nl−nr+2

)
,

H
(2k+2)
jj′ =

k∑
l=0

2k+1∑
s=−2k−1

b(2l)
nl;s

({
2l(2k − 2l) +

(nl + s)2 + nl + s + 1
2

+
z2

cω

2
(2nl + 2s + 1)

}
b
(2k−2l)
nr ;s+nl−nr

(26)

+
zc
√

ω
√

nl + s√
2

(−4l + 2k − nl − s) b
(2k−2l)
nr;s+nl−nr−1

+
zc
√

ω
√

nl + s + 1√
2

(4l − 2k − nl − s − 1) b
(2k−2l)
nr;s+nl−nr+1

−
√

nl + s − 1
√

nl + s

2
(
−4l + 2k + z2

cω
)
b
(2k−2l)
nr;s+nl−nr−2

−
√

nl + s + 1
√

nl + s + 2
2

(
4l − 2k + z2

cω
)
b
(2k−2l)
nr;s+nl−nr+2

+
zc
√

ω
√

nl + s − 2
√

nl + s − 1
√

nl + s√
2

b
(2k−2l)
nr;s+nl−nr−3

+
zc
√

ω
√

nl + s + 1
√

nl + s + 2
√

nl + s + 3√
2

b
(2k−2l)
nr;s+nl−nr+3

−
√

nl + s − 3
√

nl + s − 2
√

nl + s − 1
√

nl + s

4
b
(2k−2l)
nr;s+nl−nr−4

−
√

nl + s + 1
√

nl + s + 2
√

nl + s + 3
√

nl + s + 4
4

b
(2k−2l)
nr;s+nl−nr+4

)
.

In step 5 we sequentially evaluate the solutions b
(2k)
n;s and β

(2k)
n of the set of

recurrence relations (22), (23) in each kth order (k = 1, . . . , kmax):
f

(2k)
n;0 = 0 → β

(2k)
n ;

b
(2k)
n;s�=0 = f

(2k)
n;s /(2s);

I
(2k)
ii = δk0 → b

(2k)
n;0 .
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Table 4. The same as in Table 1, but for Hjj(r)

j, j H11, 10
−2 H22, 10

−2 H33, 10
−2 H44, 10

−1

r −2H
( 2)
jj 1.1562500 3.4687500 7.3437500 1.2781250

+r −4H
( 4)
jj 1.1675830 3.5283837 7.5051513 1.3110092

+r −6H
( 6)
jj 1.1677930 3.5299856 7.5110492 1.3125245

+r −8H
( 8)
jj 1.1677976 3.5300324 7.5112738 1.3125967

+r−10H
(10)
jj 1.1677977 3.5300339 7.5112827 1.3126002

(n.v.) 1.1677977 3.5300339 7.5112831 1.3126004

In step 6, by substituting (12) with the coefficients b
(2k)
n;s calculated at step

5 into the expressions for the matrix elements evaluated at step 4 and taking
into account the above definition r−2Ej(r) = r−2(λj(r) + c2 + f) = ωβj(r), i.e.
E

(2k)
j = ωβ

(2k)
j , we produce the output containing the matrix elements as an

expansion in inverse powers of r for k = 0, 1, . . . , kmax at j, j′ = 1, . . . , jmax:

r−2Ej(r) =
kmax∑
k=0

E
(2k)
j

r2k
, Hjj′ (r) =

kmax∑
k=1

H
(2k)
jj′

r2k
, Qjj′ (r) =

kmax∑
k=1

Q
(2k−1)
jj′

r2k−1
. (27)

The calculation described above was performed by the algorithm implemented
in MAPLE up to kmax = 8. For example, the explicit expression of the desirable
nonzero coefficients E

(2k)
j , H

(2k)
ij = H

(2k)
ji and Q

(2k−1)
ij = −Q

(2k−1)
ji reads as

(j = n + 1):

E
(0)
j = ω(2n + 1), E

(2)
j = m2 − 1

4
− z2

cω

2
(2n + 1) − n2 + n + 1

2
,

H
(2)
jj =

z2
cω

2
(2n + 1) +

n2 + n + 1
2

, (28)

H
(2)
jj−1 = −zc

√
ω
√

nn√
2

, H
(2)
jj−2 = −ωz2

c

√
n − 1

√
n

2
,

Q
(1)
jj−1 = −zc

√
ω
√

n√
2

, Q
(1)
jj−2 =

√
n − 1

√
n

2
.

Tables 1–4 demonstrate the convergence of partial sums in the asymptotic ex-
pansions (27) of effective potentials Qij(r) and Hij(r) calculated by the algo-
rithm MATRA to the corresponding numerical values calculated by means of
ODPEVP [9].

Remark 3. As follows from Eq. (28), the reduction of the problem (1) un-
der the axial symmetry at fixed m by means of the modified angular prolate
spheroidal functions (4) at large r leads to the asymptotic centrifugal term
(E(2)

j + H
(2)
jj )r−2 = (m2 − 1/4)r−2 in the effective potentials (9) of the set

of radial equations (8). The latter term is characterized by the integer magnetic
quantum number m.
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4 Symbolic Algorithm for Evaluation the Asymptotic
Forms of Radial Solutions

In the procedure ASYMRS, using the above asymptotic expressions of the matrix
elements, the asymptotic forms of the fundamental radial solutions χjio (r) of
Eqs. (8) at small and large values of r are calculated, and the needed boundary
conditions for the reduced interval [rmin, rmax] are generated. Here we consider
the case of large r.

We find the asymptotic solution χas
jio

(r) at large r ≥ rmax in the form

χas
jio

(r) =
(

φjio (r) + ψjio (r)
d

dr

)
R(pio , r), (29)

where p2
io

= 2E − εth
io

is the relative energy with respect to the threshold
value εth

io
= E

(0)
io

, and the function R(pio , r) ≡ R(pio , r) satisfies the differential
equation

d2R(pio , r)
dr2

+
2
r

dR(pio , r)
dr

+
(

p2
io

+
2q

r
− M2

r2

)
R(pio , r) = 0 (30)

In (30) the asymptotic centrifugal term M2/r2 with the factor M2 = m2 − 1/4
determines the order ν of the desirable solution

R(pio , r) ≡ Rν(pio , r) = p
−1/2
io

r−1(ı Fν(pio , r) + Gν(pio , r))/2,

where Fν(pio , r) and Gν(pio , r) are the regular and irregular Coulomb functions
of the half-integer order ν = m − 1/2 [11].

Remark 4. In the conventional 3D problem under spherical symmetry using
the angular spherical harmonic functions leads to integer M2 = l(l + 1) and
ν = l [12], whereas in the 3D problem under axial symmetry the angular oblate
spheroidal functions at large r lead to M2 = 0 and ν = 0 [6]. However, at small
r in both cases we have M2 = l(l + 1) and ν = l.

In the case of pio = 0 and q �= 0 the function R(pio , r) has the form

R(pio , r) = π1/2r−1/2(ı Jν′(
√

8qr) − Yν′(
√

8qr))/2,

while in the case of pio �= 0 and q = 0 it reads as

R(pio , r) = π1/22−1/2r−1/2(ıJν′/2(pior) − Yν′/2(pior))/2.

Here Jν′ and Yν′ are Bessel functions of the first and the second kind [10] of
the order ν′ =

√
1 + 4M2, ν′ = 2m at M2 = m2 − 1/4 and ν′ = 2l + 1 at

M2 = l(l + 1).
In step 1 substituting the function (29) into Eq. (8), using (30) and extracting

the coefficients for the Coulomb function and its derivative, we arrive at two
coupled differential equations with respect to the unknown functions φjio (r)
and ψjio (r).
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In step 2 we expand the functions φjio (r) and ψjio (r) in inverse powers of r:

φjio (r) =
∑kmax

k=0
φ

(k)
jio

r−k, ψjio (r) =
∑kmax

k=0
ψ

(k)
jio

r−k. (31)

After substituting the expansions (27), (31) into Eqs. (8) and equating the co-
efficients at the same powers of r, we compute a set of recurrence relations with
respect to the unknown coefficients φ

(k)
jio

and ψ
(k)
jio(

p2
io
− 2E + E

(0)
j

)
φ

(k)
jio

= f
(k)
jio

,
(
p2

io
− 2E + E

(0)
j

)
ψ

(k)
jio

= g
(k)
jio

, (32)

where the right-hand sides f
(k)
jio

and g
(k)
jio

are defined by the relations

f
(k)
jio

= 2p2
io

(k − 1)ψ(k−1)
jio

(33)

+
(
(k − 2)(k − 3) + M2 −

(
E

(2)
j + H

(2)
jj

))
φ

(k−2)
jio

+ 2q(2k − 3)ψ(k−2)
jio

−M2(k − 2)ψ(k−3)
jio

−
k∑

k′=3

(
E

(k′)
j + H

(k′)
jj

)
φ

(k−k′)
jio

+
jmax∑

j′=1,j′ �=j

k∑
k′=1

[(
(2k − k′ − 3)Q(k′−1)

jj′ − H
(k′)
jj′

)
φ

(k−k′)
j′io

+
(
2p2

io
Q

(k′)
jj′ + 4qQ

(k′−1)
jj′

)
ψ

(k−k′)
j′io

]
,

g
(k)
jio

= −2(k − 1)φ(k−1)
jio

(34)

+M2φ
(k−2)
jio

+
(
k(k − 1) −

(
E

(2)
j + H

(2)
jj

))
ψ

(k−2)
jio

−2M2(k − 2)ψ(k−3)
jio

−
k∑

k′=1

(
E

(k′)
j + H

(k′)
jj

)
ψ

(k−k′)
jio

+
jmax∑

j′=1,j′ �=j

k∑
k′=1

[(
(2k − k′ + 1)Q(k′−1)

jj′ − H
(k′)
jj′

)
ψ

(k−k′)
j′io

− 2Q
(k′)
jj′ φ

(k−k′)
j′io

]
.

It should be noted that these relations differ from the case of M2 = 0 [6] only
by the terms containing M2 = E

(2)
io

+ H
(2)
ioio

.
In step 3 from equations (32) at k = 0 we get the initial data for the recur-

rence procedure, including the special threshold case 2E = E
(0)
io

(p2
io

= 0)

φ
(0)
j0io

= δj0io , ψ
(0)
j0io

= 0, p2
io

= 2E − E
(0)
io

. (35)

The open channels have p2
io

≥ 0 whereas the close channels have p2
io

< 0. Suppose
that there are No ≤ jmax open channels, i.e., p2

io
≥ 0 for io = 1, . . .No and p2

io
< 0

for io = No + 1, . . . jmax. After substitution of (35) into (32) the recurrence
relations for k = 1, 2, . . . , kmax take the form(

E
(0)
j − E

(0)
io

)
φ

(k)
jio

= f
(k)
jio

,
(
E

(0)
j − E

(0)
io

)
ψ

(k)
jio

= g
(k)
jio

. (36)
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Step 4 performs the calculation of the coefficients φ
(k)
jio

and ψ
(k)
jio

by a step–
by–step procedure of solving equations (36) with r.h.s. determined by (33), (34),
for k = 1, 2, . . . , kmax:

φ
(k)
jio

=
f

(k)
jio

E
(0)
j − E

(0)
io

, ψ
(k)
jio

=
g
(k)
jio

E
(0)
j − E

(0)
io

, j �= io,

{f (k+1+δpio )
ioio

= 0, g
(k+1)
ioio

= 0} → {φ(k)
ioio

, ψ
(k)
ioio

},

where δpio = 1 at pio = 0 (threshold case) and δpio = 0 at pio �= 0.
The calculation was performed by means of the algorithm, implemented in

MAPLE up to kmax = 8. Its output contains the elements at k = 0, 1, . . . , kmax.
For example, for kmax = 1 we have the coefficients φ

(k)
jio

and φ
(k)
jio

in the form

φ
(1)
jio

= 0, ψ
(1)
jio

=
2Q

(1)
jio

E
(0)
io

− E
(0)
j

, (37)

φ
(1)
ioio

= 0, ψ
(1)
ioio

= −
(

1 − δpio

3

) min(jmax,io+2)∑
j0=max(1,io−2),j0 �=io

Q
(1)
ioj0

ψ
(1)
j0io

,

and substituting the asymptotic expressions (27) into the above equation, we
arrive at the explicit expression of the desirable nonzero coefficients φ

(k)
jio

and
φ

(k)
jio

(for jmax ≥ io +2k, io = no +1, 〈ẑ|io〉 = 4
√

ωΦ
(0)
no (ẑ), z′ = z− zc = ẑ√

ω
− zc):

ψ
(1)
io−2io

=−1
2

√
no−1

√
no

2ω
= −1

2

〈
io − 2

∣∣∣(z − zc)
2
∣∣∣ io

〉
z
,

ψ
(1)
io−1io

=
zc

√
no√

2
√

ω
= −1

2

〈
io − 1

∣∣∣(z − zc)
2
∣∣∣ io

〉
z
, (38)

ψ
(1)
ioio

=−1
2

(
1 − δpio

3

) (
2no + 1

2ω
+ z2

c

)
= −1

2

(
1 − δpio

3

) 〈
io

∣∣(z − zc)2
∣∣ io

〉
z
,

ψ
(1)
io+1io

=
zc

√
no+1√
2
√

ω
= −1

2

〈
io + 1

∣∣∣(z − zc)
2
∣∣∣ io

〉
z
,

ψ
(1)
io+2io

=−1
2

√
no + 1

√
no + 2

2ω
= −1

2

〈
io + 2

∣∣∣(z − zc)
2
∣∣∣ io

〉
z
.

Remark 5. The obtained results correspond to the asymptotic transformation
of the arguments r, η of the total function ψas

mio
in terms of the asymptotic basis

functions Φas
j (ẑ; r) from (12) at fixed magnetic quantum number m:

ψas
mio

(r, η) =
jmax∑
j=1

Φas
j (ẑ; r)χas

jio
(r) =

jmax∑
j=1

Φas
j (ẑ; r)

(
φjio (r) + ψjio (r)

d

dr

)
R(pio , r)

= 4
√

ω
√

r

kmax∑
k=0

r−k
k∑

p=0

jmax∑
j=1

Φ
(p)
j (ẑ)

(
φ

(k−p)
jio

+ ψ
(k−p)
jio

d

dr

)
R(pio , r).



346 S.I. Vinitsky et al.

–2

–1

1

2

x –1 1 2

z

-0,50 -0,25 0,00 0,25 0,50
1,0

1,2

1,4

1,6

1,8

2,0

E
B
/R

y*

z
c
/a

0
*

 Upper ad (j
max

=1)

 j
max

=6

 j
max

=2

 var
 Lower ad (j

max
=1)

Fig. 1. Isolines of the potential energy surface as a function of two independent vari-
ables ρ, z with shift of center of Coulomb potential along the variable z on zc = 0.4 (left
panel). The binding energy −EB = 2E − εth

1 (Ry∗ = 5.2 meV) versus position shift

of Coulomb center of impurity by variable z in interval zc ∈ [−0.5, 0.5] (a∗
0 = 102

◦
A)

at q = 1, ω = 3 and m = 0 (right panel). Dotted line is variational calculations [1],
dash-dotted line is the adiabatic approximation (jmax = 1), short-dashed line is the
Kantorovich approximation (4) at jmax = 2 basis functions, solid line is the Kantorovich
approximation (4) at jmax = 6 basis functions, dashed line is the crude adiabatic ap-
proximation (jmax = 1, when the diagonal adiabatic positive correction H11(r) = 0 is
neglected).

Taking into account the orthogonality (14) and completeness
∑

j〈ẑ′|j〉〈j|ẑ〉 =

δ(ẑ′ − ẑ) relations for the asymptotic basis functions Φ
(0)
j (ẑ; r), we obtain the

desirable asymptotic form of the total wave function at pio ẑ/(2r) � 1 and
kmax = 1:

ψ
(as)
mio

(r, η) = 4
√

ω
√

r
∑

j
〈ẑ|j〉

[
〈j|io〉 −

1
2r

〈j|(z − zc)2|io〉
d

dr

]
R(pio , r)

≈ 4
√

ω
√

rΦ
(0)
io

(ẑ)χ(as)
ioio

(
r − (z − zc)

2

2r

)

≈
4
√

ω

2(pioρ)1/2
Φ

(0)
io

(ẑ) (ı Fν(pio , ρ) + Gν(pio , ρ)). (39)

Thus, we obtain the needed compatibility conditions for the asymptotic solutions
of scattering problems in the spherical coordinates (r, η, ϕ) shifted by zc along z
axis and in the cylindrical coordinates (ρ, z, ϕ)

ρ = r

√
1 − (z − zc)

2
/r2 = r − (z − zc)

2
/(2r) + O(r−2),

including the regular Fν and irregular Gν Coulomb functions of the half-integer
order ν = m − 1/2 from Eq. (30).

It should be noted that at large r the linearly independent functions (29)
satisfy the Wronskian-type relation

W(Q(r); χ∗(r), χ(r)) =
ı

2
Ioo, (40)
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Fig. 2. Isolines of the ground-state wave function for the values of parameters q = 1,
ω = 3 and m = 0. Left panel: zc = 0.4, Right panel: zc = 0.

where W(•; χ∗(r), χ(r)) is the generalized Wronskian with the long derivative
defined as

W(•; χ∗(r), χ(r)) = r2

[
(χ∗)T

(
dχ

dr
− •χ

)
−

(
dχ∗

dr
− •χ∗

)T

χ

]
.

These relations will be used to examine the desirable accuracy of the above
expansion till kmax using KANTBP program implemented in FORTRAN [5,7]
for numerical solving the boundary problem of discrete or continuous spectrum.
The symbolic calculations of the above asymptotic expressions were performed
using the codes MATRA and ASYMRS implemented in MAPLE, that generate
FORTRAN codes of subroutines POTCAL and ASYMSC in KANTBP [5,7].

5 Test Example

The calculation for the GaAs parabolic quantum well was carried out with the
values of parameters q = 1, ω = 3, m = 0, and zc ∈ [−0.5, 0.5] in the reduced
atomic units from [1,4] by applying the programs KANTBP [5] and ODPEVP [9].
These programs implementing the finite-element method to solve the boundary-
value problems (8)–(11) and (5)–(7) were applied respectively on the grids Ωr =
{0(200)1(200)5(200)100} and Ωη = {−1(800)1} with the Lagrange elements of
the order p = 4 between the nodes. In the above grids Ωr and Ωη, the number
of grid elements is shown in the parentheses.

As follows from the theorem [13], for the ground state the adiabatic approx-
imation (jmax = 1) gives the upper bound for the energy, while in the so-called
crude adiabatic approximation, when the diagonal adiabatic positive correction
H11(r) = 0 is neglected, one gets the lower bound for the energy. The corre-
sponding inverse estimators for the binding energy −EB = 2E − εth

1 (in units
Ry∗ = 5.2 meV) in spherical coordinates are presented in Fig. 1. As one can
see, these values are upper and lower estimates of the binding energy from the
variational calculation [1]. The corresponding inverse lower estimators of the
binding energy for increasing number of single-parameter basis functions jmax
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allow one to analyze the convergence rate of the method used for solving the
boundary-value problem in the two-dimensional domain (see Fig. 2). In partic-
ular, the Kantorovich approximation (4) at jmax = 10 basis functions leads to
the following inverse lower estimation of the binding energy EB/Ry∗ = 1.82774.

6 Conclusion

We presented the scheme for solving the boundary-value problem with discrete
spectrum for a parabolic quantum well in the adiabatic representation. The
upper and lower bounds for the energy of the ground state of the systems are
obtained under the conditions of the shift of the Coulomb center in a given range
of the parameter with respect to earlier variational estimates. It is shown that
the rate of convergence depends significantly on the appropriate choice of the
adiabatic basis parameterization taking the specific features of the considered
problem into account. The presented results allow one to estimate the efficiency
of the method and to prove the compatibility conditions (39) for asymptotic
solutions of scattering problems in spherical and cylindrical coordinates. The
software package developed is applicable to the investigation of semiconductor
nanostructure models. Further development of the method and the software
package is planned for solving the quasi-2D and quasi-1D boundary-value prob-
lems with both discrete and continuous spectrum, which are necessary for cal-
culating the optical transition rates, channelling and transport characteristics in
the models like quantum wells and quantum wires.

The authors thank Profs. V.L. Derbov, E.M. Kazaryan, A.A. Kostanyan and
H.A. Sarkisyan for collaboration. The work was supported partially by RFBR
(grants 07-01-00660 and 08-01-00604).
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Symbolic-Numerical Algorithms to Solve

the Quantum Tunneling Problem
for a Coupled Pair of Ions

A.A. Gusev, S.I. Vinitsky, O. Chuluunbaatar,
V.P. Gerdt, and V.A. Rostovtsev

Joint Institute for Nuclear Research, Dubna, Russia
{gooseff,chuka,gerdt,rost}@jinr.ru, vinitsky@theor.jinr.ru

Abstract. Symbolic-numerical algorithms for solving a boundary value
problem (BVP) for the 2D Schrödinger equation with homogeneous third
type boundary conditions to study the quantum tunneling model of a
coupled pair of nonidentical ions are described. The Kantorovich reduc-
tion of the above problem with non-symmetric long-range potentials to
the BVPs for sets of the second order ordinary differential equations
(ODEs) is given by expanding solution over the one-parametric set of
basis functions. Symbolic algorithms for evaluation of asymptotics of the
basis functions, effective potentials, and linear independent solutions of
the ODEs in the form of inverse power series of independent variable at
large values are given by using appropriate etalon equations. Benchmark
calculation of quantum tunneling problem of coupled pair of identical
ions through Coulomb-like barrier is presented.

1 Introduction

Quantum mechanical treatment on the basis of adiabatic description of penetra-
tion through a two-dimensional fission barrier has been studied for a long period
of time [1,2]. Current interest is stimulated by the prominent papers in which the
model of quantum tunneling problem of coupled pair of ions through truncated
Coulomb barrier were investigated for identical mass and charges of ions [3,4].
Study of quantum tunneling problem for a coupled pair of ions with distinct
mass and charges for their penetration through a nontruncated Coulomb barrier
is an important problem.

The aim of this paper is to develop a symbolic-numerical algorithm (SNA)
for solving the 2D boundary value problem (BVP) with homogeneous third type
boundary conditions to analyze the above problem. In the framework of Kan-
torovich method (KM) [5], we search for a solution by means of expansion over
the solution to the one-parametric eigenvalue problem calculated by program
ODPEVP [6]. This way the BVP is reduced to a set of second order differential
equations (ODEs) on the whole axis with homogeneous third type boundary
conditions of general type. The main task here is to formulate these boundary
conditions which are not invariant under reflection with respect to the x-axis.
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This is because the conventionally used symmetric conditions are applicable only
for identical particles. To apply the finite element method (FEM) to solving the
BVP on a finite interval we need not only the adaptation of KANTBP 2.0 code
[7], but also the elaboration of new symbolic algorithms to evaluate coefficients
of the asymptotic expansion of both effective potential and solution to ODEs.
These coefficients are needed to match evaluated asymptotic solutions with nu-
merical ones at boundary points and extract the required matrix of transmission
and the reflections amplitudes from numerical solutions.

In this paper, we present algorithms for calculation of the asymptotic ex-
pansions for solution to the eigenvalue problem with a long-range potential of
general type. These asymptotic expansions are applied to evaluate the effective
potentials of ODEs. The next step is to design a new algorithm for evaluation
of the asymptotic expansion of linear independent solutions to ODEs. This dis-
tingue algorithm is substantially different from the previously elaborated one
[8]. Instead of applying an expansion over the solution to an etalon equation, we
propose to use an appropriate etalon equation with a long-range potential in the
form of the inverse power series that provides a more economical and universal
way to generate relevant recurrence relations and the corresponding FORTRAN
subroutines.

The paper is organized as follows. In Section 2, the problem statement is done.
In Section 3, the BVP is formulated for ODEs. Here the symbolic algorithms
for the evaluation of asymptotic expansions of solutions to parametric BVP,
for calculation of the corresponding integrals, and for the asymptotic expansion
of linear independent solutions to ODEs together with their implementation in
Maple are described. Section 4 is devoted to the benchmark calculation of the
penetration coefficients for tunneling of the identical ions through long-range
Coulomb like barriers. In Conclusion, we summarize the results and discuss the
future applications of our SNAs.

2 Problem Statement

Wave function Ψ(x, y) of model of heavy ion pair connected with oscillator poten-
tial scattering in the center mass coordinate system through Coulomb barriers
satisfies the two-dimensional (2D) Schrödinger equation [3]:

{
− ∂2

∂y2
− ∂2

∂x2
+ x2 + 2(U1(x1) + U2(x2) − E)

}
Ψ(x, y) = 0, (1)

where x1 = s2y + s1x, x2 = s2y − s3x are variables in the laboratory coordinate
system, parameters s2 =

√
m1m2

M , s1 = m2
M , s3 = m1

M are defined via masses of
ions m1 and m2 and total mass M = m1 + m2 and reduced mass μ = m1m2

M in

the oscillator units of length xosc =
√

�

μω and energy Eosc = �ω (ω is oscillator
frequency). We choose barrier potential Ui(xi) of ions labelled by i = 1, 2 with
charges Ẑi > 0 in the form of the truncated Coulomb potential cut off on small
0 < x̄min < 1 and large x̄max > 1 distances from origin,
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Ui (xi)=

{
Ẑi

x̄min
− Ẑi

x̄max
, |xi|≤ x̄min;

Ẑi

|xi|
− Ẑi

x̄max
,
|xi|>x̄min

|xi|≤ x̄max
; 0, |xi|>x̄max

}
, (2)

or the Coulomb-like potentials that depend on the integer parameter s ≥ 2 and
truncation parameter x̄min > 0 and defined as

Ui (xi) = Ẑi(|xi|s + x̄s
min)−1/s . (3)

In both cases, the sum of barrier potential functions U(x, y) = U1 (x1)+ U2 (x2)
has asymptotic form

U(x, y) → σy
Z12

y
+ O(y−3), y → ±∞, (4)

where σy = 1 if y > 0 and σy = −1 if y < 0; Z12 = 0 for Eq. (2) and Z12 =
(Ẑ1 + Ẑ2)/s2 for Eq. (3).

The asymptotic boundary conditions for the solution Ψ(y, x)={Ψio(y, x)}No

io=1

with direction v =→ can be written in the obvious form

Ψio(y → −∞, x) → B
(0)
io

(x)
exp
(
ı
(
pioy − σy

Z12
pio

ln(2pio |y|)
))

√
pio

+
No∑
j=1

B
(0)
j (x)

exp
(
−ı
(
pjy − σy

Z12
pj

ln(2pj |y|)
))

√
pj

Rjio ,

Ψio(y → +∞, x) →
No∑
j=1

B
(0)
j (x)

exp
(
ı
(
pjy − σy

Z12
pj

ln(2pj |y|)
))

√
pj

Tjio , (5)

Ψio(y, x → ±∞) → 0.

Here No is the number of open channels at fixed energy 2E = p2 + ε
(0)
io

> 0,

Tjio and Rjio are unknown transition and reflections amplitudes, B
(0)
j (x) are the

basis functions of oscillator with energy ε
(0)
j = 2n + 1 at n ≥ 0, j = n + 1

{
− ∂2

∂x2
+ x2 − ε

(0)
j

}
B

(0)
j (x) = 0,

∫ +∞

−∞
B

(0)
j (x)B(0)

j′ (x)dx = δjj′ . (6)

3 Formulation of BVP for a Set of the Kantorovich ODEs

We construct a desired solution of the BVP in the form of Kantorovich’s
expansion:

Ψi′(x, y) =
N∑

j=1

Bj(x; y)χji′ (y). (7)
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The basis functions Bj(x; y) of the fast variable x and the potential curves Ei(y)
that depend continuously on the slow variable y as a parameter are chosen as
solutions of the BVPs for the equation on grid Ωx{xmin(y), xmax(y)}

{
− d2

dx2
+ x2 + 2U(x, y) − εj(y)

}
Bj(x; y) = 0, (8)

which are subject to the boundary, normalization, and orthogonality conditions

Bj(xmin(y); y) = Bj(xmax(y); y) = 0, 〈Bi|Bj〉=
xmax(y)∫

xmin(y)

Bi(x; y)Bj(x; y)dx=δij .(9)

By substituting (7) into (1)–(5) and by taking average over (9), we obtain the
BVP for a set of N coupled ODEs that describes the slow subsystem for the
partial solutions χ(i′)(y) = (χ(i′)

1 , ..., χ
(i′)
N )T :

{H− 2E I} χ(i′)(y) = 0, H=−I
d2

dy2
+V(y) + Q(y)

d

dy
+

dQ(y)
dy

. (10)

Here I is the unit matrix, V(y) and Q(y) are the effective potential N × N
matrices:

Vij(y)=εj(y)δij +Hij(y), Hij(y) =

xmax(y)∫
xmin(y)

∂Bi(x; y)
∂y

∂Bj(x; y)
∂y

dx, (11)

Qij(y) = −
xmax(y)∫

xmin(y)

Bi(x; y)
∂Bj(x; y)

∂y
dx.

that is calculated numerically by means of program ODPEVP [6]. The boundary
conditions at y = ymin 	 −1 and y = ymax 
 1 are given by

dΦ(y)
dy

∣∣∣∣
y=ymin

= R(ymin)Φ(ymin),
dΦ(y)

dy

∣∣∣∣
y=ymax

= R(ymax)Φ(ymax), (12)

where R(y) is an unknown N × N nonsymmetric matrix-function, Φ(y) =
{χ(io)(y)}No

io=1 is the required N ×No matrix solution, and No is the number of
open channels, No = max2E≥εj j ≤ N that is calculated numerically by means
of the program KANTBP 3.0. It is a modified version of the program KANTBP
2.0 [7] including matching asymptotic solutions evaluated in the next sections
with numerical ones at boundary points y = ymin 	 −1 and y = ymax 
 1 in
(12).

The matrix solution Φv(y) = Φ(y) that describes the incidence of the par-
ticle and its scattering, having the asymptotic form “incident wave + outgoing
waves”, is
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Φv(y → ±∞) =

⎧⎪⎪⎨
⎪⎪⎩

{
X(+)(y)Tv, y > 0,

X(+)(y) + X(−)(y)Rv, y < 0,
v =→,{

X(−)(y) + X(+)(y)Rv, y > 0,

X(−)(y)Tv, y < 0,
v =←,

(13)

with Rv and Tv being the reflection and transmission No × No matrices, v
denotes the initial direction of the particle motion along the y-axis. Here the
leading term of the asymptotic rectangle-matrix functions X(±)(y) has the form

X
(±)
jio

(y) → p
−1/2
j exp

(
±ı

(
pjy − σy

Z12

pj
ln(2pj|y|)

))
δjio , (14)

pio =
√

2E − εio , j = 1, . . . , N, io = 1, . . . , No.

The matrix solution Φv(y, E) is normalized so that
∫ ∞

−∞
Φ†

v′(y, E′)Φv(y, E)dy = 2πδ(E′ − E)δv′vIoo, (15)

where Ioo is the identity No × No matrix.
Suppose that a set of linear independent regular square-solutions Φreg

v (y) =
{χ(i′)

reg (y)}N
i′=1 for a problem under consideration with components χ

(i′)
reg (y) =

(χreg
1i′ (y), . . . , χreg

Ni′(y))T is known at y > 0, v =→ or y < 0, v =←, i.e.,

Φreg
→ (y) = X̃(+)(y), y > 0, Φreg

← (y) = X̃(−)(y), y < 0.

X̃
(±)
jio

(y) = X
(±)
jio

(y), j = 1, . . . , N, io = 1, . . . , No. (16)

In a case of some channels are closed, we must use additional leading terms of
regular asymptotic functions correspondingly at z > 0 and z < 0

X̃
(±)
jic

(y) → q
−1/2
j exp

(
∓
(

qjy + σy
Z12

qj
ln(2qj|y|)

))
δjic , (17)

qic =
√

εic − 2E, j = 1, . . . , N, ic = No + 1, . . . , N.

In this case, the required part of R→(y) at y = ymax > 0 and R→(y) matrix
y = ymin < 0 can be found via the known set of linear independent regular
solutions Φreg

v (y)

Rv(y) =
dΦreg

v (y)
dy

(Φreg
v (y))−1 . (18)

These matrix-functions Rv(y) by dimension of N × N are used for calculating
numerical solutions Φh

v (y) of BVP (10)–(12).
By using Φh

→(ymax) and R→(y) numerically calculated with KANTBP 3.0,
we obtain the following matrix equations for the reflection R→ and transmission
T→ matrices
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Y(−)
→ (ymin)R→ = −Y(+)

→ (ymin), X(+)(ymax)T→ = Φh
→(ymax), (19)

Y(±)
→ (y) =

dX(±)(y)
dy

−R→(y)X(±)(y).

Note that, when some channels are closed, the Y(±)
← (y) and X(−)(y) are rectan-

gular N × No matrices. The reflection R→ and transmission T→ matrices are
evaluated in terms of the pseudoinverse matrices of Y(−)

→ (ymin) and X(+)(ymax)

R→ = −
((

Y(−)
→ (ymin)

)T

Y(−)
→ (ymin)

)−1 (
Y(−)

→ (ymin)
)T

Y(+)
→ (ymin), (20)

T→ =
((

X(+)(ymax)
)T

X(+)(ymax)
)−1 (

X(+)(ymax)
)T

Φh
→(ymax).

Having Φh
←(ymin) and R←(y) numerically calculated with KANTBP 3.0, we

obtain the following matrix equations for the reflection R← and transmission
T← matrices:

Y(+)
← (ymax)R← = −Y(−)

← (ymax), X(−)(ymin)T← = Φh
←(ymin), (21)

Y(±)
← (y) =

dX(±)(y)
dy

−R←(y)X(±)(y).

Therefore, using the pseudoinverse matrices of Y(+)
← (y) and X(−)(y), we obtain

the following formulae:

R← = −
((

Y(+)
← (ymax)

)T

Y(+)
← (ymax)

)−1 (
Y(+)

← (ymax)
)T

Y(−)
← (ymax),(22)

T← =
((

X(−)(ymin)
)T

X(−)(ymin)
)−1 (

X(−)(ymin)
)T

Φh
←(ymin).

Let us now rewrite Eq. (13) in the matrix form at y± → ±∞
(

Φ→(y+) Φ←(y+)
Φ→(y−) Φ←(y−)

)
=
(

0 X(−)(y+)
X(+)(y−) 0

)
+
(

0 X(+)(y+)
X(−)(y−) 0

)
S, (23)

where the symmetric and unitary scattering matrix S is composed of the trans-
mission and reflection matrices from (20) and (22)

S =
(

R→ T←
T→ R←

)
, SS† = S†S = I. (24)

In addition, it should be noted that the functions X(±)(y) satisfy relations

Wr(Q(y);X(∓)(y),X(±)(y)) = ±2ıIoo, Wr(Q(y);X(±)(y),X(±)(y)) = 0, (25)
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where Wr(•;a(y),b(y)) is a generalized Wronskian with a long derivative defined
as

Wr(•;a(y),b(y)) = aT (y)
(

db(y)
dy

− •b(y)
)
−
(

da(y)
dy

− •a(y)
)T

b(y). (26)

Remark 1. This Wronskian will be used below to estimate a desirable precision
of the above expansion as well as the symmetry and unitarity properties of the
scattering matrix S in (24).

Algorithm 1. Evaluating Effective Potential Asymptotics

Input. We evaluate the asymptotics of effective potentials (11) at large |y| via
the asymptotics of solutions to the eigenvalue problem (8), (9) at |y/x| 
 1,

(
d2

dx2
+ x2 + 2U(x, y) − εj(y)

)
Bj(x; y) = 0,

xmax(y)∫
xmin(y)

Bi(x; y)Bj(x; y)dx=δij .(27)

with the Coulomb-like potential

2U(x, y) = 2Ẑ1/
s
√

(s2y + s1x)s + x̄s
min + 2Ẑ2/

s
√

(s2y − s3x)s + x̄s
min. (28)

At step 1 we find Bj(x; y) and εj(y) as a series expansion with j = n + 1

Bj(x; y) =
kmax∑
k=0

B
(k)
n (x)
yk

, εj(y) =
kmax∑
k=0

ε
(k)
n

yk
. (29)

Substituting (29) to (27) and equating coefficients of the same powers of y, we
arrive at a system of recurrence differential equations for evaluating coefficients
B

(k)
n (x) and ε

(k)
n , k = 1, . . . , kmax:

L(n)B(k)
n (x) = f (k)

n (x), L(n) = − d2

dx2
− (2n + 1)+x2, (30)

with the initial data ε
(0)
n = 2n+1 and with B

(0)
n (x) as the known solution of the

problem

�L(n)B(0)
n (x) = 0,

∫ +∞

−∞
B(0)

n (x)B(0)
n′ (x)dx = δnn′ . (31)

In Eqs. (30), the right-hand sides f
(k)
n (x) are defined by relations

f (k)
n (x) =

k∑
p=1

(U (p)(x) − ε(p)
n )B(k−p)(x),
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Table 1. Values of the partial sums (41) for Vjj ≡ Vjj(y) from (11) depending on
kmax for s1 = s2 = s3 = 1/2, x̄min = 0.1, s = 8, Ẑ1 = Ẑ2 = 1, y = ymatch

2 = 12.5. The
last row contains the corresponding numerical values (n.v.).

kmax V11 V22 V33 V44 V55 V66

0 1.000000000 3.000000000 5.000000000 7.000000000 9.000000000 11.00000000
1 1.640000000 3.640000000 5.640000000 7.640000000 9.640000000 11.64000000
2 1.640000000 3.640000000 5.640000000 7.640000000 9.640000000 11.64000000
3 1.642048000 3.646144000 5.650240000 7.654336000 9.658432000 11.66252800
4 1.642048000 3.646144000 5.650240000 7.654336000 9.658432000 11.66252800
5 1.642067661 3.646242304 5.650495590 7.654827520 9.659238093 11.66372731
6 1.642065564 3.646236013 5.650485105 7.654812840 9.659219218 11.66370424
7 1.642065878 3.646238215 5.650492969 7.654832658 9.659259798 11.66377691
8 1.642065798 3.646237812 5.650491922 7.654830645 9.659256497 11.66377199
9 1.642065809 3.646237888 5.650492232 7.654831584 9.659258797 11.66377684

10 1.642065806 3.646237868 5.650492158 7.654831394 9.659258408 11.66377614
11 1.642065807 3.646237871 5.650492174 7.654831450 9.659258560 11.66377650
12 1.642065807 3.646237870 5.650492169 7.654831434 9.659258520 11.66377642

nv 1.642065807 3.646237871 5.650492170 7.654831437 9.659258529 11.66377644

where the coefficients U (j)(x) are determined by Taylor expansion of (28) at
large y

2U(x, y) =
kmax∑
k=1

U (k)(x)
yk

, (32)

U (1)(x) = σy2(Ẑ1 + Ẑ2)/s2, U (2)(x) = σy2x(Ẑ1s1 − Ẑ2s3)/s2
2,

U (3)(x) = σy2x2(Ẑ1s
2
1 + Ẑ2s

2
3)/s3

2, U (4)(x) = σy2x3(Ẑ1s
3
1 − Ẑ2s

3
3)/s4

2,

U (5)(x) = σy2x4(Ẑ1s
4
1 + Ẑ2s

4
3)/s5

2, U (6)(x) = σy2x5(Ẑ1s
5
1 − Ẑ2s

5
3)/s6

2,

U (7)(x) = σy2x6(Ẑ1s
6
1 + Ẑ2s

6
3)/s7

2, U (8)(x) = σy2x7(Ẑ1s
7
1 − Ẑ2s

7
3)/s8

2,

U (9)(x) = σy2x8(Ẑ1s
8
1 + Ẑ2s

8
3)/s9

2 − σyx̄8
min(Ẑ1 + Ẑ2)/(4s9

2),

U (10)(x) = σy2x9(Ẑ1s
9
1 − Ẑ2s

9
3)/s10

2 − σy9xx̄8
min(Ẑ1 − Ẑ2)/(8s10

2 ).

The orthogonality and normalization conditions follow from (27) and (29)

I
(k)
jj′ =

k∑
l=0

∫ ∞

−∞
B(l)

nl
(x)B(k−l)

nr
(x)dx = δk0δnlnr (33)

where nl = j − 1, nr = j′ − 1.
We find the asymptotics of matrix elements Hjj′ (y) and Qjj′ (y) from (11) in

the form of expansions

Qjj′ (y) =
kmax∑
k=1

Q
(k)
jj′

yk
, Hjj′ (y) =

kmax∑
k=2

H
(k)
jj′

yk
. (34)
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Table 2. The same as in Table 1, but for Qjj′ ≡ Qjj′(y) at j �= j′

kmax Q13, 10
−4 Q15, 10

−6 Q24, 10
−4 Q26, 10

−6 Q35, 10
−4 Q46, 10

−4

3 0.00000000 0.000000 0.00000000 0.000000 0.00000000 0.00000000
4 1.73778562 0.000000 3.00993299 0.000000 4.25668806 5.49536066
5 1.73778562 0.000000 3.00993299 0.000000 4.25668806 5.49536066
6 1.79339476 1.605297 3.17046275 3.589554 4.57452077 6.02291528
7 1.78627679 1.605297 3.15813407 3.589554 4.55708537 6.00040628
8 1.78814526 1.713173 3.16568539 3.927259 4.57691814 6.04176657
9 1.78761568 1.705283 3.16415663 3.909616 4.57389135 6.03674256

10 1.78771659 1.711496 3.16457995 3.934625 4.57519301 6.03996585
11 1.78768515 1.710423 3.16444912 3.931266 4.57484597 6.03923893
12 1.78769198 1.710818 3.16447978 3.933127 4.57494688 6.03951537

nv 1.78769041 1.710734 3.16447143 3.932815 4.57491909 6.03944626

Here the coefficients Q
(k)
jj′ and H

(k)
jj′ are defined by the relations

Q
(k)
jj′ = −

k−1∑
l=0

∫ +∞

−∞
B(l)

nl
(x)Q̂B(k−1−l)

nr
(x)dx, Q̂B(l)

nl
(x) = lB(l)

nl
(x),

H
(k)
jj′ =

k−2∑
l=0

∫ +∞

−∞
Q̂B(l)

nl
(x)Q̂B(k−2−l)

nr
(x)dx. (35)

At step 2, we construct B
(k)
n (x) as the expansion with unknown coefficients b

(k)
n;s

B(k)
n (x) =

M(k)∑
s=−M(k)

b(k)
n;sB

(0)
n+s(y). (36)

Here B
(0)
v (x) are solutions to (31) in terms of the Hermite polynomials [9]

B(0)
v (x) =

Hv(x) exp(−x2/2)
4
√

π
√

2v
√

v!
.

By means of the well-known recurrence relation for Hermite polynomials Hv(x)
we obtain the recurrence relations for basis functions B

(0)
v (x):

xB(0)
v (x) = +

√
v + 1√

2
B

(0)
v+1(x) +

√
v√
2
B

(0)
v−1(x),

L(n)B(0)
n+s(x) ≡

(
− d2

dx2
− (2n + 1)+x2

)
B

(0)
n+s(x) = 2sB

(0)
n+s(x). (37)

From (30), (32), and (37) we have the needed value of M(k) = 2k+1 in expansion
(36) to provide calculation of nonzero terms only.

Substituting (36) to (30), taking into account (37), and equating coefficients of
the identical powers of y, we arrive at a set of recurrence relations for evaluation
of coefficients E

(k)
n and b

(k)
n;s
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2sb(k)
n;s = f (k)

n;s , I
(k)
jj′ =

k∑
l=0

2k+1∑
s=−2k−1

b(l)
nl;s

b
(k−l)
nr;s+nl−nr

= δk0δnlnr , (38)

with initial data ε
(0)
n = 2n + 1 and b

(0)
n;s = δs0.

The corresponding coefficients Q
(k)
jj′ and H

(k)
jj′ in (35) have the following

explicit form:

Q
(k)
jj+t(y) = −

k−1∑
k′=0

min(k−1,k−1−k′−t)∑
s=max(−k+1,k′−k+1−t)

(k − 1 − k′)b(k′)
n;n+sb

(k−1−k′)
n+t;n+s ,

H
(k)
jj+t(y) =

k−2∑
k′=0

min(k−2,k−2−k′−t)∑
s=max(−k+2,k′−k+2−t)

k′(k − 2 − k′)b(k′)
n;n+sb

(k−2−k′)
n+t;n+s . (39)

At step 3, we evaluate sequentially the solutions b
(k)
n;s and ε

(k)
n to the set of

recurrence relations (38) for each kth order (k = 1, . . . , kmax):

f
(k)
n;0 = 0 → ε(k)

n ; b
(k)
n;s
=0 = f (k)

n;s/(s); I(k)
ii = δk0 → b

(k)
n;0. (40)

At step 4, we substitute coefficients b
(k)
n;s calculated in (40) into the expres-

sions for the matrix elements (34), (39) evaluated at step 2 and taking into
account coefficients ε

(k)
j calculated in (40). In doing so we produce the output

containing the matrix elements as a series expansion of inverse powers of y for
k = 0, 1, . . . , kmax at j, j′ = 1, . . . , N (ε(k<0)

j = H
(k<2)
jj′ = Q

(k<1)
jj′ = 0):

εj(y) =
kmax∑
k=0

ε
(k)
j

yk
, Hjj′ (y) =

kmax∑
k=2

H
(k)
jj′

yk
, Qjj′ (y) =

kmax∑
k=1

Q
(k)
jj′

yk
. (41)

The above described calculation was performed by the algorithm implemented
in MAPLE up to kmax = 12. For example, the explicit expression of the desirable
nonzero coefficients ε

(k)
j , H

(k)
ij = H

(k)
ji and Q

(k)
ij = −Q

(k)
ji reads as (j = n + 1):

ε
(0)
j = (2n + 1), ε

(1)
j = σy

2(Ẑ2 + Ẑ1)
s2

, ε
(3)
j = σy

(2n + 1)(Ẑ2s
2
3 + Ẑ1s

2
1)

s3
2

,

ε
(4)
j = − (Ẑ2s3 − Ẑ1s1)2

s4
2

, ε
(5)
j = σy

3(2n2 + 2n + 1)(Ẑ2s
4
3 + Ẑ1s

4
1)

2s5
2

,

Q
(5)
jj−3 = −σy

√
n − 2

√
n − 1

√
2
√

n(Ẑ2s
3
3 − Ẑ1s

3
1)

3s4
2

, (42)

Q
(4)
jj−2 = −σy

3
√

n − 1
√

n(Ẑ2s
2
3 + Ẑ1s

2
1)

4s3
2

,
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Table 3. The same as in Table 1, but for Hjj′ ≡ Hjj′(y) at j �= j′

kmax H13, 10
−10 H15, 10

−8 H24, 10
−9 H26, 10

−6 H35, 10
−9 H46, 10

−8

8 0.000 -7.3972 0.000 -1.65406 0.000 0.0000
9 0.000 -7.3972 0.000 -1.65406 0.000 0.0000

10 0.683 -8.1862 1.972 -1.90107 4.463 0.8643
11 0.683 -8.1256 1.972 -1.88752 4.463 0.8643
12 0.780 -8.1839 2.347 -1.91203 5.488 1.0969

nv 0.782 -8.1763 2.376 -1.91042 5.608 1.1334

Q
(3)
jj−1 = −σy

√
2
√

n(−Ẑ1s1 + Ẑ2s3)
s2
2

, Q
(5)
jj−1 = −σy

3
√

2n
√

n(Ẑ2s
3
3 − Ẑ1s

3
1)

s4
2

,

H
(7)
jj−3 = −3

√
2
√

n
√

n − 1
√

n − 2(Ẑ2s
2
3 + Ẑ1s

2
1)(−Ẑ1s1 + Ẑ2s3)

2s5
2

,

H
(6)
jj−2 = −2

√
n
√

n − 1(Ẑ2s3 − Ẑ1s1)2

s4
2

,

H
(7)
jj−1 =

3n
√

2
√

n(Ẑ2s
2
3 + Ẑ1s

2
1)(Ẑ2s3 − Ẑ1s1)

2s5
2

,

H
(6)
jj =

2(2n + 1)(Ẑ2s3 − Ẑ1s1)2

s4
2

.

Remark 2. In the case of Ẑ1 = Ẑ2, s1 = s3 (i.e., for equal masses and charges),
the set of equations (10) has even and odd parity solutions that are calculated
separately: for the even solutions n = 2j−2 and for the odd solutions n = 2j−1.
In this case, the above coefficients which contain terms like (−Ẑ1s1+Ẑ2s3) vanish
when they have no terms (Ẑ1s1 + Ẑ2s3).

Algorithm 2. Evaluation of the Asymptotic Solutions

Input. We calculate the asymptotic solution to the set of N ODEs at large
values of the independent variable |y| 
 1

[
− 1

yd−1

d

dy
yd−1 d

dy
+ εi(y) + Hii(y) − 2E

]
χii′(y) (43)

=
N∑

j=1,j 
=i

[
−Qij(y)

d

dy
− 1

yd−1

d

dy
yd−1Qij(y) − Hij(y)

]
χji′ (y).

Here d ≥ 1 is the dimension of configuration space of a general scattering problem
[7] while in the considered case (10), we put d = 1 and calculate asymptotic
solution on two intervals −∞ < y ≤ ymin and ymax ≤ y < ∞. We suppose that



186 A.A. Gusev et al.

coefficients of Eqs. (43) are present in the general form (41) and, in particular,
in the form (42).

Step 1. We construct the solution to Eqs. (43) in the form:

χji′ (y) =
(

φji′ (y) + ψji′ (y)
d

dy

)
Ri′ (y), (44)

where φji′ (y) and ψji′ (y) are unknown functions, Ri′(y) is known function. We
choose Ri′(y) as solutions of the auxiliary problem treated like etalon equation
(Z(k<1)

i′ = Z
(k>k′

max)
i′ = 0):
⎡
⎣− 1

yd−1

d

dy
yd−1 d

dy
+

k′
max∑

k=1

Z
(k)
i′

yk
− p2

i′

⎤
⎦Ri′(y) = 0. (45)

Remark 3. If Z
(k≥3)
i′ = 0 then solutions to the last equation are presented via hy-

pergeometric functions, exponential, trigonometric, Bessel, Coulomb functions,
etc. For example, if the leading terms of the asymptotic solutions are given by
formula

Ri′ (y) =
1√

pi′yd−1
exp

(
±ı

(
pi′y − Z

(1)
i′

2pi′
ln(2pi′ |y|)

))
, (46)

the coefficient Z
(2)
i′ of potential in the etalon equation (45) has the form:

Z
(2)
i′ = − (d − 3)(d − 1)

4
± ı

Z
(1)
i′

pi′
− (Z(1)

i′ )2

p2
i′

. (47)

Step 2. At this step, we compute the coefficients φi′ (y) and ψi′(y) of the ex-
pansion (44) in the form of series by inverse powers of y (φ(k′<0)

ji′ =ψ
(k′<0)
ji′ =0):

φji′ (y) = φ
(0)
ji′ +

kmax∑
k′=1

φ
(k′)
ji′

yk′ , ψji′ (y) = ψ
(0)
ji′ +

kmax∑
k′=1

ψ
(k′)
ji′

yk′ . (48)

After substitution of (44),(48) into (43) with the use of Eq. (45), we arrive at
the set of recurrence relations at k′ ≤ kmax:(

ε
(0)
i −2E+p2

i′

)
φ

(k′)
ii′ +

(
ε
(1)
i − Z

(1)

i′

)
φ

(k′−1)

ii′ − 2p2
i′(k

′ − 1)ψ
(k′−1)

ii′ = −f
(k′)
ii′ , (49)(

ε
(0)
i − 2E + p2

i′

)
ψ

(k′)
ii′ + 2(k′ − 1)φ

(k′−1)
ii′ +

(
ε
(1)
i − Z

(1)
i′

)
ψ

(k′−1)
ii′ = −g

(k′)
ii′ ,

where the right-hand sides f
(k)
ii′ and g

(k)
ii′ are defined by relations

f
(k′)
ii′ = −(k′ − 2)(k′ − d)φ(k′−2)

ii′ +
k′∑

k=2

(
V

(k)
ii − Z

(k)
i′

)
φ

(k′−k)
ii′
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+
k′∑

k=1

(
Z

(k)
i′ (2k′ − 2 − k)ψ(k′−k−1)

ii′ +
N∑

j=1,j 
=i

( k′∑
k′′=1

2Q
(k)
ij Z

(k′′)
i′ ψ

(k′−k−k′′)
ji′

−2p2
i′Q

(k)
ij ψ

(k′−k)
ji′ + Q

(k)
ij (−2k′ + k + d + 1)φ(k′−k−1)

ji′ + V
(k)
ij φ

(k′−k)
ji′

))
; (50)

g
(k)
ii′ = −(k′ − 1)(k′ − 3 + d)ψ(k′−2)

ii′ +
k′∑

k=2

(
V

(k)
ii − Z

(k)
i′

)
ψ

(k′−k)
ii′

+
N∑

j=1,j 
=i

k′∑
k=1

(
2Q

(k)
ij φ

(k′−k)
ji′ − Q

(k)
ij (2k′ + d − 3 − k)ψ(k′−k−1)

ji′ + V
(k)
ij ψ

(k′−k)
ji′

)

with initial conditions p2
i′ = 2E − ε

(0)
i′ , φ

(0)
ii′ = δii′ , ψ

(0)
ii′ = 0, at i′ = io run the

open channels io = 1, ..., No and pi′ = ıqi′ , qi′ > 0, q2
i′ = ε

(0)
i′ − 2E at i′ = ic run

the closed channels ic = No + 1, ..., N that follow from (14) and (17). Also from
Eq. (49) at k′ = 1 and i = i′,(

ε
(1)
i′ − Z

(1)
i′

)
φ

(0)
i′i′ = 0,

(
ε
(1)
i′ − Z

(1)
i′

)
ψ

(0)
i′i′ = 0, (51)

we obtain condition Z
(1)
i′ = ε

(1)
i′ .

Step 3. Here we perform calculation of the coefficients φ
(k′)
ii′ and ψ

(k′)
ii′ by a step–

by–step procedure of solving Eqs. (49) for 2E �= ε
(0)
i′ , i �= i′ and k′ = 2, . . . , kmax:

φ
(k′)
ii′ =

[
ε
(0)
i − ε

(0)
i′

]−1 [
−f

(k′)
ii′ −

(
ε
(1)
i − Z

(1)
i′

)
φ

(k′−1)
ii′ + 2p2

i′(k
′ − 1)ψ(k′−1)

ii′

]
,

ψ
(k′)
ii′ =

[
ε
(0)
i − ε

(0)
i′

]−1 [
−g

(k′)
ii′ − 2(k′ − 1)φ(k′−1)

ii′ −
(
ε
(1)
i − Z

(1)
i′

)
ψ

(k′−1)
ii′

]
,

φ
(k′−1)
i′i′ = − [2(k′ − 1)]−1

g
(k)
i′i′ , (52)

ψ
(k′−1)
i′i′ =

[
2(k′ − 1)

(
2E − ε

(0)
i′

)]−1

f
(k)
i′i′ .

The above described algorithm has been implemented in MAPLE and FOR-
TRAN to calculate the desirable φ

(k′)
ii′ and ψ

(k′)
ii′ in the output up to kmax −1 =

11 order.
Remark 4. The choice of appropriate values ymin and ymax for the constructed
expansions of the linearly independent solutions for pio > 0 is controlled by the
fulfillment of the Wronskian condition (26)

yd−1Wr(Q(y); χ∗(y), χ(y)) = ±2ıIoo (53)

up to the prescribed precision εWr.
As a result, Algorithms 1 and 2 generate required asymptotic solution (5) up

to the order O(|y|−kmax) at |y|/|x| 
 1 that reduce the BVP (1) from plane R2

ψas
i′ (x, y)=

N∑
j=1

kmax∑
k=0

y−k

M(k)∑
s=min(1−j,−M(k))

B
(0)
j−1+s(x)b(k)

j−1;s

(
φ

(k−p)
ji′ + ψ

(k−p)
ji′

d

dy

)
Ri′(y)(54)

to a finite domain Ωxy = [Ωx{xmin, xmax} × Ωy{ymin, ymax}].
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4 Benchmark Calculation of Penetration Coefficient

As a benchmark calculation we consider the BVPs (1)–(6) that model the quan-
tum tunneling problem for a coupled pair of identical ions with the following val-
ues of parameters: x̄max = 5 for Eq. (2) and s = 8 for Eq. (3), s1 = s2 = s3 = 1/2,
x̄min = 0.1, Ẑ1 = Ẑ2 = 0.5 and Ẑ1 = Ẑ2 = 1 in oscillator units. For given number
N of ODES (10), the values xmin and xmax of grid Ωx{xmin, xmax} are chosen
in the region |x| > x0 =

√
2N + 1 where the Hermite polynomial [9] (or of

wave function in a general case) has none zeros. These values are computed with
prescribed precision eps > 0 from the condition

exp
(∫ x

x0

dx
√

x2 − x2
0

)
≤ eps,

which in the given case leads to inequality

exp
(
−x
√

x2 − x2
0/2
)(

x +
√

x2 − x2
0

)x2
0/2

x
−x2

0/2
0 ≤ eps. (55)

To find an approximate solution, at the first step we choose the initial approx-
imation xmax = x0, after that it is increased with step equal 1 until (55) is
satisfied. Values ymin < xmin and ymax > xmax were chosen from the condition
that potential (2) or (3) is negligible on the interval xmin < x < xmax.

The matching points ymatch
1 and ymatch

2 of the numerical (11) and asymptotic
(41) effective potential were calculated as follows:

ymatch
1 = min{yE

1 , yQ
1 , yH

1 }, ymatch
2 = max{yE

2 , yQ
2 , yH

2 },

yE
t = σy

kmax

√
|E(kmax)

N |
eps

, yQ
t = σy

kmax

√
|Q(kmax)

NN−1|
eps

, yH
t = σy

kmax

√
|H(kmax)

NN |
eps

,

since |E(kmax)
j | < |E(kmax)

N |, |Q(kmax)
jj′ | < |Q(kmax)

NN−1|, |H
(kmax)
jj′ | < |H(kmax)

NN |. So, the
values ymin and ymax are chosen from the inequalities ymin < ymatch

1 < xmin and
ymax > ymatch

2 > xmax taking into account. This gives

ymin = min

⎡
⎣ymatch

1 , min
j

⎛
⎝− kmax

√
|φ(kmax)

jio
|

eps

⎞
⎠ , min

j

⎛
⎝− kmax

√
|ψ(kmax)

jio
|

eps

⎞
⎠
⎤
⎦ ,

ymax = max

⎡
⎣ymatch

2 , max
j

⎛
⎝ kmax

√
|φ(kmax)

jio
|

eps

⎞
⎠ , max

j

⎛
⎝ kmax

√
|ψ(kmax)

jio
|

eps

⎞
⎠
⎤
⎦ . (56)

In the considered examples, we used the grids Ωx{xmin, xmax} = {−10(768)10}
and Ωy{ymin, ymax} = {−125(200)−25(100)−6(200)6(100)25(200)125}with the
Lagrange elements of the order p = 4 between the nodes. In the above grids Ωx

and Ωy, the number of grid elements is shown in the parentheses.
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To illustrate Remark 2 by an example, we can point out the lines for kmax = 3
(containing only zero values) in Table 2. Other zero values in Tables 2 and 3
point out different leading terms in the inverse power series expansion of matrix
elements between various eigenfunctions. The numerical values of effective po-
tentials calculated by ODPEVP [6] with a given precision eps of order of 10−10 in
the last line of the Tables 1, 2 and 3 are in a good agreement with the asymptotic
values from (41) in the matching points y = ymatch

t .
In the calculation of solutions, we used the etalon equation (45) at d = 1 with

the two sets of parameters taken in the first case as in Remark 3 and in second
case as k′

max = 1, Z
(1)
i′ = 2σyZ12, that corresponds to the known solutions on

the open channels

R±
io

(pio , y) = p
−1/2
io

{
(G0(pio , +y) ± ıF0(pio , +y)) exp(∓ıσio)/2, y > 0,
(G0(pio ,−y) ∓ ıF0(pio ,−y)) exp(±ıσio)/2, y < 0,

(57)

and on the closed channels

Ric(qic , y) = q
−1/2
ic

t exp(−t/2)U(1 + Z12/qic , 2, t), t = 2qic |y|. (58)

Here F0(pio , y) and G0(pio , y) are regular and irregular continuum zero order
Coulomb functions; σio = argΓ (1 + ıZ12/pio) is the Coulomb phase shift [9];
and U(a, b, c) is the confluent hypergeometric function of second kind.

Remark 5. In the numerical calculation, the exponential small factor exp(−t/2)
in Ric(qic , y) and its first derivative was neglected since this factor is canceled
during evaluation of R(y) matrix in Eq. (18).

Required reflection R→ and transmission T→ matrixes calculated by formulas
(20) via matrix of logarithmic derivatives R→(y) and solution Φh

→(ymax) calcu-
lated numerically on the above grid Ωy{ymin, ymax} by means of the program
KANTBP 3.0, including matching in the boundary points ymin and ymax of (12)
with asymptotic solution evaluated in first case has the error of order 0.1% in
comparison with a more accurate result obtained with asymptotic solution eval-
uated in the second case.

According to Remarks 1 and 4, the Wronskian condition depends on the num-
ber N of ODEs, on the value of threshold energy, on the type of etalon equation,
etc. At the boundary points ymin and ymax of the above grid Ωy{ymin, ymax}, the
absolute values εWr of components of difference between the calculated Wron-
skian and its theoretical value (53) are less then 10−11.

The total probabilities T ≡ T11 =
∑No

j=1 |T1j|2 of penetration through Trun-
cated Coulomb (2) and Coulomb-like (3) potential barriers are shown in Fig. 1.
The first of them is in a good agrement with results obtained by solving the BVP
(1), (2), (5), and (6) in the 2D domain using Numerov method in papers [3,4].
These pictures illustrate the important peculiarity that a more realistic nontrun-
cated Coulomb-like barrier having a more wide than truncated one, leads to a
set of the probability maximums having a bigger half-width. It can be used for
verification of the models and quantum transparency effect.
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Fig. 1. The total probabilities T ≡ T11 =
∑No

j=1 |T1j |2 of penetration through Trun-
cated Coulomb (2) at xmax = 5 (upper panel), and Coulomb-like (3) (lower panel),
potential barriers: xmin = 0.1, m1 = m2 = 1, left panel: Ẑ1 = Ẑ2 = 0.5, right panel:
Ẑ1 = Ẑ2 = 1.

5 Conclusion

The BVP for the 2D Schrödinger equation with long-range potentials from the
2D plane is reduced to sets of the BVPs for the ODEs in a finite 2D domain
with help of the presented symbolic algorithms for evaluation of asymptotics
of solutions and effective potentials of the ODEs. The BVPs for the resulting
system of equations containing effective potentials, which are calculated by pro-
gram ODPEVP [6], are solved by the new version of program KANTBP 2.0
using high-order precision approximations of the FEM [7]. The computational
efficiency of the SNAs proposed is demonstrated by the benchmark calculation
of quantum transmittance of long-range barriers for composite particles. The
further development of the SNAs and software for solving the BVPs of the
Schrödinger equation with long-range potentials can serve as a useful tool to
study quantum transparency effects not only in heavy ion physics but also in
quantum chemistry [11] and atomic physics [12].

Authors thank Profs. F.M. Pen’kov and P.M. Krassovitskiy for useful discus-
sion. This work was done within the framework of the Protocols No. 4028-3-10/12
of collaboration between JINR and INP (Almaty) in dynamics of few-body sys-
tems and quantum transparency of barriers for structure particles and ions. The
work was supported partially by RFBR (grants 10-01-00200 and 11-01-00523).
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Abstract. Symbolic-numeric solving of the boundary value problem for
the Schrödinger equation in cylindrical coordinates is given. This prob-
lem describes the impurity states of a quantum wire or a hydrogen-like
atom in a strong homogeneous magnetic field. It is solved by apply-
ing the Kantorovich method that reduces the problem to the boundary-
value problem for a set of ordinary differential equations with respect
to the longitudinal variables. The effective potentials of these equations
are given by integrals over the transverse variable. The integrands are
products of the transverse basis functions depending on the longitudinal
variable as a parameter and their first derivatives. To solve the prob-
lem at high magnetic quantum numbers |m| and study its solutions we
present an algorithm implemented in Maple that allows to obtain ana-
lytic expressions for the effective potentials and for the transverse dipole
moment matrix elements. The efficiency and accuracy of the derived al-
gorithm and that of Kantorovich numerical scheme are confirmed by
calculating eigenenergies and eigenfunctions, dipole moments and decay
rates of low-excited Rydberg states at high |m| ∼ 200 of a hydrogen atom
in the laboratory homogeneous magnetic field γ ∼ 2.35×10−5(B ∼ 6T ).

1 Introduction

In earlier papers, we considered the application of the Kantorovich method for
solving the discrete- and continuous-spectrum boundary-value problems (BVP)
[1] for hydrogen-like atoms in magnetic field and the ion axial channelling prob-
lem in a crystal. The approach implies the use of a parametric basis of oblate
spheroidal angular functions in spherical coordinates where the radial variable
runs a semi-axis [2,3,4,5]. The method has been further developed in connection
with calculations of spectral and optical characteristics of model semiconductor
nanostructures, namely, quantum dots(QD), quantum wells(QW) and quantum
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wires(QWr) [6,7,8,9]. For this purpose we used different parametric basis func-
tions in appropriate coordinate systems. The functions were calculated by solving
parametric eigenvalue problems by means of the program ODPEVP [10].

Taking into account the growing interest in problems possessing axial symme-
try, like impurity states of QWr’s or high-angular-momentum Rydberg states and
quasi-stationary states imbedded in continuum of a hydrogen atom in magneto-
optical traps [11,12,13], it is imperative to implement the Kantorovich scheme for
solving the BVP for the longitudinal variable running the whole axis of a cylin-
drical coordinate system[8,9]. This would allow direct calculation of the main
characteristics of a multichannel scattering problem, such as reflection and trans-
mission coefficients matrices, recombination rates and ionization cross-sections
for Rydberg states, and decay rates of the lowest bound states of manifolds with
high values of the magnetic quantum number |m| [11,12,13].

For the Schrödinger equation describing a hydrogen-like atom in a strong
homogeneous magnetic field, the boundary-value problem (BVP) in cylindrical
coordinates is reduced to solving a set of the longitudinal equations in the frame-
work of the Kantorovich method. The effective potentials of these equations are
given by integrals over the transverse variable, the integrands being products
of transverse basis functions, depending on the longitudinal variable as a pa-
rameter, and their first derivatives with respect to the parameter. One can say
that at high |m|, the discrete-spectrum problem is described by a system of two
coupled 2D- and 1D-oscillators corresponding to the transverse ρ and longitu-
dinal z variables, with the frequencies ωρ and ωz, respectively. To analyze the
low-excited Rydberg states of such system it is useful to have the solution in
an analytic form. Indeed, for high |m| we can consider the Coulomb potential
as a perturbation with respect to the transversal centrifugal potential and the
oscillator potential with the frequency ωρ = γ/2. For the laboratory magnetic
field B = B0γ ∼ 6T , i.e., γ ∼ 2.35×10−5, this is true at the adiabatic parameter
values m̃ ∼ 5.89, where m̃ is defined as m̃ = (ωρ/ωz)4/3 = |m|γ1/3. Under the
condition |m| ≥ 6γ−1/3 we can approximate the Coulomb potential by a Taylor
expansion in powers of the auxiliary transverse variable with respect to a spe-
cially chosen point with given accuracy in the region of its convergence. Then we
can find the approximate transversal eigenvalues and eigenfunctions depending
parametrically on the longitudinal variable, in the framework of a perturbation
scheme and by using the eigenvalues and eigenfunctions of the 2D oscillator
as unperturbed ones. To express analytically the transverse basis functions and
eigenvalues, the corresponding effective potentials, and the transverse dipole mo-
ment matrix elements as well as perturbation solution of the BVP, we elaborate a
symbolic-numerical algorithm (SNA) implemented in Maple. The efficiency and
accuracy of the algorithm and that of the derived Kantorovich numerical scheme
are confirmed by computation of eigenenergies and eigenfunctions, dipole mo-
ments and decay rates for the manifolds of high-|m| low-excited Rydberg states
of a hydrogen atom in the laboratory homogeneous magnetic field, and by com-
parison with the results obtained by other methods.
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The paper is organized as follows. In Section 2, we briefly describe the reduc-
tion by the KM of the 3D eigenvalue problem at fixed values |m| of magnetic
quantum number to the 1D eigenvalue problem for a set of close-coupled longi-
tudinal equations. In Sections 3 and 4, the algorithm for calculating the effective
potentials and the transverse dipole moment matrix elements in the analytic
form at large values of |m| is presented. The algorithm has been implemented
in Maple. To find the validity range of the method, in Section 5 we compare our
results with the known ones obtained in the cylindrical coordinates. Decay rates
of the lowest bound states of manifolds with high magnetic quantum number |m|
are also presented here. In Section 6, we conclude and discuss possible future
applications of the described method.

2 Problem Statement in Cylindrical Coordinates

The component Ψ(ρ, z) of the wave function Ψ(ρ, z, ϕ) = Ψ(ρ, z) exp(ımϕ)/
√

2π
of a hydrogen atom in an axially symmetric magnetic field B = (0, 0, B) in
the cylindrical coordinates (ρ, z, ϕ) satisfies the 2D Schrödinger equation in the
region Ωc = {0 < ρ <∞ and −∞ < z <∞}:

− ∂2

∂z2
Ψ(ρ, z) + AcΨ(ρ, z) = εΨ(ρ, z), Ac = −1

ρ

∂

∂ρ
ρ
∂

∂ρ
+ mγ + U(ρ, z), (1)

U(ρ, z) =
m2

ρ2
+

γ2ρ2

4
+ Vc(ρ, z), Vc(ρ, z) = − 2q√

ρ2 + z2
. (2)

Here m = 0,±1, . . . is the magnetic quantum number, γ = B/B0 = h̄ωc/(2Ry),
B0
∼= 2.35 × 105 T is a dimensionless parameter which determines the field

strength B, ωc = eB/(mec) = eB0γ/(mec) is the cyclotron frequency, and
U(ρ, z) is the potential energy (see Fig. 1a), q is Coulomb charge of nucleus.
We use the atomic units (a.u.) h̄ = me = e = 1 and assume the mass of the
nucleus to be infinite. In these expressions, ε = 2E, E is the energy (expressed
in Rydbergs, 1Ry = (1/2) a.u.) of the bound state |mσ〉 with fixed values of m
and z-parity σ = ±1, and Ψ(ρ, z) ≡ Ψmσ(ρ, z) = σΨmσ(ρ,−z) is the correspond-
ing wave function. The boundary conditions in each mσ subspace L2(Ω) of the
complete Hilbert space have the form

lim
ρ→0

ρ
∂Ψ(ρ, z)

∂ρ
= 0, for m = 0, and Ψ(0, z) = 0, for m �= 0, (3)

lim
ρ→∞Ψ(ρ, z) = 0. (4)

The eigenfunction Ψ(ρ, z) ≡ Ψt(ρ, z) ∈ L2(Ω) of the discrete real-valued spec-
trum ε : ε1 < ε2 < · · · εt < · · · < γ obeys the asymptotic boundary condition.
Approximately this condition is replaced by the boundary condition of the sec-
ond and/or first type at small and large |z|, but finite |z| = zmax 
 1,

lim
z→0

∂Ψ(ρ, z)

∂z
= 0, σ = +1, Ψ(ρ, 0) = 0, σ = −1, (5)

lim
z→±∞Ψ(ρ, z) = 0 → Ψ(ρ,±|zmax|) = 0. (6)



158 A. Gusev et al.

In numerical calculation of the eigenvalues and eigenfunctions with given accu-
racy by programs KANTBP2 and ODPEVP realizing the finite element method,
we used computational schemes derived from the Rayleigh–Ritz variational func-
tional [1,10]

R(Ψt, εt) =

( zmax∫

−zmax

dz

∞∫

0

ρdρ
∂Ψt(ρ, z)

∂z

∂Ψt(ρ, z)

∂z
+

∂Ψt(ρ, z)

∂ρ

∂Ψt(ρ, z)

∂ρ
(7)

+Ψt(ρ, z)(mγ + U(ρ, z))Ψt(ρ, z)

)
/

∫ zmax

−zmax

dz

∫ ∞
0

ρdρΨt(ρ, z)Ψt′(ρ, z)

with the additional normalization and orthogonality conditions

〈t|t′〉=
∫ zmax

−zmax

dz

∫ ∞
0

ρdρΨt(ρ, z)Ψt′(ρ, z)=2

∫ zmax

0

dz

∫ ∞
0

ρdρΨt(ρ, z)Ψt′(ρ, z)=δtt′ . (8)

For m �= 0 eigenfunctions Ψt(ρ, z) ∼ ρ|m|/2 at small ρ. So, in numerical calcula-
tions, a reduced interval [0 < ρmin, ρmax 
 1] is conventionally used [8].

2.1 Kantorovich Reduction

Consider a formal expansion of the partial solution Ψmσ
t (ρ, z) of Eqs. (1)–(4) cor-

responding to the eigenstate |mσt〉 expanded in the finite set of one-dimensional
basis functions {Bm

j (ρ; z)}jmax

j=1

Ψmσ
t (ρ, z) =

jmax∑
j=1

Bm
j (ρ; z)χ

(mσt)
j (z). (9)

In Eq. (9), the functions χ(t)(z)≡χ(mσt)(z), (χ(t)(z))T = (χ
(t)
1 (z),. . . ,χ

(t)
jmax

(z))

are unknown, and the surface functions B(ρ; z) = Bm(ρ;−z), (B(ρ; z))T =
(B1(ρ; z), . . . , Bjmax(ρ; z)) form an orthonormal basis for each value of the vari-
able z ∈ R which is treated as a parameter.

In KM, the wave functions Bj(ρ; z) (see Fig. 2) and the potential curves Ej(z)
(in Ry) are determined as solutions of the following eigenvalue problem

AcBj(ρ; z) = Ej(z)Bj(ρ; z), (10)

with the operator Ac from (1)–(2) and the boundary conditions (3), (4) at each
fixed z ∈ R. Since the operator in the left-hand side of Eq. (10) is self-adjoint,
its eigenfunctions are orthonormal

〈
Bi(ρ; z)

∣∣∣∣Bj(ρ; z)

〉

ρ

=

∫ ∞
0

Bi(ρ; z)Bj(ρ; z)ρdρ = δij , (11)

where δij is the Kronecker symbol. Therefore, we transform the solution of the
above problem into the solution of an eigenvalue problem for a set of jmax
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Fig. 1. Left panel: the profile of potential energy U(ρ, z) = m2/ρ2 + γ2ρ2/4+ Vc(ρ, z)
(U) in the plane z = 0 and its components, namely, the centrifugal (C), oscillator (Osc),
and Coulomb (Coul) potentials. Right panel: the approximation errors δU (jmax)(ρ, z) ≡∑jmax

i=1 U (i)(ρ, z) − U(ρ, z) (jmax = 1, ..., 9) of the potential energy U(ρ, z = 0). Here
q = −1, m = −200, γ = 2.553191 · 10−5 (B = 6T, m̃ ≈ 5.89)

ordinary second-order differential equations that determines the energy ε and
the coefficients χ(i)(z) of the expansion (9)

(
−I d2

dz2
+ U(z) + Q(z)

d

dz
+

dQ(z)

dz

)
χ(t)(z) = εtIχ

(t)(z). (12)

Here I, U(z) = U(−z), and Q(z) = −Q(−z) are the jmax×jmax matrices whose
elements are expressed as

Uij(z) = Ei(z)δij + Hij(z), Hij(z) =

∫ ∞
0

∂Bi(ρ; z)

∂z

∂Bj(ρ; z)

∂z
ρdρ, (13)

Iij(z) = δij , Qij(z) = −Qji(z) = −
∫ ∞
0

Bi(ρ; z)
∂Bj(ρ; z)

∂z
ρdρ.

The discrete spectrum solutions ε : ε1 < ε2 < · · · εt < · · · < γ at fixed m and
parity σ = ±1 obey the asymptotic boundary condition and are orthonormal

lim
z→0

(
d

dz
−Q(z)

)
χ(t)(z) = 0, σ = +1, χ(t)(0) = 0, σ = −1, (14)

lim
z→±∞χ(t)(z) = 0 → χ(t)(±zmax) = 0, (15)
∫ zmax

−zmax

(
χ(t)(z)

)T
χ(t′)(z)dz = 2

∫ zmax

0

(
χ(t)(z)

)T
χ(t′)(z)dz = δtt′ . (16)

Remark 1. In diagonal adiabatic approximation
(
− d2

dz2
+ Ujj(z)

)
χ
(v)
j (z) = εjvχ

(v)
j (z) (17)

discrete spectrum ε : εj1 < εj2 < · · · εjv < · · · < γ numerated by number v that

determines the number v − 1 of nodes of the solution χ
(v)
j (z) at fixed value j.
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Fig. 2. The basis functions B1 and B2 for m = −200, q = 1, γ = 2.553191 · 10−5

3 Solving the Parametric Eigenvalue Problem at
Large |m|

Step 1. In (10), (11) apply the transformation to a scaled variable x

x =
γρ2

2
, ρ =

√
x√
γ/2

, (18)

and put λj(z) = Ej(z)/(2γ) = λ
(0)
j +m/2+δλj(z), where λ

(0)
j = n+(|m|+1)/2.

The eigenvalue problem reads⎛
⎝− ∂

∂x
x
∂

∂x
+

m2

4x
+

x

4
+

m

2
− q

γ
√

2x
γ + z2

− λj

⎞
⎠Bj(x; z) = 0, (19)

with a normalization condition

1

γ

∫ ∞
0

Bj(x; z)2dx = 1. (20)

At q = 0, Eq. (19) without m/2 takes the form

L(n)B
(0)
j (x) = 0, L(n) = − ∂

∂x
x
∂

∂x
+

m2

4x
+

x

4
− λ

(0)
j , (21)

and has the regular and bounded solutions at

λ
(0)
j = n + (|m|+ 1)/2, (22)

where the transverse quantum number n ≡ Nρ = j− 1 = 0, 1, . . . determines the

number of nodes of the solution B
(0)
j (x) ≡ B

(0)
nm(x) with respect to the variable

x. The normalized solutions of Eq. (21) take the form
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B
(0)
j (x) = Cn|m|e−

x
2 x

|m|
2 L|m|n (x), Cn|m| =

[
γ

n!

(n + |m|)!
] 1

2

, (23)

1

γ

∫ ∞
0

B(0)
nm(x)B

(0)
n′m(x)dx = δnn′ , (24)

where L
|m|
n (x) are Laguerre polynomials [14].

Step 2. Substituting the notation δλj(z) = λj(z)− λ
(0)
j −m/2 ≡ Ej(z)/(2γ)−

(n + (m + |m| + 1)/2), and the Taylor expansion in the vicinity of the point
x0 = xsγ:

Vc(x, z) = − q

γ
√

2x
γ +z2

= −
jmax∑
k=1

V (k)(x, z)εk = − εq

γ(z2+2xs)1/2
(25)

+
εq(x−xsγ)

γ2(z2+2xs)3/2
− 3ε2q(x−xsγ)2

2γ3(z2+2xs)5/2
+

5ε3q(x−xsγ)3

2γ4(z2+2xs)7/2
+O

(
ε4

(z2+2xs)9/2

)
,

into Eq. (19) at q �= 0, transform it to the following form

L(n)Bj(x; z) +

(
jmax∑
k=1

V (k)(z)εk − δλj(z)

)
Bj(x; z) = 0. (26)

Here ε is a formal parameter that will be put to be 1 in the final expression.
The parameters xs = ρ2s/2 and ρs approximately correspond to the minimum
of the potential energy (2). In so doing, the Coulomb term is neglected. In
the calculations we choose ρs =

√
2|m|/γ under assumption that the condition

γ2ρ2/4 + m2/ρ2 
 2|q|/ρ is valid. The approximation errors δU (jmax)(ρ, z) at
jmax = 1, ..., 9 are illustrated in Fig. 1b. One can see that in the localization
interval ρ ∈ [3000, 5000] of the eigenfunction (19), the errors decrease with in-
creasing order jmax (see Fig. 2). Performing Taylor expansion at |z|/ρs 
 1, we
arrive at the inverse power series that gives the same results as the perturbation
theory in powers of 1/|z| [8].

Step 3. The solution of Eq. (26) is found in the form of perturbation expansion
in powers of ε

δλj(z) =

kmax∑
k=1

εkλ(k)
n (z), Bj(x; z) = B(0)

n (x) +

kmax∑
k=0

εkB(k)
n (x, z). (27)

Equating coefficients at the same powers of ε, we arrive at the system of inhomo-

geneous differential equations with respect to corrections λ
(k)
n (z) and B

(k)
n (x, z):

L(n)B(0)
n (x) = 0 ≡ f (0)

n (z), (28)

L(n)B(k)
n (x, z) = (λ(k)

n (z)− V (k)(z))B(0)
n (x)

+
k−1∑
p=1

(λ(k−p)(z)− V (k−p)(z))B(p)
n (x, z) ≡ f (k)

n (z), k ≥ 1.
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Fig. 3. The eigenvalues Ej(z) and the effective potentials Hjj(z), Hjj′(z) (curves
Hjj−1(z), j = 2, ..., 6, are marked by number 1, curves Hjj−2(z), j = 3, ...6, are
marked by number 2 and curves Hjj−3(z), j = 4, ..., 6, are marked by number 3) and
Qjj′(z) (curves Qjj−1(z), j = 2, ..., 6, are marked by number 1, and curves Qjj−2(z),
j = 3, ..., 6, are marked by number 2) for m = −200, q = 1, γ = 2.553191 · 10−5

To solve Eqs. (26) we used the nonnormalized orthogonal basis

Bn+s(x) = Cn|m|e−
x
2 x

|m|
2 L
|m|
n+s(x) = Cn|m|C

−1
n+s|m|B

(0)
n+s,m(x), (29)

〈s|s′〉 =

∫ ∞
0

Bn+s(x)Bn+s′ (x)dx = δss′γ
n!

(n + |m|)!
(n + s + |m|)!

(n + s)!
.

The action of the operators L(n) and x on the functions Bn+s(x) is defined by
the relations

L(n)Bn+s(x) = sBn+s(x), (30)

xBn+s(x) = −(n + s + |m|)Bn+s−1(x) + (2(n + s) + |m|+ 1)Bn+s(x)

−(n + s + 1)Bn+s+1(x)

that involve no fractional powers of quantum numbers n and m.

Step 4. Applying Eqs. (30), the right-hand side f
(k)
n (z) and the solutions

B
(k)
n (x, z) of the system (28) are expanded over the nonnormalized basis states

Bn+s(x)

B(k)
n (x, z) =

smax∑
s=−smax

b(k)n;s(z)Bn+s(x), f (k)
n (z) =

smax∑
s=−smax

f (k)
n;s (z)Bn+s(x).(31)

Then the recurrent set of linear algebraic equations for unknown nonnormalized

coefficients b
(k)
n;s(z) and corrections λ

(k)
n (z) is obtained

sb(k)n;s(z)− f (k)
n;s (z) = 0, s = −smax, . . . , smax,
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which is solved sequentially for k = 1, 2, . . . , kmax:

f
(k)
n;0(z) = 0 → λ(k)

n (z); b(k)n;s(z) = f (k)
n;s (z)/s, s = −smax, . . . , smax, s �= 0.

The initial conditions (22) and b
(0)
n;s(z) = δs0 follow from Eqs. (21) and (24).

Step 5. To obtain the normalized wave function Bj(x; z) up to the kth order,

the coefficient b
(k)
0 are defined by the following relation:

b
(k)
n;0(z) = − 1

2γ

k−1∑
p=1

smax∑
s′=−smax

smax∑
s=−smax

b(k−p)n;s (z)〈s|s′〉b(p)n;s′(z), b
(k=1)
n;0 (z) = 0.

As an example of the output file at steps 1–5, we display nonzero coefficients

λ
(k)
n (z), b

(k)
n;s(z) of the expansions (27), (31) over the nonnormalized basis func-

tions (29) up to O(ε2):

λ(0)
n = n+(|m|+1)/2,

λ(1)
n (z) =− q

γ
√
z2+2xs

+
q(2n+|m|+1)

γ2(z2+2xs)3/2
− xsq

γ(z2+2xs)3/2
,

λ(2)
n (z) =−q2(2n+|m|+1)/(γ4(z2+2xs)

3)−3q[|m|2+2+6n|m|
+6n2+6n+3|m|−2γ(2n+|m|+1)xs+x2

sγ
2]/(2γ3(z2+2xs)

5/2),

b
(0)
n;0(z) = 1, (32)

b
(1)
n;−1(z) =−q(n+|m|)/(γ2(z2+2xs)

3/2), b
(1)
n;1(z) = q(n+1)/(γ2(z2+2xs)

3/2),

b
(2)
n;−2(z) = q(n+|m|)(n+|m|−1)(2q−3γ

√
(z2+2xs))/(4γ4(z2+2xs)

3),

b
(2)
n;−1(z) = q(n+|m|)(2q+3γ(2n+|m|−γxs)

√
(z2+2xs))/(γ4(z2+2xs)

3),

b
(2)
n;0(z) = q2(2n2+2n+2n|m|+|m|+1)/(2γ4(z2+2xs)

3),

b
(2)
n;1(z) =−q(n+1)(2q+3γ(2n+|m|+2−γxs)

√
(z2+2xs))/(γ4(z2+2xs)

3),

b
(2)
n;2(z) = q(n+1)(n+2)(2q+3γ

√
(z2+2xs))/(4γ4(z2+2xs)

3).

These expansions involve parameters xs = ρ2s/2 and ρs that approximately cor-
responded to the minimum of the potential energy (2) and determined the point
x0 = γxs of expansion of (25) of Coulomb potential Vc(x, z).

Step 6. In terms of the scaled variable x, the expressions of the effective poten-
tials Hij(z) = Hji(z) and Qij(z) = −Qji(z) take the form

Hij(z)=
1

γ

∞∫

0

dx
∂Bi(x; z)

∂z

∂Bj(x; z)

∂z
, Qij(z)=− 1

γ

∞∫

0

dxBi(x; z)
∂Bj(x; z)

∂z
. (33)

To calculate them we expand the solution (26) over the normalized orthogonal

basis B
(0)
n+s;m(x) with the normalized coefficients b

(k)
n;n+s;m(z),

Bj(x; z) ≡ Bm
j (x; z) =

kmax∑
k=0

εk
smax∑

s=−smax

b
(k)
n;n+s;m(z)B

(0)
n+s;m(x). (34)
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The normalized coefficients b
(k)
n;n+s;m(z) are expressed via b

(k)
n;s(z),

b
(k)
n;n+s;m(z) = b(k)n;s(z)

√
n!

(n + |m|)!
(n + s + |m|)!

(n + s)!
(35)

as follows from Eqs. (31), (34), and (29).

Step 7. As a result of substituting Eqs. (34) into Eq. (33), the matrix elements
take the form

Qjj+t(z) = −
kmax∑
k=0

εk
k∑

k′=0

min(smax,smax+t)∑
s=max(−smax,−smax+t)

b
(k′)
n;n+s;m(z)

db
(k−k′)
n+t;n+s;m(z)

dz
,

Hjj+t(z) =

kmax∑
k=0

εk
k∑

k′=0

min(smax,smax+t)∑
s=max(−smax,−smax+t)

db
(k′)
n;n+s;m(z)

dz

db
(k−k′)
n+t;n+s;m(z)

dz
.(36)

By collecting the coefficients at similar powers of ε in Eq. (36) the algorithm
yields the final expansions of eigenvalues and effective potentials available in the
output file

Ej(z) =

kmax∑
k=0

E
(k)
j (z), Hij(z) =

kmax∑
k=2

H
(k)
ij (z), Qij(z) =

kmax∑
k=1

Q
(k)
ij (z). (37)

Successful runs of the Maple implementation of the algorithm were performed
up to kmax = 6 (the run time 30 s using Intel Core i5, 3.36 GHz, 4 GB). Below we
present a few first nonzero coefficients derived in the analytic form (j = n + 1):

E
(0)
j = 2γ(n + (m + |m|+ 1)/2),

E
(1)
j (z) = − 2q√

z2+ρ2s
+

2q(2n+|m|+1)

γ(z2+ρ2s)
3/2

− ρ2sq

(z2+ρ2s)3/2
,

E
(2)
j (z) = −2q2(2n+|m|+1)

γ3(z2 + ρ2s)3

−3q[|m|2+2+6n|m|+6n2+6n+3|m|−γ(2n+|m|+1)ρ2s+ρ4sγ
2/4]

γ2(z2+ρ2s)5/2
,

Q
(1)
jj−1(z) = −√n

√
n+|m| 3zq

γ2(z2 + ρ2s)5/2
,

Q
(2)
jj−1(z) = −√n

√
n+|m|

[
15zq(2|m|+ 4n− ρ2sγ)

2γ3(z2 + ρ2s)7/2
+

12zq2

γ4(z2 + ρ2s)4

]
,

Q
(2)
jj−2(z) = −√n√n−1

√
n+|m|

√
n+|m|−1

15qz

4γ3(z2 + ρ2s)7/2
,

H
(2)
jj (z) = 9q2(2n2 + 2n|m|+ 2n + |m|+ 1)

[
1

γ4(z2 + ρ2s)4
− ρ2s

γ4(z2 + ρ2s)5

]
,

H
(2)
jj−2(z) = −9q2

√
n
√
n−1

√
n+|m|

√
n+|m|−1

[
1

γ4(z2+ρ2s)
4

+
ρ2s

γ4(z2+ρ2s)
5

]
.
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Fig. 4. Transverse dipole matrix elements P
|m||m|−1
nn′ (subscripts n, n′ run

0, 1, 2, 3, 4, 5, 6) for m = −200, q = 1, γ = 2.553191 · 10−5

As an example, Fig. 3 shows the eigenvalues and effective potentials (37), which
agree with those calculated numerically using ODPEVP [10] with the accuracy
of the order of 10−10. We used finite element grid on the interval ρ ∈ [ρmin =
2000, ρmax = 6000] with the Lagrange elements of fourth order. Expanding (37)
into the Taylor series at |z|/ρs 
 1, we arrive at perturbation expansion in
powers of 1/z [8].

4 Calculations of the Transversal Dipole Matrix Elements

Using the scaled variable x defined by Eq. (18) one can express the trans-

verse dipole matrix elements P
|m|,|m|∓1
ij (z) =

〈
|m|, n

∣∣∣ρe±ıϕ
∣∣∣|m| ∓ 1, n′

〉
and

P
−|m|,−|m|±1
ij (z) =

〈
−|m|, n

∣∣∣ρe∓ıϕ
∣∣∣−|m| ± 1, n′

〉
possessing the property

〈
|m|, n

∣∣∣ρ exp(±ıϕ)
∣∣∣|m| ∓ 1, n′

〉∗
=
〈
|m| ∓ 1, n′

∣∣∣ρ exp(∓ıϕ)
∣∣∣|m|, n

〉
,

where i = n + 1 and j = n′ + 1, in the following form

P
−|m|,−|m|±1
ij (z) = P

|m|,|m|∓1
ij (z) =

√
2

γ3

∞∫

0

dxB
|m|
i (x; z)

√
xB
|m|∓1
j (x; z).(38)

According to Eqs. (22.7.12), (33.7.30), and (22.7.31) of [14], the dipole mo-
ment matrix elements calculated with normalized basis functions ||m|, n〉 =

B
(0)
n|m|(x)eı|m|ϕ/

√
2π by means of Eq. (23) are expressed as

P
(0);|m||m|∓1
ij =

√
2

γ3

〈
|m|, n

∣∣∣√xe±ıϕ
∣∣∣|m| ∓ 1, n′

〉
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Fig. 5. Energy eigenvalues 2Es for even (σ = +1) lower eigenstates vs the state number
〈j〉 calculated in the diagonal adiabatic approximation (left) and in the Kantorovich
approximation at jmax = 6 with given accuracy (right). Here m = −200, γ = 2.553191 ·
10−5, q = 1, σ = +1. The quantity 〈j〉 =

∑
j

∫
jχj,s(z)

2dz is the averaged quantum
number, s is the eigenvalue number in the ascending energy sequence E1 < E2 < ... <
Es < ... < γ/2, corresponding to the number v of the eigenvalue Ej1 < Ej2 < ... <
Ejv < ... < γ/2 counted at each 〈j〉 = j in diagonal approximation (17) of Eqs. (12)

=

√
2

γ3

1

2π

∫ 2π

0

dϕ

∫ ∞
0

e−ı|m|ϕB(0)
i,|m|(x)e±ıϕ

√
xeı(|m|∓1)ϕB(0)

i,|m|∓1(x)dx

=

√
2

γ

[
δnn′

√
n + |m|+ 1/2∓ 1/2− δn∓1,n′

√
n + 1/2∓ 1/2

]
. (39)

As a result of substituting Eqs. (34) and (39) into Eq. (38), the matrix elements
take the following analytic form (j = n + 1)

P
|m|,|m|−1
jj+t (z) =

kmax∑
k=0

P
(k);|m||m|−1
jj+t (z),

P
(k);|m||m|−1
jj+t (z) =

√
2

γ

k∑
k′=0

min(k,k−k′−t)∑
s=max(−k,k′−k−t)

[
b
(k′)
n;n+s;|m|(z)b

(k−k′)
n+t;n+s;|m|−1(z)

×
√
n + s + |m|+ 1− b

(k′)
n;n+s;|m|(z)b

(k−k′)
n+t;n+s+1;|m|−1(z)

√
n + s + 1

]
. (40)

Successful run of the Maple-implemented algorithm was performed up to kmax =
6 (run time 90 s with Intel Core i5, 3.36 GHz, 4 GB). A few first nonzero
coefficients derived in the analytic form are presented below (j = n + 1):

P
(0);|m||m|−1
jj (z) = +

√
2
√
n + |m|+ 1√

γ
, P

(1);|m||m|−1
jj (z) = −

√
2
√
n + |m|q

γ5/2(ρ2s + z2)3/2
,

P
(0);|m||m|−1
j−1j (z) = −

√
n
√

2√
γ

, (41)

P
(1);|m||m|−1
j−1j (z) = −

√
n
√

2
√
n + |m|(√n + |m| − 1−√n + |m|+ 1)q

(ρ2s + z2)3/2γ5/2
,
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Fig. 6. Upper panels: the first three components of the eigenfunctions χj,70 and χj,71

(j = 1, 2, 3). The dominant components are j = 1 (〈j〉 = 1.43) with v − 1 = 25
nodes and j = 2 (〈j〉 = 1.56) with v − 1 = 18 nodes, respectively. Lower panels:
the profile of the wave function Ψm=−200,σ=+1

s=70 (ρ, z) and Ψm=−200,σ=+1
s=71 (ρ, z) of the

resonance states in the zx plane with the energies 2Em=−200,σ=+1
s=70 = −2.151832 ·

10−4Ry and 2Em=−200,σ=+1
s=71 = −2.150977 · 10−4Ry pointed by arrows in the right

panel of Fig. 5

P
(1);|m||m|−1
jj−1 (z) =

√
n
√

2(
√
n + |m| − 1

√
n + |m|+ 1− n− |m|)q

(ρ2s + z2)3/2γ5/2
.

The comparison of our analytical numerical results with those obtained numeri-
cally using the program ODPEVP [10] shows the convergence of the perturbation
series expansion up to kmax = 6 with four significant digits. Expanding (40) into
a Taylor series at |z|/ρs 
 1, we arrive at the inverse power series for the dipole
matrix elements. To obtain the leading terms at |z| → ∞ it is sufficiently to put
ρs = 0 in (41).

5 Calculations of Rydberg States and Decay Rates

In Fig. 5 we present an example of the lower part of discrete spectrum calculated
in the diagonal adiabatic and Kantorovich approximations with the effective
potentials (37) by means of the program KANTBP2 [1]. In numerical calculations
at q = −1, γ = 2.553191 · 10−5 for |m| ∼ 200, we use finite element grid on the
interval z ∈ [0, zmax = 11000] with the Lagrange elements of fourth order. In
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Fig. 6, we show an example of resonance states formed by coupling of the quasi-
degenerate states with the energies 2Em=−200,σ=+1

j=1,v=26 = −2.151260 · 10−4Ry and

2Em=−200,σ=+1
j=2,v=19 = −2.151202 · 10−4Ry in the diagonal adiabatic approximation

(17) pointed by arrows in the left panel of Fig. 5.
The partial transition decay rates Γs̃→s̃′ are calculated as

Γs̃→s̃′ =
4

3

e2ω3
s̃s̃′

4πε0h̄c3
|〈s̃′|r̄|s̃〉|2, ωs̃s̃′ = (Ēs̃′ − Ēs̃)/h̄. (42)

In the above expressions, ε0 = 8.854187817 · 10−12 F/m is the dielectric con-
stant, the energy Ēs̃′ = Es̃′EB and the dipole moment 〈s̃′|r̄|s̃〉 = aB〈s̃′|r|s̃〉
are expressed in the atomic units EB = 2Ry = 4.35974434 · 10−18 J, aB =
0.52917721092 · 10−10 m, i.e.

Γs̃→s̃′ = 2.142 · 1010(Es̃′ − Es̃)
3|〈s̃′|r|s̃〉|2 × s−1. (43)

Here |〈s̃′|r|s̃〉|2 defined by the expression

|〈s̃′|r|s̃〉|2 = (1/2)|〈s̃′|ρe−ıϕ|s̃〉|2 + |〈s̃′|z|s̃〉|2 + (1/2)|〈s̃′|ρe+ıϕ|s̃〉|2, (44)

where 〈s̃′|z|s̃〉 and 〈s̃′|ρe±ıϕ|s̃〉 are the longitudinal and transverse dipole mo-
ment, respectively. As follows from Eq. (40),

〈s̃′|z|s̃〉 = δm′mδ−σ′σ

jmax∑
i,j=1

∫ zmax

zmin

dzχmσ′
is̃′ (z)zχmσ

js̃ (z), (45)

〈s̃′|ρe±ıϕ|s̃〉 = δm′m∓1δσ′σ

jmax∑
i,j=1

∫ zmax

zmin

dzχm′σ
is̃′ (z)Pm′,m

ij (z)χmσ
js̃ (z). (46)

In Table 1 we show our present results for partial decay rates (43) and dipole
moments (45) and (46). The results were obtained numerically by means of the
program KANTBP 2.0 [1] using the analytically derived effective potentials (37)
and matrix elements of transversal dipole moments (40), i.e., Ms̃′s̃ =〈s̃′|ρe−ıϕ|s̃〉
for cyclotron decay (C) (q → q′ = q, where q = j − m is magnetron quantum
number, m→m′=m− 1, σ→σ′=σ, j→ j′= j − 1, v→ v′= v); Ms̃′s̃ = 〈s̃′|z|s̃〉
for the bounce decay (B) (q→ q′= q, m→m′=m, σ→σ′=−σ, j→ j′= j, v→
v′=v − 1), and Ms̃′ s̃=〈s̃′|ρe+ıϕ|s̃〉 for the magnetron decay (M) (q→q′=q − 1,
m→m′=m + 1, σ→σ′=σ, j→ j′= j, v→ v′= v). The results agree with the
numerical ones from [12] within the required accuracy.

In Table 1 we also show the energy values 2E|s̃〉 calculated in the Kantorovich
approximation (K) at jmax = 6, and obtained by the aid of the diagonal approx-
imation (17) in the analytical form

2E|s̃〉 ≈ 2Em,σ
i,v = U

(0)
ii + E(0)i;v +

∑κmax

κ=2
E(κ−1)i;v , (47)

E(0)i;v = ωz,i(2v + 1), E(1)i;v =
3U

(4)
i (2v2 + 2v + 1)

4ω2
z,i

,

E(2)i;v = − (2v + 1)(17v2 + 17v + 21)(U
(4)
i )2

16ω5
z,i

+
5(2v + 1)(2v2 + 2v + 3)U

(6)
i

8ω3
z,i

.
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Table 1. The partial transition decay rates Γs̃→s̃′ evaluated using Eq. (43) from the
state |s̃〉= |j,v,σ,m〉 to |s̃′〉= |j′,v′,σ′,m′〉 with energies 2E|s̃〉 and 2E|s̃′〉 calculated using
the Kantorovich approximation (K) at jmax = 6 and the corresponding dipole moments
Ms̃′ s̃. In square brackets, numerical results of [12] are given. The energies calculated
in analytical form using the crude diagonal approximation with the Taylor series of
Uii(z) = Ei(z) up to harmonic (H) and anharmonic (A) terms of order of z2 and z10,
respectively. The corresponding energies in the diagonal approximation with Taylor
series of Uii(z)=Ei(z)+Hii(z) differing only in two last digits, are shown in parentheses.

s̃ s̃′ |j, v, σ,m〉 |j′, v′, σ′,m′〉 Γs̃→s̃′ , Ms̃′s̃, 2Es̃, 2Es̃′ ,
s−1 aB 10−4Ry 10−4Ry

C 5 1 |2, 1,+1,−200〉 |1, 1,+1,−201〉 13.1 276.4 K −4.29933 −4.80384
[13.7] [283] H −4.29978(76) −4.80384(83)

A −4.30019(18) −4.80424(23)

C 13 5 |3, 1,+1,−200〉 |2, 1,+1,−201〉 26.3 390.9 K −3.78171 −4.28632
[27.5] [401] H −3.78299(95) −4.28688(86)

A −3.78342(38) −4.28729(27)

B 1 1 |1, 2,−1,−200〉 |1, 1,+1,−200〉 0.180 349.4 K −4.73499 −4.81688
[0.178] [350] H −4.73329(27) −4.81683(83)

A −4.73531(29) −4.81724(23)

B 2 1 |1, 3,+1,−200〉 |1, 2,−1,−200〉 0.345 499.0 K −4.65469 −4.73499
[0.342] [500] H −4.64974(71) −4.73329(27)

A −4.65497(94) −4.73531(29)

M 1 1 |1, 1,+1,−200〉 |1, 1,+1,−199〉 0.045 3870 K −4.81688 −4.83003
[0.044] [3872] H −4.81683(83) −4.82993(93)

A −4.81724(23) −4.83034(33)

The latter was obtained using SNA like in Section 3, but for a perturbed 1D
oscillator with adiabatic frequency ωz,i. It was accomplished with the help of
a Taylor expansion up to z2κmax of effective potentials Uii(z) = Ei(z) + Hii(z)
from Eq. (37) for the harmonic (H) and anharmonic (A) terms, i.e., 2κmax = 2
and 2κmax = 10, respectively,

Uii(z) = Uii(0) + ω2
z,iz

2 +
∑κmax

κ=2
U

(2κ)
i z2κ. (48)

Moreover, in Table 1 we present also the results for the energies (47) in the
crude and adiabatic approximations obtained without and with the diagonal
potential Hii, respectively. One can see that the energies in crude adiabatic
and adiabatic approximations differ only in two last significant figures, i.e., are
the same within the accuracy of ∼ 10−8. One can see from Table 1 that the
adiabatic harmonic (H) diagonal approximation and the crude anharmonic (A)
one provide the upper and lower estimations of the energy values of low-excited
Rydberg states with j = 1, respectively.

Remark 2. In the expansions (47) and (48), the coefficients are calculated using

U
(0)
ii = Uii(0), ω2

z,i = (d2Uii(z)/dz2)z=0/2, U
(2κ)
i = (d2κUii(z)/dz2κ)z=0/((2κ)!).
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In the harmonic approximation ω2
z,i =

∑kmax

k=1 ω
(k)
z,i,E+

∑kmax

k=2 ω
(k)
z,i,H , where ω

(k)
z,i,E =

(d2E
(k)
i (z)/dz2)z=0/2 and ω

(k)
z,i,H = (d2H

(k)
ii (z)/dz2)z=0/2, the leading terms are:

ω
(1)
z,i,E =

5q

2ρ3s
− 3q(2n + |m|+ 1)

γρ5s
, ω

(2)
z,i,H =

9q2(2n2 + 2n|m|+ 2n + |m|+1)

ρ10s γ4
,

ω
(2)
z,i,E =

15q

8ρ3s
− 15q(2n + |m|+ 1)

2γρ5s
+

15q(6n2 + 6n|m|+ 6n + m2 + 3|m|+ 2)

2γ2ρ7s

+
6q2(2n + |m|+ 1)

γ3ρ8s
.

The substitution of ρs =
√

2|m|/γ into the leading term ω2
z,i ≈ ω

(1)
z,i,E at n = 0

yields ω2
z,i ≈ (q

√
γγ(2|m| − 3))/(4m2

√
2|m|). At q = 1 we obtain the adiabatic

parameter (ωρ/ωz,i=1)
4/3 = |m|γ1/3, where ωρ = γ/2, in agreement with [13].

6 Conclusions

A new efficient method to calculate wave functions and decay rates of high-|m|
Rydberg states of a hydrogen atom in a magnetic field is developed. It is based
on the KM application to parametric eigenvalue problems in cylindrical coor-
dinates. The results are in a good agreement with the calculations executed in
spherical coordinates at fixed |m| > 140 for γ ∼ 2.553·10−5. The elaborated SNA
for calculation of the effective potentials, dipole moment matrix elements, and
the perturbation solutions in analytic form allows us to generate effective ap-
proximations for a finite set of longitudinal equations. This provides benchmark
calculations for the new version KANTBP3 of our earlier program KANTBP2 [1]
announced in [9]. The developed approach is a useful tool for calculating the
threshold phenomena in formation, decay, and ionization of (anti)hydrogen-like
atoms and ions in magneto-optical traps [11,12,13], and channelling of ions in
thin films [4].

The authors thank Prof. V.L. Derbov for valuable discussions.
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Abstract. We present a symbolic algorithm generating finite-element
schemes with interpolating Hermite polynomials intended for solving the
boundary-value problems with self-adjoint second-order differential equa-
tion and implemented in the Maple computer algebra system. Recurrence
relations for the calculation in analytical form of the interpolating Her-
mite polynomials with nodes of arbitrary multiplicity are derived. The
integrals of interpolating Hermite polynomials are used for constructing
the stiffness and mass matrices and formulating a generalized algebraic
eigenvalue problem. The algorithm is used to generate Fortran routines
that allow solution of the generalized algebraic eigenvalue problem with
matrices of large dimension. The efficiency of the programs generated in
Maple and Fortran is demonstrated by the examples of exactly solvable
quantum-mechanical problems with continuous and piecewise continuous
potentials.

1 Introduction

The study of mathematical models that describe tunneling and channeling of
composite quantum systems through multidimensional barriers, photo-ionization
and photo-absorption in molecular, atomic, nuclear, and quantum-dimensional
semiconductor systems, requires high-accuracy efficient algorithms and programs
for solving boundary-value problems (BVPs) [7,5,8,9,13].

In this direction, using the variation-projection BVP formulation and finite
element method (FEM) with Lagrange interpolation elements [12,2,1], the
symbolic-numeric algorithms (SNAs) and programs have been elaborated [5,6,4].
This implementation of FEM using the interpolation Lagrange polynomials
(ILPs) was such that it preserved only the continuity of the solution itself in
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c© Springer International Publishing Switzerland 2014



FEM Using Interpolation Hermite Polynomials 139

the course of its numerical approximation on a finite-element grid. However, in
the above class of problems, particularly, in quantum-dimensional semiconduc-
tor systems, the continuity should be preserved not only for the solution (wave
function) itself, but also for the probability current [2,10]. The required continu-
ity of the solution derivatives can be preserved in FEM numerical approximation
using the interpolation Hermite polynomials (IHPs) [3,11].

This motivated the aim of the present work, namely, the use of FEM with
IHPs to elaborate SNAs implemented in Maple-Fortran for the solution of the
BVPs with self-adjoint second order differential equation, and the analysis of the
approximate numerical solutions in benchmark calculations.

In this paper, we present a symbolic algorithm implemented in Maple com-
puter algebra system (CAS) that generates finite-element calculation schemes for
solving BVPs for the self-adjoint second-order differential equation using interpo-
lating Hermite polynomials. We derived recurrence relations for the calculation
of the IHPs with nodes of arbitrary multiplicity. The stiffness and mass matrices
are expressed via the integrals of products of the BVP coefficient functions, the
IHPs and their derivatives. The result is used to formulate a generalized algebraic
eigenvalue problem solved in Maple for matrices of small dimension. We use the
symbolic algorithm to generate Fortran routines that allow the solution of the
generalized algebraic eigenvalue problem with matrices of large dimension. We
demonstrate the efficiency of the programs generated in Maple and Fortran for
100 × 100 and higher-order matrices, respectively, in benchmark calculations for
exactly solvable quantum-mechanical problems with continuous and piecewise
continuous potentials.

The paper is organized as follows. In Section 2, the formulation of BVPs
and variational functional is presented. Section 3 describes the algorithm that
generates algebraic problems using the finite element method with interpolation
Hermite polynomials. In Section 4, the benchmark calculations are analysed. The
obtained results and further development of SNA are discussed in Conclusion.

2 Formulation of BVPs

We consider a self-adjoint second-order differential equation with respect to the
unknown solution Φ(z) in the region z ∈ Ωz = (zmin, zmax) [4]

(D − 2E)Φ(z) = 0, D = − 1

f1(z)

∂

∂z
f2(z)

∂

∂z
+ V (z). (1)

If no additional restrictions are explicitly specified, we assume f1(z) > 0, f2(z) >
0, and V (z) to be continuous functions that have derivatives up to the order of
κmax ≥ 1 in the domain z ∈ Ω̄z = [zmin, zmax]. In quantum mechanics, Eq.
(1) is actually the Schrödinger equation that describes a particle with the wave
function Φ(z) and the energy E.

For a discrete-spectrum problem, the eigenfunctions Φ(z) = Φm(z) ∈ H2
2 in

the Sobolev space H2
2 corresponding to the eigenvalues E1 < E2 < . . . < Em <
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. . . are to satisfy the boundary condition of the first (I) and/or the second (II)
and/or the third (III) kind at given values of parameters R(zt)

(I) : Φm(zt) = 0, t = min and/ormax, (2)

(II) : f1(z)
dΦm(z)

dz

∣∣∣
z=zt

= 0, t = min and/ormax, (3)

(III) :
dΦm(z)

dz

∣∣∣∣
z=zt

= R(zt)Φm(zt), t = min and/ormax (4)

along with the normalization and orthogonality condition

〈Φm(z)|Φm′(z)〉 =

∫ zmax

zmin

f1(z)(Φm(z))∗Φm′(z)dz = δmm′ . (5)

The solution of the above BPVs can be reduced to the calculation of stationary
points of a variational functional [12,6]

Ξ(Φ,E, zmin, zmax) ≡
∫ zmax

zmin

Φ∗(z) (D − 2E)Φ(z)dz = Π(Φ,E, zmin, zmax)

−f2(zmax)Φ∗(zmax)R(zmax)Φ(zmax) + f2(zmin)Φ∗(zmin)R(zmin)Φ(zmin), (6)

where the symmetric functional Π(Φ,E, zmin, zmax) is expressed as

Π(Φ,E, zmin, zmax) =

∫ zmax

zmin

[
f2(z)

dΦ∗(z)
dz

dΦ(z)

dz
+ f1(z)Φ∗(z)V (z)Φ(z) (7)

−f1(z)2EΦ∗(z)Φ(z)

]
dz.

Here R(z) → ∞ and R(z) = 0 for discrete spectrum problem with BCs (I) and
BCs (II), Eqs. (2) and (3), respectively.

3 FEM Generation of Algebraic Problems

High-accuracy computational schemes for solving the BVP (1)–(4) can be derived
from the variational functional (6), (7) basing on the FEM. The general idea of
the FEM in one-dimensional space is to divide the interval [zmin, zmax] into many
small domains referred to as elements. The size of the elements can be defined
free enough to account for physical properties or qualitative behavior of the
desired solutions, such as smoothness.

The intervalΔ=[zmin, zmax] is covered by a set ofn elementsΔj =[zmin
j , zmax

j ≡
zmin
j+1] in such a way that Δ =

⋃n
j=1Δj . Thus, we obtain the grid

Ωhj(z)[zmin, zmax]={zmin = zmin
1 , zmax

j = zmin
j + hj, j = 1, . . . , n− 1, (8)

zmax
n = zmin

n + hn = zmax},
where zmin

j ≡ zmax
j−1 , j = 2, . . . , n are the mesh points, and the steps hj =

zmax
j − zmin

j are the lengths of the elements Δj .
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3.1 Interpolation Hermite Polynomials

In each element Δj we define the equidistant sub-grid Ωhj(z)
j [zmin

j , zmax
j ] =

{z(j−1)p = zmin
j , z(j−1)p+r, r = 1, . . . , p − 1, zjp = zmax

j } with the nodal points
zr ≡ z(j−1)p+r determined by the formula

z(j−1)p+r = ((p− r)zmin
j + rzmax

j )/p, r = 0, . . . , p. (9)

As a set of basis functions {Nl(z, z
min
j , zmax

j )}lmax

l=0 , lmax =
∑p

r=0 κ
max
r we will use

the IHPs {{ϕκ
r (z)}pr=0}κ

max
r −1

κ=0 in the nodes zr, r = 0, . . . , p of the grid (9). The
values of the functions ϕκ

r (z) with their derivatives up to the order (κmax
r − 1),

i.e. κ = 0, . . . , κmax
r − 1, where κmax

r is referred to as the multiplicity of the node
zr, are determined by the expressions [3]

ϕκ
r (zr′) = δrr′δκ0,

dκ
′
ϕκ
r (z)

dzκ′

∣∣∣∣
z=z

r′

= δrr′δκκ′ . (10)

To calculate the IHPs we introduce the auxiliary weight function

wr(z) =

p∏
r′=0,r′ �=r

(
z − zr′
zr − zr′

)κmax
r′
, wr(zr) = 1. (11)

The weight function derivatives can be presented as a product

dκwr(z)

dzκ
= wr(z)gκr (z),

where the factor gκr (z) is calculated by means of the recurrence relations

gκr (z) =
dgκ−1r (z)

dz
+ g1r(z)gκ−1r (z), (12)

with the initial conditions

g0r(z) = 1, g1r(z) ≡ 1

wr(z)

dwr(z)

dz
=

p∑
r′=0,r′ �=r

κmax
r′

z − zr′
.

We will seek for the IHPs ϕκ
r (z) in the following form:

ϕκ
r (z) = wr(z)

κmax
r −1∑
κ′=0

aκ,κ
′

r (z − zr)κ
′
. (13)

Differentiating the function (13) by z at the point of zr and using Eq. (11), we
obtain

dκ
′
ϕκ
r (z)

dzκ′

∣∣∣∣
z=zr

=

κ′∑
κ′′=0

κ′!
κ′′!(κ′ − κ′′)!g

κ′−κ′′
r (zr)aκ,κ

′′
r κ′′!. (14)
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Hence we arrive at the expression for the coefficients aκ,κ
′

r

aκ,κ
′

r =

⎛
⎝dκ

′
ϕκ
r (z)

dzκ′

∣∣∣∣
z=zr

−
κ′−1∑
κ′′=0

κ′!
κ′′!(κ′ − κ′′)!g

κ′−κ′′
r (zr)aκ,κ

′′
r κ′′!

⎞
⎠ /κ′!. (15)

Taking Eq. (10) into account, we finally get:

aκ,κ
′

r =

⎧
⎪⎪⎨
⎪⎪⎩

0, κ′ < κ,
1/κ′!, κ′ = κ,

−
κ′−1∑
κ′′=κ

1
(κ′−κ′′)!g

κ′−κ′′
r (zr)a

κ,κ′′
r , κ′ > κ.

Note that all degrees of interpolation Hermite polynomials ϕκ
r (z) do not depend

on κ and equal p′ =
∑p

r′=0 κ
max
r − 1. Below we consider only the IHPs with the

nodes of identical multiplicity κmax
r = κmax, r = 0, . . . , p. In this case, the degree

of the polynomials is equal to p′ = κmax(p+ 1) − 1. We introduce the following
notation for such polynomials:

Nκmaxr+κ(z, zmin
j , zmax

j ) = ϕκ
r (z), r = 0, . . . , p, κ = 0, . . . , κmax − 1. (16)

These IHPs form a basis in the space of polynomials having the degree p′ =
κmax(p+ 1) − 1 in the element z ∈ [zmin

j , zmax
j ] that have continuous derivatives

up to the order κmax − 1 at the boundary points zmin
j and zmax

j of the element
z ∈ [zmin

j , zmax
j ]. The IHPs at κmax = 1, 2, 3 and p = 4 are shown in Fig. 1. It

is seen that the values of IHP Nκmaxp+κ(z, zmin
j , zmax

j ) and Nκ(z, zmin
j+1, z

max
j+1 ) (at

r = p and r = 0) and their derivatives up to the order κmax − 1 coincide at
the mutual point zmax

j = zmin
j+1 of the adjacent elements. Moreover, the boundary

points are nodes (zeros) of multiplicity κmax of other IHPs, irrespective of the
length of elements of [zmin

j , zmax
j ] and [zmin

j+1, z
max
j+1 ]. This allows construction of

a basis of piecewise and polynomial functions having continuous derivatives to
the order of κmax − 1 in any set Δ =

⋃n
j=1Δj = [zmin

j , zmax
j ] of elements Δj =

[zmin
j , zmax

j ≡ zmin
j+1]. The Algorithm 1 of the IHP construction is presented in

Appendix A and implemented in the CAS Maple.

3.2 Generation of Algebraic Eigenvalue Problems

We consider a discrete representation of the solutions Φ(z) of the problem (1),
(5), (4) reduced by means of the FEM to the variational functional (6), (7) on
the finite-element grid,

Ωp
hj(z)

[zmin, zmax] = [z0 = zmin, zl, l = 1, . . . , np− 1, znp = zmax],

with the mesh points zl = zjp = zmax
j ≡ zmin

j+1 of the grid Ωhj(z)[zmin, zmax]
determined by Eq. (8) and the nodal points zl = z(j−1)p+r, r = 0, . . . , p of the
sub-grids Ωhj(z)

j [zmin
j , zmax

j ], j = 1, . . . , n, determined by Eq. (9). The solutions
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a b c

d e f

Fig. 1. The IHP coinciding at κmax = 1 with the ILP (a) and IHPs at κmax =2 (b,
c) and κmax =3 (d, e, f). Here p + 1 = 5 is the number of nodes in the subinterval,
Δj = [zmin

j = −1, zmax
j = 1]. The grid nodes zr are shown by vertical lines.

Φh(z) ≈ Φ(z) are sought for in the form of a finite sum over the basis of local
functions Ng

μ(z) at each nodal point z = zk of the grid Ωp
hj(z)

[zmin, zmax]:

Φh(z) =

L−1∑
μ=0

Φh
μN

g
μ(z), Φh(zl) = Φh

lκmax ,
dκΦh(z)

dzκ

∣∣∣∣
z=zl

= Φh
lκmax+κ (17)

where L = (pn+1)κmax is the number of local functions and Φh
μ at μ = lκmax+κ

are the nodal values of the κth derivatives of the function Φh(z) (including the
function Φh(z) itself for κ = 0) at the points zl.

The local functions Ng
μ(z) ≡ Ng

lκmax+κ(z) are piecewise polynomials of the
given order p′, their derivative of the order κ at the node zl equals one, and
the derivative of the order κ′ �= κ at this node equals zero, while the values of
the function Ng

μ(z) with all its derivatives up to the order (κmax − 1) equal zero

at all other nodes zl′ �= zl of the grid Ωhj(z)
, i.e., dκNl′κmax+κ′

dzκ

∣∣∣
z=zl

= δll′δκκ′ ,

l = 0, . . . , np, κ = 0, . . . , κmax − 1.
For the nodes zl of the grid that do not coincide with the mesh points zmax

j ,
i.e., at l �= jp, j = 1 . . . n− 1, the polynomial Ng

μ at μ = ((j − 1)p+ r)κmax + κ
has the form

Ng
(p(j−1)+r)κmax+κ =

{
Nκmaxr+κ(z, zmin

j , zmax
j ), z ∈ Δj ;

0, z �∈ Δj ,
(18)

i.e., it is defined as the IHP Nκmaxr+κ(z, zmin
j , zmax

j ) in the interval z ∈ Δj and
zero otherwise. Since the points zmin

j and zmax
j are nodes of multiplicity κmax,

such piecewise polynomial functions and their derivatives up to the order κmax−1
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Fig. 2. The structure of matrices BL1L2 and AL1L2 for the potential V (z) = 0, the
number of elements n = 6 in the entire interval (zmin, zmax), and different values of
the multiplicity of nodes κmax and the number of subintervals p. From left to right:
(κmax, p) = (1, 6), (κmax, p) = (2, 3), (κmax, p) = (3, 2). The dimensions of matrices are
L× L, L = κmax(np+ 1): 37× 37, 38× 38, 39× 39.

are continuous in the entire intervalΔ. In Fig. 1 such IHPs are plotted by dotted,
short-dashed and dot-dashed lines.

For the nodal points of the grid zl that coincide with one of the mesh points
zmax
j belonging to two elements Δj and Δj+1, j = 1 . . . n − 1 , i.e., for l = jp,

the polynomial, whose derivative of the order κ equals one at the node zl, has
the form

Ng
pκmaxj+κ =

⎧
⎨
⎩
Nκmaxp+κ(z, zmin

j , zmax
j ), z ∈ Δj ;

Nκ(z, zmin
j+1, z

max
j+1 ), z ∈ Δj+1;

0, z �∈ Δj ∪Δj+1,
(19)

In other words, it is constructed by joining the polynomialNpκmax+κ(z, zmin
j , zmax

j )

defined in the element Δj with the polynomial Nκ(z, zmin
j+1, z

max
j+1 ) defined in the

element Δj+1. This polynomial is also continuous with all its derivatives of the
order κmax−1 in the interval z ∈ Δ. The corresponding IHPs are plotted in Fig.
1 by solid and long-dashed lines.

The substitution of the expansion (17) into the variational functional (6), (7)
reduces the solution of the problem (1)–(5) to the solution of the generalized
algebraic eigenvalue problem with respect to the desired set of eigenvalues E
and eigenvectors Φh = {Φh

μ}L−1μ=0 :

(Ã − 2EB)Φh = 0. (20)

Here Ã = A+Mmin−Mmax and B are symmetric L×L stiffness and mass ma-
trices, L = κmax(np+1), Mmax and Mmin are L×L matrices with zero elements
except M11 = f2(zmin)R(zmin) and ML+1−κmax,L+1−κmax = f2(zmax)R(zmax),
respectively. The Algorithm 2 that generates the local functions Ng

μ(z) de-
fined by (18), (19) and the matrices A and B is described in Appendix B and
implemented in the CAS Maple.
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Table 1. Runge coefficients (24) for the eigenvalues (Runge Eigv) and the eigenfunction
(Runge EigF) of the first three lower-energy states calculated for schemes with different
κmax and p up to order p′ = κmax(p+1)− 1 = 8 at h = 0.125 for schemes with p′ = 7,
p′ = 8, and at h = 0.0625 for the rest of the schemes. Theoretical estimates of Runge
coefficient for the convergence of eigenvalues and eigenfunctions are 2p′ and (p′ + 1),
respectively. The execution time Th (in seconds) for the mesh step h = 1/32 is presented
in the last column.

κmax p p′ Runge Eigv 2p′ Runge EigF p′ + 1 Th

1 1 1 2.00 2.00 1.99 2 1.99 1.99 2.00 2 9.36
1 2 2 4.00 3.99 3.99 4 2.99 2.98 3.02 3 19.5
1 3 3 5.99 6.00 5.99 6 3.98 3.99 3.97 4 33.4
2 1 3 5.97 5.96 5.96 6 3.95 3.95 3.94 4 21.8
1 4 4 7.99 8.00 8.00 8 4.99 4.98 5.00 5 48.6
1 5 5 9.99 9.99 9.99 10 5.98 6.01 5.97 6 65.6
2 2 5 9.97 9.97 9.97 10 5.96 5.98 5.95 6 47.6
3 1 5 10.05 10.05 10.06 10 6.01 6.04 6.02 6 38.0
1 6 6 12.00 12.00 12.00 12 6.99 6.97 6.99 7 88.9
1 7 7 13.98 13.98 13.98 14 7.85 8.03 7.85 8 111.
2 3 7 13.88 13.87 13.87 14 7.77 7.95 7.77 8 82.3
4 1 7 13.59 13.58 13.57 14 7.61 7.57 7.59 8 59.6
1 8 8 16.13 16.00 15.99 16 9.00 8.82 9.09 9 139.
3 2 8 15.75 15.75 15.74 16 8.83 8.67 8.86 9 99.1

To solve equation (20) we have chosen the subspace iteration method [12,1]
elaborated by Bathe [1] for the solution of large symmetric banded matrix eigen-
value problems. This method uses a skyline storage mode, which stores the com-
ponents of the matrix column vectors within the nonzero band of the matrix
and, therefore, is perfectly suitable for the banded FEM matrices. The procedure
chooses a vector subspace of the full solution space and iterates upon the succes-
sive solutions in the subspace (for details, see [1]). Using the Rayleigh quotients
for the eigenpairs, the iterations are repeated until the desired set of solutions
in the iteration subspace converges to within the specified tolerance. Generally,
10–24 iterations are enough to converge the subspace to within the prescribed
tolerance. If the matrix Ã in Eq. (20) is not positive-definite, the problem (20)
is replaced with the following problem: ǍΦh = Ěh BΦh, Ǎ = Ã − αB. The
number α (the shift of the energy spectrum) is chosen such that the matrix Ǎ is
positive-definite. The eigenvector of this problem is the same, and Eh = Ěh +α.

The theoretical estimate for the H0 norm of the difference between the exact
solution Φm(z) ∈ H2

2 and the numerical one Φh
m(z) ∈ Hκmax

has the order of

|Eh
m − Em| ≤ c1 h2p′

,
∥∥Φh

m(z) − Φm(z)
∥∥
0
≤ c2hp′+1, (21)

where h = max1<j<n hj is the maximal step of the grid [12].
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Fig. 3. Absolute errors σh
1 = |εexact1 − εh1 | and σh

2 = maxz∈Ωh(z) |χexact
1 (z) − χh

1 (z)|
for the ground state vs the grid step h calculated using approximation by IHPs with
different κmax and p

4 Benchmark Calculations

4.1 Modified Pöschl–Teller Potential

As an example, we consider the exactly solvable eigenvalue problem for Schrödin-
ger equation in the units h̄ = m = 1:

(
− d2

dz2
+ 2V (z) − 2E

)
Φ(z) = 0, (22)

with the modified Pöschl–Teller potential on the axis z ∈ (−∞,+∞):

V (z) = −α
2

2

λ (λ− 1)

(cosh (α z))2
, (23)

where α > 0 and λ > 0 are real-value parameters. The parameters λ = 11/2 and
α = 1 were chosen such that the discrete spectrum problem for Eq. (22) with the
potential (23) had five eigenvalues 2Em = [−20.25,−12.25,−6.25,−2.25,−0.25]
with the corresponding five eigenfunctions ψm(x) known in the analytical form.

The numerical experiments using the finite-element grid Ωp
hj(z)

[zmin = −40,

zmax = 40] demonstrated strict correspondence to the theoretical estimations
(21) for eigenvalues and eigenfunctions. In particular, we calculated the Runge
coefficients

βl = log2

∣∣∣∣∣
σhl − σh/2l

σ
h/2
l − σh/4l

∣∣∣∣∣ , l = 1, 2, (24)

on three twice condensed grids with the absolute errors

σh1 = |Eexact
m − Eh

m|, σh2 = max
z∈Ωh(z)

|Φexact
m (z) − Φh

m(z)| (25)
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Fig. 4. The solutions and their first and second derivatives for the ground state (solid
curves) and the first excited state (dashed curves) of the rectangular well potential
problem

for the eigenvalues and eigenfunctions, respectively. From Eq. (25) we obtained
the numerical estimations of the convergence order of the proposed numerical
schemes, the theoretical estimates being β1 = 2p′ and β2 = p′ + 1.

In Table 1, we show the Runge coefficients (24) for the eigenvalues (Runge
Eigv) and the eigenfunction (Runge EigF) of the first three lower-energy states
calculated for schemes with different κmax and p up to order p′ = κmax(p+1)−1 =
8. One can see that for the chosen p′ = 1 ÷ 8, the numerical estimates of Runge
coefficients lie within 2p′ ± 0.06 for p′ = 1, . . . , 6 and 2p′ ± 0.56 for p′ = 7, 8 in
the case of eigenvalues and within (p′ + 1) ± 0.2 in the case of eigenfunctions,
which strongly corresponds to the theoretical error estimates (21). In Fig. 3, we
show the dependence of absolute errors σh1 = |εexact1 − εh1 | for eigenvalues and
σh2 = maxz∈Ωh(z) |χexact1 (z) − χh1 (z)| for eigenfunctions of the ground state vs.
the grid step h calculated using approximation by IHPs with different κmax and
p. In the double logarithmic scale, the errors lie on lines with different slopes
that explicitly show the desirable order of approximation p′ = κmax(p + 1) − 1
by IHPs with different κmax and p.

For calculations, we used the program KANTBP 1.1 with the specified accu-
racy of ∼ 10−34 and the relative error tolerance of the eigenvalues ε1 = 4 ·10−34,
implemented in Intel Fortran 77 on the computer 2 x Xeon 3.2 GHz, 4 GB RAM.
The data type QUADRUPLE PRECISION provided 32 significant digits. The
running time Th for h = 1/32 = 0.03125 is presented in the last column of
Table 1.

4.2 Rectangular Well Potential

For piecewise continuous potentials (or potentials with discontinuous deriva-
tives), the approximation by IHPs does not converge to the desired solution
with increasing number of nodes. Within the FEM approach, the following tech-
nique is used. Let the potential have the form V (z) = {Vi(z), z ∈ (ζmin

i , ζmax
i )},

ζmin
i+1 = ζmax

i , where Vi(z) are (p′ + 1)-times differentiable functions. The inter-
val of the problem definition is divided into a set of subintervals [zmin

j , zmax
j ]
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Fig. 5. The difference of numerical and exact eigenfunctions Dκmax,p
swp,0 = ψκmax,p

0 (z) −
ψ0(z) (solid curves) and Dκmax,p

swp,1 = ψκmax,p
1 (z)− ψ1(z) (dashed curves) (upper panels)

and their first derivatives (lower panels) for rectangular well potential for n = 10
elements in the interval (−5, 5) and different values of the multiplicity of nodes κmax

and the number of subinterval divisions p. >From left to right: (κmax, p) = (1, 3),
(κmax, p) = (2, 1), (κmax, p) = (3, 1).

(zmax
j ≡ zmin

j+1), such that every point ζmin
i , in which the second derivative of the

solution is discontinuous, coincides with some boundary point zmin
j .

Consider, e.g., the exactly solvable discrete-spectrum problem for Eq. (22)
with the rectangular well potential 2V (z) = V0, if |z| ≤ a, and 2V (z) = 0
otherwise. At a = 1, 2V0 = −50 the discrete-spectrum problem has five eigen-
functions (see Fig. 4), expressed in the analytical form via five eigenvalues
2Em = [−48.109146,−42.474904,−33.232792,−20.714111,−5.965365].

Since the first two eigenfunctions rapidly decrease, it is sufficient to use the
finite-element grid Ωp

hj(z)
[zmin = −5, zmax = 5]. The calculation error for the

first two eigenvalues is presented in Table 2. It is seen that the scheme with
κmax = 1 and κmax = 2 having the same order of accuracy p′ = 3 and p′ = 5
(p′ = κmax(p + 1) − 1) yield nearly the same error (at n = 20, h = 1/2 the
error is about 10−2 and 4 · 10−6, respectively), while for κmax = 3, the error is
much higher (about 10−2 at n = 20, h = 1/2 ). In Table 2, we show the Runge
coefficients (24) for the eigenvalues of the first two lower-energy states calculated
for schemes with different κmax and p with order p′ = κmax(p + 1) − 1 = 3 and
p′ = κmax(p+1)−1 = 5. One can see that for the chosen p′ = 3, 5, the numerical
estimates of Runge coefficients lie within 2p′ ± 0.5 for schemes with κmax = 1, 2
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Table 2. The absolute errors σh
1 (E0) and σh

1 (E1) of eigenvalues of ground and first
exited state for square well potential for a = 1 and 2V0 = −50. The Runge coefficient
(Ru) from (24) for the eigenvalues at h = 1/4, n = 40 and its theoretical estimates
(2p′) are given in last two columns.

(κmax, p) p′ σh=1
1 (E0) σ

h=1/2
1 (E0) σ

h=1/4
1 (E0) σ

h=1/8
1 (E0) σ

h=1/16
1 (E0) Ru 2p′

(1,3) 3 1.93e-02 1.39e-03 4.44e-05 8.83e-07 1.48e-08 5.65 6
(2,1) 3 5.70e-02 3.15e-03 1.00e-04 2.21e-06 4.14e-08 5.50 6
(1,5) 5 2.47e-04 1.67e-06 3.82e-09 5.26e-12 2.22e-12 10.3 10
(2,2) 5 4.01e-04 2.59e-06 6.12e-09 8.59e-12 2.20e-13 9.51 10
(3,1) 5 1.48e-02 2.66e-03 3.51e-04 4.40e-05 5.50e-06 2.99 10

(κmax, p) p′ σh=1
1 (E1) σ

h=1/2
1 (E1) σ

h=1/4
1 (E1) σ

h=1/8
1 (E1) σ

h=1/16
1 (E1) Ru 2p′

(1,3) 3 9.96e-02 4.38e-03 1.25e-04 2.40e-06 3.96e-08 5.70 6
(2,1) 3 2.92e-01 1.14e-02 3.08e-04 6.33e-06 1.14e-07 5.60 6
(1,5) 5 6.44e-04 3.75e-06 7.93e-09 1.04e-11 2.63e-12 9.99 10
(2,2) 5 9.40e-04 5.66e-06 1.27e-08 1.74e-11 2.06e-13 9.53 10
(3,1) 5 6.70e-02 1.07e-02 1.39e-03 1.74e-04 2.17e-05 3.01 10

which strongly corresponds to the theoretical error estimates (21). While the
scheme with κmax = 3, p = 1 of fifth order p′ = 5 gives Runge coefficient β1 = 3.
Maximal discrepancies arise in the vicinities of discontinuity of the potential well
(at z = ±1) because of a worse approximation of function with discontinuous
second derivative by means of functions with continuous one.

It is due to the fact that the first derivative of the solution has a discontinuity
at z = ±a displayed in Fig 4. To illustrate this fact, we display in Fig. 5 the
discrepancies of eigenfunctions and their first derivatives. It is seen that the
scheme with κmax = 2, p = 1 provides better approximation for eigenfunctions
among schemes of third order p′ = 3. The scheme of fifth order p′ = 5 with
κmax = 3, p = 1 leads to worse approximation in comparison with schemes of
third order.

5 Conclusion

We presented the SNAs for solving the BVPs with self-adjoint second order dif-
ferential equation using the FEM with interpolation Hermite polynomials. The
proposed approach preserves the property of continuity of derivatives of the de-
sired solutions. We demonstrated the efficiency of the programs generated in
Maple and Fortran for 100 × 100 and greater-order matrices, respectively, in
benchmark calculations for exactly solvable quantum-mechanical problems with
continuous and piecewise continuous potentials. The analysis of approximate
numerical solutions in benchmark calculations with smooth potentials shows
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that the order p′ = κmax(p + 1) − 1 of the elaborated FEM schemes strongly
corresponds to the theoretical error estimates. Schemes of higher order p′ allow
high-accuracy results at larger step of the finite-element grid, provided that the
derivative of the p′th order is a smooth function. Schemes with the fixed order
p′ have similar rate convergence, the execution time being smaller for greater
κmax due to smaller dimension of matrices used in the calculations. However,
if the κth derivative of the desired solution has discontinuity points, i.e., for
potentials having a discontinuous derivative of the order κ−2, the schemes with
κmax ≥ κ operate worse, because in this case, the solution having discontinuous
κthth derivatives is approximated by functions having no such discontinuities.

In future, the elaborated calculation schemes, algorithms, and programs will
be applied to the analysis of models of molecular, atomic, and nuclear systems,
as well as to quantum-dimensional systems such as quantum dots, wires, and
wells in bulk semiconductors, and smooth irregular wave-guide structures with
piecewise continuous potentials.

The authors thank Professor V.P. Gerdt for collaboration. The work was par-
tially supported by the Russian Foundation for Basic Research (RFBR) (grants
No. 14-01-00420 and 13-01-00668) and the Bogoliubov–Infeld program.

A Algorithm 1. Generation of IHPs

Input:
zmin, zmax, (formal parameters) the boundary points of the interval;
p is the number of subintervals: p+ 1 is the number of nodes of IHPs;
κmax is the multiplicity of nodes;
f1(z) and f2(z) are coefficient functions from (1);
Output:
Nl1(z, zmin, zmax) are IHPs, l1 = 0, . . . , lmax, i.e. lmax + 1 is number of IHPs;
Al1;l2(zmin, zmax) and Bl1;l2(zmin, zmax) are auxiliary integrals;
Local:
lmax = κmax(p+ 1) − 1 is largest index of IHPs, lmax + 1 is number of IHPs;
zr are nodes in subinterval;
wr(z) are weight functions;
gκr (z) are derivatives of order κ divided by weight function;
aκ,κ

′
r are coefficients of expansion (13);

1: generation of IHPs and calculation of integrals in the interval [zmin, zmax]
1.1.: for r:=0 to p do

zr = ((p− r)zmin + rzmax)/p;
end for;

1.2.: for r:=0 to p do
1.2.1: auxiliary weight function

wr(z) =
∏p

r′=0,r′ �=r

( z−zr′
zr−zr′

)κmax

;
1.2.2: recurrence relation for calculating the function gκr (z)

g0r(z) = 1;
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g1r(z) =
∑p

r′=0,r′ �=r
κmax

z−zr′ ;
for κ:=2 to κmax − 1 do
gκr (z) =

dgκ−1
r (z)
dz + g1r(z)gκ−1r (z);

end for;
1.2.3: recurrence relation for calculation of coefficients aκ,κ

′
r

for κ:=0 to κmax − 1 do
aκ,κr = 1/κ′!;
for κ′:=κ+ 1 to κmax − 1 do
aκ,κ

′
r = −∑κ′−1

κ′′=κ
1

(κ′−κ′′)!g
κ′−κ′′
r (zr)aκ,κ

′′
r ;

end for;
1.2.4: calculation of IHP

Nκmaxr+κ(z, zmin, zmax) ≡ ϕκ
r (z) = wr(z)

∑κmax−1
κ′=κ aκ,κ

′
r (z − zr)κ

′
;

end for;
end for;
lmax = κmax(p+ 1) − 1;

1.3: calculation of the auxiliary integrals
for l1:=0 to lmax do

for l2:=l1 to lmax do
Al1;l2(zmin, zmax)=

∫ zmax

zmin f2(z)
dNl1

(z,zmin,zmax)

dz

dNl2
(z,zmin,zmax)

dz dz;
Bl1;l2(zmin, zmax)=

∫ zmax

zmin f1(z)Nl1(z, zmin, zmax)Nl2(z, zmin, zmax)dz;
end for;

end for;

Remarks. 1. In commonly used coordinates, the integrals in Step 1.3. are cal-
culated analytically. If f1(z) or f2(z) are such that these integrals cannot be
calculated analytically, then one can apply the expansion over the interpolation
polynomials.

2. The auxiliary integrals Al1;l2(zmin, zmax) and Bl1;l2(zmin, zmax) are sym-
metric with respect to permutations of their indexes.

B Algorithm 2: FEM Generation of Algebraic Eigenvalue
Problem

Input:
n is the number of subintervals Δj = [zmin

j , zmax
j = zmin

j + hj ];
Δj = [zmin

j , zmax
j ] are sets of subintervals (zmax

j ≡ zmin
j+1);

p is the number of divisions of subintervals: p+ 1 is the number of nodes of IHP;
κmax is the multiplicity of nodes;
Nl1(z, zmin, zmax) are IHP;
Al1;l2(zmin, zmax) and Bl1;l2(zmin, zmax) are auxiliary integrals from the Algo-
rithm 1;
V (z) is coefficient function from (1);
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Output:
zl are nodes in the whole interval, l = 0, . . . , np;
Ng

l are piecewise polynomials;
AL1L2 and BL1L2 are matrices of algebraic eigenvalue problem (20);
Local:
lmax = κmax(p+ 1) − 1 where lmax + 1 is number of IHP;
L = κmax(np+ 1) is the dimension of the algebraic eigenvalue problem.

2.1. calculation of grid points
z0 = zmin

1 ;
for j := 1 to n do

for r := 1 to p− 1 do
z(j−1)p+r = ((p− r)zmin

j + rzmax
j )/p;

end for;
zjp = zmax

j ;
end for;

2.2. calculation of piecewise polynomials
for κ := 0 to κmax − 1 do
Ng

κ = {Nκ(z, zmin
1 , zmax

1 ), z ∈ Δ1};
for j := 1 to n do

for r := 1 to p− 1 do
Ng

((j−1)p+r)κmax+κ = {Nκmaxr+κ(z, zmin
j , zmax

j ), z ∈ Δj ; 0, z �∈ Δj};
end for;
if (j < n) then
Ng

jpκmax+κ := {Nκmaxp+κ(z, zmin
j , zmax

j ), z ∈ Δj ;

Nκ(z, zmin
j+1, z

max
j+1 ), z ∈ Δj+1; 0, z �∈ Δj ∪Δj+1};

else
Ng

npκmax+κ := {Nκmaxp+κ(z, zmin
n , zmax

n ), z ∈ Δn; 0, z �∈ Δn};
end if;

end for;
end for;

2.3. Generation of matrices A and B
for j := 1 to n do

for l1 := 0 to lmax − 1 do
L1 = pκmax(j − 1) + l1 + 1;
for l2 from l1 to lmax − 1 do
L2 = pκmax(j − 1) + l2 + 1;
AL1L2 = AL1L2 +Al1;l2(zmin

j , zmax
j )

+
∫ zmax

j

zmin
j

f1(z)dzNL1(z, zmin
j , zmax

j )V (z)NL2(z, zmin
j , zmax

j );

BL1L2 = BL1L2 +Bl1;l2(zmin
j , zmax

j );
end for (j, l1, l2 )
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Remarks. 1. If the coefficients of the equation (1) are given in the tabular form,
then we use the following matrix elements in Step 1.3 of Algorithm 1 and Step
2.3 of Algorithm 2:

∫ zmax
j

zmin
j

f1(z)dzNL1(z, zmin
j , zmax

j )V (z)NL2(z, zmin
j , zmax

j )

=

p∑
r=0

κmax−1∑
κ=0

V (κ)(z(j−1)p+r)Vl1 ;l2;κmaxr+κ(zmin
j , zmax

j )), (26)

where Vl1;l2;l3(zmin, zmax) are determined by integrals with IHPs

Vl1;l2;l3(zmin
j , zmax

j ) =

∫ zmax
j

zmin
j

f1(z)Nl1(z, zmin
j , zmax

j )

×Nl2(z, zmin
j , zmax

j )Nl3(z, zmin
j , zmax

j )dz. (27)

The obtained expression will be exact for polynomial potentials of the degree
smaller than p′. Generally this decomposition leads to numerical eigenfunctions
and eigenvalues with the accuracy of order about p′ + 1. If the integrals in Step
1.3 of Algorithm 1 and Step 2.3 of Algorithm 2 cannot be calculated in the
analytical form, then the Gauss integration rule [1,6] with p′+1 nodes is applied
and held the theoretical estimations (21).

2. Using the local coordinate η ∈ [−1, 1] related to the absolute coordinate z
as z = zmin

j +hj(1+η)/2, dz
dη = hj/2, one should exploit the following expansions

of the function and its first derivative

Φ̂(z) =

p∑
r=0

κmax−1∑
κ=0

Φ̂κmaxr+κNκmaxr+κ(η,−1, 1)

(
dz

dη

)κ

,

dΦ̂(z)

dz
=

p∑
r=0

κmax−1∑
κ=0

Φ̂κmaxr+κ
dNκmaxr+κ(η,−1, 1)

dη

(
dz

dη

)κ−1
.

3. The matrices AL1L2 and BL1L2 are symmetric, their dimension is L × L,
where L = κmax(np + 1). They consist of n sub-matrices with the dimension
κmax(p + 1) × κmax(p + 1). The intersections of these sub-matrices are blocks
having the dimension κmax × κmax. These blocks include elements that equal
zero in both matrices BL1L2 and AL1L2 for V (z) = 0 and become nonzero in the
matrix AL1L2 , when V (z) �= 0. The existence of such elements is a manifestation
of the IHPs symmetry. The total number of elements in all these blocks is (n(p2+
2p) + 1)(κmax)2. Examples of banded matrix structures are shown in Fig. 2.

4. To impose the BC (III) in zmin one should apply A11 =A11+f2(z
min)R(zmin),

while to impose the BC (III) in zmax one should apply AL+1−κmax,L+1−κmax =
AL+1−κmax,L+1−κmax−f2(zmax)R(zmax). To impose the BC (I) in zmin one should
drop first row and first column, while to apply the BC (I) in zmax one should
drop row and column with number L+ 1 − κmax.
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5. For small matrix dimensions ∼ 100, the desired solution of the problem
generated at Step 2.3 is performed using the built-in procedures of the Maple
LinearAlgebra package. For large matrix dimensions ∼ 100 ÷ 1000000, the sub-
space iteration method is used, implemented in the Fortran program SSPACE
[1].
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Abstract. Symbolic-numeric algorithm for solving the boundary-value
problems that describe the model of quantum tunneling of a diatomic
molecule through repulsive barriers is described. Two boundary-value
problems (BVPs) in Cartesian and polar coordinates are formulated and
reduced to 1D BVPs for different systems of coupled second-order dif-
ferential equations (SCSODEs) that contain potential matrix elements
with different asymptotic behavior. A symbolic algorithm implemented
in CAS Maple to calculate the required asymptotic behavior of adiabatic
basis, the potential matrix elements, and the fundamental solutions of the
SCSODEs is elaborated. Comparative analysis of the potential matrix el-
ements calculated in the Cartesian and polar coordinates is presented.
Benchmark calculations of quantum tunneling of a diatomic molecule
with the nuclei coupled by Morse potential through Gaussian barriers
below dissociation threshold are carried out in Cartesian and polar co-
ordinates using the finite element method, and the results are discussed.

Keywords: Symbolic-numeric algorithm, quantum tunneling problem,
diatomic molecule, repulsive barriers, boundary-value problem, adiabatic
representation, asymptotic solutions, finite element method.

1 Introduction

The study of tunneling of coupled particles through repulsive barriers [11] has
revealed the effect of resonance quantum transparency: when the cluster size
is comparable with the spatial width of the barrier, there are mechanisms that
lead to greater transparency of the barrier. These mechanisms are related to
the formation of the barrier resonances, provided that the potential energy of
the composite system has local minima giving rise to metastable states of the
moving cluster [10]. Currently this effect and its possible applications are a

V.P. Gerdt et al. (Eds.): CASC Workshop 2014, LNCS 8660, pp. 472–490, 2014.
c© Springer International Publishing Switzerland 2014



Quantum Tunneling of a Diatomic Molecule 473

subject of extensive study in relation with different quantum-physical problems,
e.g., quantum diffusion of molecules [12], exciton resonance passage through
a quantum heterostructure barrier [8], resonant formation of molecules from
individual atoms [13], controlling the direction of diffusion in solids [1], and
tunnelling of ions and clusters through repulsive barriers [7,6]. For the analysis
of these effects, it is useful to develop model approaches based on approximations
providing a realistic description of interactions between the atoms in the molecule
as well as with the barriers, and to elaborate symbolic-numeric algorithms and
software.

In this paper, we formulate and study the model of a diatomic molecule with
the nuclei coupled via the effective Morse potential that penetrates through a
Gaussian repulsive barrier, using Galerkin and Kantorovich expansion of the
desired solution in Cartesian and polar coordinates, respectively. We formulate
two boundary-value problems (BVP) and use different sets of basis functions to
reduce the original problem to 1D BVPs for different systems of coupled second-
order differential equations (SCSODEs) that contain potential matrix elements
with different asymptotic behavior. In the first case, the potential matrix ele-
ments decrease exponentially, and in the second case, they decrease as inverse
powers of the independent variable. In the second case, we must calculate the
asymptotic behavior of the potential matrix elements to solve the boundary
value problem. For this goal, we develop symbolic algorithms implemented in
CAS Maple to calculate the required asymptotic behavior of the potential ma-
trix elements as well as the fundamental solutions of SCSODEs. We present a
comparative analysis of the potential matrix elements calculated in the Cartesian
and polar coordinates, which are used to solve the quantum tunneling problem
below the dissociation threshold. The necessity for two statements of the prob-
lem follows from the important practical applications of further self-consistent
study of the system above the dissociation threshold, which is convenient in po-
lar coordinates. The effect of quantum transparency, i.e., the resonance behavior
of the transmission coefficient versus the energy of the molecule is analyzed.

The paper is organized as follows. In Sections 2 and 3, we formulate and solve
the BVPs in Cartesian and polar coordinates. In Section 4, the leading terms
of the asymptotic expressions of effective potentials and fundamental solutions
are calculated using the elaborated algorithms in CAS Maple. In Section 5, we
analyze the solution of the quantum tunneling problem below the dissociation
threshold. In Conclusion, the prospects of future studies are discussed.

2 Model I. Quantum Tunneling in Cartesian Coordinates

We consider a 2D model of two identical particles with the mass m coupled by
the pair potential Ṽ (x2−x1) and interacting with the external barrier potentials
Ṽ b(x1) and Ṽ b(x2). Using the change of variables x = x2 − x1, y = x2 + x1,
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Fig. 1. Gaussian-type barrier V b(xi) = D̂ exp
(
−x2

i
2σ

)
, at D̂ =

236.510003758401Å−2 = (m/h̄2)Ṽ0 = (m/h̄2)D, Ṽ0 = D = 1280K,
σ = 5.23 · 10−2Å2, and the two-particle interaction potential, V M (x) =
D̂{exp[−2(x− x̂eq)ρ̂]− 2 exp[−(x− x̂eq)ρ̂]}, x̂eq = 2.47Å, ρ̂ = 2.96812423381643Å−1

y ∈ (−∞,∞), x ∈ (−∞,∞), we arrive at the Schrödinger equation for the wave
function Ψ(x, y) in the s-wave approximation

(
− h̄

2

m

1

f1(y)

∂

∂y
f2(y)

∂

∂y
− h̄

2

m

1

f3(x)

∂

∂x
f4(x)

∂

∂x
+ Ṽ (x, y) − Ẽ

)
Ψ(y, x) = 0.(1)

where h̄ is the Planck constant, Ẽ is the total energy of the system, and the
potential function V (x, y) is defined by the formula

Ṽ (x, y) = ṼM (x) + Ṽ b(x1) + Ṽ b(x2). (2)

The equation describing the molecular subsystem has the form

(
− h̄

2

m

1

f3(x)

∂

∂x
f4(x)

∂

∂x
+ ṼM (x) − ε̃

)
φ(x) = 0. (3)

The molecular subsystem is assumed to possess the continuous energy spectrum
with the eigenvalues ε̃ ≥ 0 and eigenfunctions φε̃(x) and the discrete energy spec-
trum, consisting of the finite number n of bound states with the eigenfunctions
φj(x) and the eigenvalues ε̃j = −|ε̃j |, j = 1, n.

The asymptotic boundary conditions imposed on the solution for the 2D model
in the s-wave approximation Ψ(y, x) = {Ψj(y, x)}No

j=1 in the asymptotic region
Ωas

j = {(x, y)||x|/|y| 1 1} with the direction v =→ can be written in the obvious
form

Ψj(y → −∞, x) → φj(x)
exp(ıpjy)√
pjf2(y)

+

No∑
l=1

φl(x)
exp(−ıply)√
plf2(y)

Rlj ,

Ψj(y → +∞, x) →
No∑
l=1

φl(x)
exp(ıply)√
plf2(y)

Tlj , (4)

Ψj(y, x→ ±∞) → 0,
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Fig. 2. Sections of the total potential energy V (y;x) = V M (y;x) + V b(y;x) at y =
2.2, 2.3, 2.4, 2.6, 2.8, 3, 3.5, 4 (curves are noted by 1,...,8). The wave functions φj(r) of
the bound states j = 1, 5 (solid lines) and pseudostates j = 6, ..., 12 (dashed lines)
(corresponding energy eigenvalues given in K). The matrix elements Vjj(y) (solid lines)
and Vj1(y) (dashed lines) (in Å−2)

where f1(y) = f2(y) = 1, Rlj(Ẽ) and Tlj(Ẽ) are the reflection and transmission
amplitudes, No ≤ n is the number of open channels, pi is the wave number,

pi =
√

(m/h̄2)(Ẽ − ε̃i) > 0, below dissociation threshold Ẽ < 0 , φj(x) and

εj < 0 at j = 1, n are the eigenfunctions and eigenvalues of the BVP for Eq. (3).
The solution of Eq. (1) is sought for in the form of Galerkin expansion

Ψio(y, x) =

jmax∑
j=1

φj(x)χjio (y). (5)

Here χjio (y) are unknown functions and the orthonormalized basis functions
φj(x) in the interval 0 ≤ x ≤ xmax are defined as eigenfunctions of the BVP for
the equation

(
− 1

f3(x)

∂

∂x
f4(x)

∂

∂x
+ VM (x) − εj

)
φj(x) = 0, (6)
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with the boundary and orthonormalization conditions

φj(0) = φj(xmax) = 0,

∫ xmax

0

f3(x)drφi(x)φj(x) = δij , (7)

where f3(x) = f4(x) = 1, V (x) = (m/h̄2)Ṽ (x), εj = (m/h̄2)ε̃j . The desired
set of numerical solutions of this BVP is calculated with the given accuracy by
means of the program ODPEVP [4]. Hence, we calculate the set of n bound states
having the eigenfunctions φj(x) and the eigenvalues εj , j = 1, n and the desired
set of pseudostates with the eigenfunctions φj(x) and the eigenvalues εj ≥ 0,
j = n+1, jmax. The latter approximate the set of continuum eigensolutions ε ≥ 0
of the BVP for Eq. (3).

The set of closed-channel Galerkin equations has the form

[
− 1

f1(y)

∂

∂y
f2(y)

∂

∂y
+ εi − E

]
χiio(y) +

jmax∑
j=1

V b
ij(y)χjio (y) = 0. (8)

Thus, the scattering problem (1)–(3) with the asymptotic boundary condi-
tions (4) is reduced to the boundary-value problem for the set of close-coupling
equations in the Galerkin form (8) for f1(y) = f2(y) = 1 with the boundary
conditions at y = ymin and y = ymax [6]:

dF (y)

dy

∣∣∣∣
y=yt

= R(yt)F (yt), t = min,max, (9)

where R(ymin) and R(ymax) are jmax × jmax symmetric matrix function of E,
F (y) = {χio(y)}No

io=1 = {{χjio(y)}jmax

j=1 }No

io=1 is the required jmax × No matrix
solution at the number of open channels No = max

E≥εj
j ≤ jmax. These matrices

and the sought-forNo×No matrices of the reflection and transmission amplitudes
R and T are calculated using the third version of the program KANTBP [3].

In Eq. (8), the effective potentials Vij(y) are expressed by the integrals

V b
ij(y) =

∫ xmax

0

f1(x)dxφi(x)(V b(
x+ y

2
) + V b(

x− y
2

))φj(x). (10)

For example, let us take the parameters of the molecule Be2, namely, the reduced
mass μ = m/2 = 4.506Da, the average distance between the nuclei 2.47Å, the
frequency of molecular vibrations expressed in temperature units h̄ω = 398.72K,
the ground state of molecule 1Σ+

u , the wave number of the order of 277.124cm−1

for the observable excited-to-ground state transitions (we use the relation 1K =
0.69503476 cm−1 from [5]). These values were used to determine the parameters
of the Morse potential ṼM (x) and VM (x) = (m/h̄2)ṼM (x) of Eqs. (3) and (6)

ṼM (x) = D{exp[−2(x− x̂eq)ρ̂] − 2 exp[−(x− x̂eq)ρ̂]}, (11)

where D is the depth of the interaction potential well and ρ̂ describes the poten-
tial well width. The values of D and ρ̂ are determined from the discrete spectrum
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of the BVP (6)–(7) which is approximated by the known discrete spectrum of
Eq. (3)

ε̃j = −D
[
1 − ς(j − 1/2)

]2
, j = 1, ..., n =

[
ς−1+

1

2

]
. (12)

The discrete spectrum eigenfunctions φj(x) of the BVP (6)–(7) are approximated

by the solutions φ̃j(ζ) of equation (3) in the new variable ζ:

d2φ̃j(ζ)

dζ2
+

1

ζ

dφ̃j(ζ)

dζ
+

(
−1

4
+
j + sj − 1/2

ζ
− s2j
ζ2

)
φ̃j(ζ) = 0,

where sj =
√−εj/ρ̂ =

√
D̂/ρ̂ − j + 1/2 and ζ = 2

√
D̂ exp[−(x − x̂eq)ρ̂]/ρ̂, at

ζ ∈ (0,+∞) corresponding to the extended interval x ∈ (−∞,+∞) and have
the form

φ̃j(ζ)=Nj exp(−ζ
2

)ζsj 1F1(1−j, 2sj+1, ζ), N2
j =

ρ̂Γ (2sj+j)

(j−1)!Γ (2sj)Γ (2sj+1)
. (13)

Having the average size of the molecule and the separation between the energy
levels taken into account, one can parameterize the molecular potential to fit the
observable quantities, namely, D = 1280K, x̂eq = 2.47Å, ρ̂ = 2.968Å−1 is deter-

mined from the condition (ε̃2 − ε̃1)/(2πh̄c) = 277.124 cm−1, ς = ρ̂h̄√
mD

= 0.193

is the dimensionless constant of the problem, and D̂ = (
√
mD
h̄ )2 = (ρ̂/0.193)2 =

(2.968Å−1/0.193)2 = 236.5Å−2. In accordance with (12), the ground state en-
ergy of the molecule Be2 is equal to −ε̃1 = −1044.88K.

The set of pseudostates with the eigenfunctions φj(x) and the eigenvalues
εj ≥ 0, j = n+1, jmax, approximated by the set of continuous spectrum solutions

φ̃k(ζ) with fixed k =
√
ε > 0 that satisfy Eq. (3) written in the new variable ζ,

i.e., the equation

d2φ̃k(ζ)

dζ2
+

1

ζ

dφ̃k(ζ)

dζ
+

(
−1

4
+

√
D̂/ρ̂

ζ
+
s2k
ζ2

)
φ̃k(ζ) = 0.

At fixed sk = k
ρ̂ , these solutions take the form

φ̃k(ζ) =
Nk exp(−ζ/2)

2i
(exp(iw)ζ−ik/ρ̂1F1(−

√
D

ρ̂
+

1

2
− ik
ρ̂
, 1 − 2ik

ρ̂
, ζ)

− exp(−iw)ζik/ρ̂1F1(−
√
D

ρ̂
+

1

2
+
ik

ρ̂
, 1 +

2ik

ρ̂
, ζ)), (14)

w = arg(Γ (1 +
2ik

ρ̂
)) + arg(Γ (−

√
D

ρ̂
+

1

2
− ik
ρ̂

))).

Asymptotically φ̃ask (x→ ∞) = sin(kx+δ(k)), δ(k) = −kxeq−sk ln(2
√
D̂/ρ̂)+w

corresponds to the scattering phase.
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Fig. 3. Sections of the total potential energy V (ρ;ϕ) = V M (ρ;ϕ) + V b(ρ;ϕ) in polar
coordinates at ρ = 2.2, 2.3, 2.4, 2.6, 2.8, 3, 5, 10 (curves are noted by 1,...,8). Straight
lines are energy levels at ρ = 10.

Since the bond in the molecule Be2 is of the Van der Waals type, one can
consider each constituent atom independently interacting with the external bar-
rier potential. The latter should be chosen to have the height and the width
typical of barriers in a real crystal lattice. Moreover, this potential should be a
smooth function having the second derivative to apply high-accuracy numerical
methods, like the Numerov method or the finite element method, for solving the
BVP for the systems of second-order ordinary differential equations. We choose
the repulsive barrier potential to be Gaussian:

Ṽ b(xi) = Ṽ0 exp

(
− x

2
i

2σ

)
, V b(xi) =

m

h̄2
Ṽ b(xi) = D̂ exp

(
− x

2
i

2σ

)
. (15)

Here the parameters Ṽ0 = 1280K, D̂ = 236.510003758401Å−2 = (m/h̄2)Ṽ0,
σ = 5.23 · 10−2Å2 are determined by the model requirement that the width of
the repulsive potential at the kinetic energy equal to that of the ground state is
1Å, so that the average distance 2.47Å between the atoms of Be is smaller than
the distance 2.56Å between Cu atoms in the plane (111) of the crystal lattice
cell. The potential barrier height Ṽ0 of the order of 200 meV was estimated
following the experimental observation of quantum diffusion of hydrogen atoms
[9]. Fig. 1 illustrates the Gaussian and Morse potentials.

Figure 2 presents the sections of the total potential energy, the calculated
eigenfunctions of the BVP (6) and the effective potentials Vij(y) of Eq. (10)
calculated using these functions. Note that the wave functions φj(x) and the
eigenvalues εj(x) of the bound states j = 1, 5 (solid lines) approximate the known
analytical ones of the BVP for Eq. (3) with the Morse potential (11) with four
and seven significant digits, respectively. The states are localized in the well,
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Fig. 4. Even and odd eigenfunctions of the parametric eigenvalue problem for the fast
subsystem at ρ = 3 and ρ = 10 (corresponding energy eigenvalues given in K)

while the pseudostates j = 6, ..., 12 are approximated with the same accuracy
and localized outside the well. The matrix elements between the bound states
are localized in the vicinity of the barriers and the matrix elements between the
pseudostates are localized beyond the barriers. The matrix elements between the
bound states and pseudostates are small. The solution of the BVP (6), (7) was
performed on the finite-element grids Ωx = {0(Nelem = 800)12}, with Nelem

fourth-order Lagrange elements p = 4 between the nodes, using the program
ODPEVP [4].

3 Model II. Quantum Tunneling in Polar Coordinates

Using the change of variables x = ρ sinϕ, y = ρ cosϕ, we can rewrite Eq. (1)
in polar coordinates (ρ, ϕ) Ωρ,ϕ = (ρ ∈ (0,∞), ϕ ∈ [0, π]) in the dimensionless
form

(
−1

ρ

d

dρ
ρ
d

dρ
− 1

ρ2
∂2

∂ϕ2
+ V (ρ, ϕ) − E

)
Ψ(ρ, ϕ) = 0, (16)
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where the potential function V (ρ, ϕ) = VM (ρ, ϕ) + V b(ρ, ϕ) is defined by the
formula in term of potentials (11) and (15)

VM (ρ, ϕ)=V (ρ sinϕ), V b(ρ, ϕ)=V b(ρ
sin(ϕ+π/4)√

2
)+V b(ρ

sin(ϕ−π/4)√
2

).(17)

Sections of the potential function V (ρ, ϕ) at a set of slow variable values ρ
are shown in Fig. 3. One can see that at large ρ, the width of the potential
wells decreases as ρ increases. Therefore, at large ρ, the potential of two-center
problem, symmetric with respect to ϕ = π/2, transforms into two one-center
Morse potentials.

The asymptotic boundary conditions imposed on the solution for the 2D model
in the s-wave approximation Ψ(ρ, ϕ) = {Ψj(ρ, ϕ)}No

j=1 in the asymptotic region
Ωas

j = {(ϕ, ρ)|ϕ/ρ1 1} can be written in the obvious form

Ψ(ρ, ϕ, ϕ0) =

No∑
io=1

Ψjio (ρ, φ)φio (−ϕ0; ρ→ +∞) (18)

Ψio(ρ→ +∞, ϕ) →
√

2

π

No∑
j=1

φj(ϕ; ρ)
[
χ∗jio(ρ)δjio − χjio (ρ)Sjio (E)

]
, (19)

Ψio(ρ, φ→ 0) → 0, Ψio(ρ, φ→ π) → 0, χjio(ρ) =
exp(ı(pjρ− π

4 ))

2
√
pjρ

,

where the angle ϕ0 determines the direction of the incident wave propagation,
in particular, ϕ0 = 0 corresponds to v =→ and ϕ0 = π corresponds to v =←.
Sjio (E) are the elements of the No × No S-matrix, No is the number of open

channels, pi is the wave number, pi =
√

(m/h̄2)(Ẽ − ε̃i(ρ→ +∞)) > 0, below

the dissociation threshold Ẽ < 0 , φi(ϕ, ρ → +∞) =
√
ρφi(x), and εi(ρ →

∞)/ρ2 = ε
(0)
i < 0 are the eigenfunctions localized in the asymptotic region Ωas

j ,
and the eigenvalues of the BVP for Eq. (21).

The solution of Eq. (16) is sought for in the form of Kantorovich expansion

Ψio(ρ, ϕ) =

jmax∑
j=1

φj(ϕ; ρ)χjio (ρ). (20)

Here χjio (ρ) are unknown functions and the orthonormalized basis functions
φj(ϕ; ρ) in the interval ϕ ∈ [0, π] are defined as eigenfunctions of the BVP for
the equation

(
− ∂2

∂ϕ2
+ ρ2(VM (ρ sinϕ) + V b(ρ, φ)) − εj(ρ)

)
φj(ϕ; ρ) = 0, (21)

with orthonormalization conditions
∫ π

0

dϕφi(ϕ; ρ)φj(ϕ; ρ) = δij . (22)



Quantum Tunneling of a Diatomic Molecule 481

Fig. 5. Potential curves εj(ρ) and even diagonal effective potentials Hjj(ρ) and V b
jj(ρ)

vs ρ (Å)

The solution of the BVPs (21), (22) was performed on the finite-element grids
Ωϕ = {ϕ1(Nelem = 800)π/2}, if ϕ3 = (8+ϕxeq)/(ϕρ) > π/4,Ωϕ = {ϕ1(Nelem =
300)ϕ2(Nelem = 60)ϕ4(Nelem = 40)ϕ5(Nelem = 100)π/2} with Nelem fourth-
order Lagrange elements p = 4 between the nodes, using the program ODPEVP
[4]. Here angles ϕ1 = (−3 + ϕxeq)/(ϕρ) and ϕ2 = (4 + ϕxeq)/(ϕρ) are marked
left and right bounds of well (17) and angles ϕ4 = π/4 − 4

√
σ/ρ and ϕ5 =

π/4 + 4
√
σ/ρ are marked left and right bounds of potential barrier (17).

First, let us put V b(ρ, ϕ) = 0 in Eq. (21). In this case, we calculate the set of
n bound states having the eigenfunctions φj(ϕ; ρ) and the eigenvalues εj(ρ) < 0
at j,= 1, 2, ..., n, and the desired set of pseudostates with the eigenfunctions
φj(ϕ; ρ) and the eigenvalues εj(ρ) ≥ 0 at j = n+ 1, ..., jmax. The latter approxi-
mate the set of continuum eigensolutions ε(ρ) ≥ 0 of the BVP for Eq. (3). The
eigenvalues have the following asymptotes: εj(ρ→ ∞)/ρ2 = εj at j,= 1, 2, ..., n
and εj(ρ→ ∞)/ρ2 = (j − n)2/ρ2 +O(1/ρ3) at j = n+ 1, ..., jmax.

The eigenfunctions φj(ϕ; ρ), j = 1, 20 are shown in Fig. 4 at ρ = 3 and ρ = 10.
Taking the above symmetry V (ϕ, ρ) = V (π−ϕ, ρ) of the potential into account,
the eigenfunctions are separated into two subsets, namely, the even φσ=1

j (ϕ; ρ)

and odd φσ=−1j (ϕ; ρ) ones. The linear combinations

φ→←j (ϕ; ρ) = (φσ=1
j (ϕ; ρ) ± φσ=−1j (ϕ; ρ))/

√
2
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Fig. 6. Even effective potentials Qij(ρ) vs ρ (Å)

Fig. 7. Even effective potentials Hij(ρ) vs ρ (Å)

at large ρ have maxima in the vicinity of ϕ = 0 and ϕ = π, respectively, such
that they correspond to the functions presented in Fig. 2. Taking this property
into account, we arrive at the expressions [2]

Ť = (−Š+1 + Š−1)/2, Ř = (−Š+1 − Š−1)/2, (23)

which relate the even Š+1 and odd Š−1 elements of the matrix Š = eıπ/4Seıπ/4

from Eq. (19) to the transmission Ť and reflection Ř amplitudes from Eq. (4).
The set of closed-channel Kantorovich self-adjoint equations has the form

[
−1

ρ

d

dρ
ρ
d

dρ
+
εi(ρ)

ρ2
− E

]
χiio (ρ) +

jmax∑
j=1

Wij(ρ)χjio (ρ) = 0. (24)

where the potential matrix operator Wij(ρ) has the form

Wij(ρ) = V b
ij(ρ) +Hji(ρ) +

1

ρ

d

dρ
ρQji(ρ) +Qji(ρ)

d

dρ
. (25)
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Fig. 8. Even effective potentials Vij(ρ) vs ρ (Å)

The potential curves εj(ρ) (see Fig. 5) and the effective potentials Qij(ρ) =
−Qji(ρ), Hij(ρ) = Hji(ρ) and V b

ij(ρ) (see Figs. 6–8) are determined by the
integrals calculated using the program ODPEVP

Qij(ρ) = −
∫ π

0

dϕφi(ϕ; ρ)
dφj(ϕ; ρ)

dρ
,Hij(ρ) =

∫ π

0

dϕ
dφi(ϕ; ρ)

dρ

dφj(ϕ; ρ)

dρ
,(26)

V b
ij(ρ) =

∫ π

0

dϕφi(ϕ; ρ)(V b(ρ
sin(ϕ + π/4)√

2
) + V b(ρ

sin(ϕ− π/4)√
2

))φj(ϕ; ρ).

If we take the potential V b(ρ, φ) in Eq. (21) into account by using the matrix
elements V b

ij(ρ) from Eq.(26), then we put V b
ij(ρ) = 0 in Eq.(25). Thus, the

scattering problem for Eq. (16) with the asymptotic boundary conditions (19)
is reduced to the boundary-value problem for the set of close-coupling equations
in the Kantorovich form (18) with the boundary conditions at ρ = ρmin and
ρ = ρmax [6]:

dF (ρ)

dρ

∣∣∣∣
ρ=ρt

= (R(ρt) + Q(ρt))F (ρt), t = min,max, (27)

where R(ρ) is an unknown jmax × jmax symmetric matrix function, F (ρ) =
{χio(ρ)}No

io=1 = {{χjio(ρ)}jmax

j=1 }No

io=1 is the required jmax × No matrix solution,
and No is the number of open channels, No = max

E≥εj
j ≤ jmax, calculated using

the program KANTBP 3.0 [3].

4 Asymptotic Form of Effective Potentials and Solutions

Algorithm 1. At large ρ, the width of the potential well is decreasing with
increasing ρ (see Fig. 3). This allows linearization of the argument ρ sinϕ−x̂eq →
ρ(ϕ−arcsin(x̂eq/ρ)) at |x−x̂eq|/ρ1 1 in the expression of the potential function
VM (ρ sinϕ) and reformulation of Eq. (21) on the interval ϕ = (0, π)

(
− ∂2

∂ϕ2
+ ρ2VM (ρ(ϕ − arcsin(x̂eq/ρ))) − εj(ρ)

)
φj(ϕ; ρ) = 0. (28)
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Table 1. The calculated coefficients Q
(1)
ij H

(2)
ij of expansions (31) (up rows) and cor-

responding numerical values Qij and Hij at ρ = 100(down rows)

Q
(1)
ij

Qij 1 2 3 4 5

1 0 55.852657 –20.662584 9.913235 –4.888752
0 0.55 863277 –0.20 664572 0.09 914008 –0.04 891971

2 –55.852657 0 66.253422 –30.004416 14.557626
–0.55 863277 0 0.66 270932 –0.30 010937 0.14 568965

3 20.662584 –66.253422 0 62.290358 –28.724086
0.20 664572 –0.66 270932 0 0.62 317875 –0.28 751980

4 –9.913235 30.004416 62.290358 0 43.265811
–0.09 914008 0.30 010937 0.62 317875 0 0.43 320993

5 4.888752 –14.557626 28.724086 –43.265811 0
0.04 891971 –0.14 568966 0.28 751983 –0.43 321006 0

H
(2)
ij

Hij 1 2 3 4 5

1 692.635 –364.132 –462.085 397.196 –240.775
0.0692 859 –0.0364 209 –0.0462 371 0.0397 441 –0.0241 084

2 –364.132 1718.621 –873.970 –219.292 253.669
–0.0364 209 0.1719 273 –0.0874 195 –0.0219 721 0.0254 209

3 –462.085 –873.970 2210.843 –1250.672 244.905
–0.0462 371 –0.0874 195 0.2211 927 –0.1251 191 0.0244 755

4 397.196 –219.292 –1250.672 2088.603 –1167.908
0.0397 441 –0.0219 721 –0.1251 191 0.2090 243 –0.1169 414

5 –240.775 253.669 244.905 –1167.908 1209.648
–0.0241 084 0.0254 209 0.0244 755 –0.1169 414 0.1212 568

This equation coincides with Eq. (6), (11), taking the notations

D̂ → D̂ρ2, ρ̂→ ρ̂ρ, x̂eq → arcsin(x̂eq/ρ) (29)

into account.
As a result, we obtain the approximate eigenvalues εj(ρ) that depend on ρ as

a parameter, expressed as

εj(ρ)=ρ2ε
(0)
j , ε

(0)
j =−D̂

[
1− ρ̂(j − 1

2 )√
D̂

]2
, j = 1, ..., n =

[√
D̂

ρ̂
+

1

2

]
. (30)

These eigenvalues demonstrate correct asymptotic behavior ε̃j(ρ)/ρ
2 = ε̃j de-

scribing the lower part of the discrete spectrum of problem (3). In the consid-
ered case, they correspond to the first five (n = 5) eigenvalues ε̃1, ..., ε̃5. The
corresponding eigenfunctions φj(ϕ; ρ) at j = 1, ..., n, parametrically depending
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on the slow variable ρ via the new independent variable ζ = ζ(ϕ; ρ) =

2ρ
√
D̂ exp[−ρ̂ρ(ϕ− arcsin(x̂eq/ρ))]/ρ̂, ζ ∈ [0,+∞) have the form

φ̃j(ζ; ρ)=Nj(ρ) exp(−ζ
2

)ζsj 1F1(1−j, 2sj+1, ζ),

N2
j (ρ) =

ρρ̂Γ (2sj+j)

(j−1)!Γ (2sj)Γ (2sj+1)
,

where sj =
√
D̂/ρ̂ − j + 1/2 is a positive parameter. In the considered case,

the wave function outside the well at |x − x̂eq |/ρ 3 1 is exponentially decreas-

ing. This makes it possible to integrate the product of functions ψ̃j(ζ(ϕ; ρ); ρ)

and/or ∂ψ̃j(ζ(ϕ; ρ); ρ)/∂ρ|φ=const by ζ in the interval ζ ∈ (0,+∞). The calcu-
lated eigenfunctions with ρ = 10 for j = 1, ..., 5 shown in Fig. 4 qualitatively
agree with the bound states in Fig. 2. The matrix elements between the states
of the lower part of the discrete spectrum i, j = 1, ..., n = 5 with the eigenvalues

εj(ρ)/ρ
2 = ε

(0)
j are expanded in inverse powers of ρ:

Qij(ρ) =

kmax∑
k=1

Q
(2k−1)
ij

ρ2k−1
, Hij(ρ) =

kmax∑
k=1

H
(2k)
ij

ρ2k
, Vij(ρ) = O(exp(−ρ)), (31)

and calculated up to the desired order kmax in CAS MAPLE. As an example, the

calculated coefficients Q
(1)
ij and H

(2)
ij of expansions (31) are presented in Table 1.

For comparison, the numerical values of matrix elements Qij and Hij at ρ = 100
are also given in Table 1. One can see that with the first nonzero coefficients of
these expansions, one gets the numerical approximation of the matrix elements
with three significant digits.

For the states i, j = n+1, ..., jmax with the eigenvalues εj(ρ→ ∞) = (j−n)2+
O(1/ρ) = ε(2) + O(1/ρ) = k2 + O(1/ρ) corresponding to pseudo states of the
BVP (6), (7) we consider the approximation by the eigenfunctions of continuous
spectrum (see Eq. (14) with the notations (29)) reduced to the finite interval
ϕ ∈ (0, π/2) by means of the procedure implemented in CAS MAPLE. The
energy spectrum of even and odd states is evaluated basing on the conditions

dφ̃k(ϕ; ρ)

dϕ

∣∣
ϕ=π/2

= 0 and φ̃k(π/2; ρ) = 0

for even and odd states, respectively. The calculated eigenfunctions at ρ = 10
for i = 6, ..., 10 are in quantitative agreement with the numerical ones shown in
Fig. 4 and in qualitative agreement with pseudo-states displayed in Fig. 2. Thus,
the basis eigenfunctions of Galerkin expansion (5) correspond to the asymptotic
ones for Kantorovich expansion (20) at large values of the parameter ρ.

The diagonal and nondiagonal barrier matrix elements Vij(ρ) shown in Figs.
5 and 8 should be compared with the corresponding ones displayed in Fig. 2.
From this comparison, one can see that the matrix elements Vij(ρ) from (26)
between discrete-spectrum states of BVP (21), (22) and the matrix elements
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Vij(y) from (10) between a discrete spectrum state and a pseudo-state (6), (7)
demonstrate qualitatively similar behavior in the coordinates y and ρ. Since
ρ =

√
x2 + y2 > y, the potentials Vij(ρ) are delocalized with respect to Vij(y).

Due to slowly decreasing kinematic behavior of the potentials Qij(ρ) and Hij(ρ)
as ρ−1 and ρ−2, respectively, compared to the exponentially decreasing Vij(y),
one should take into account the leading terms of their asymptotic expressions
in solving the BVP (24)-(26) generated by the Kantorovich expansion (18) in
the calculation of scattering with five open channels.

Algorithm 2. Evaluation of the Asymptotic Solutions

Input. We calculate the asymptotic solution of the set of N ODEs at high values
of the independent variable ρ3 1[

−1

ρ

d

dρ
ρ
d

dρ
+
εi(ρ)

ρ2
+ Hii(ρ) − 2E

]
χii′(ρ) (32)

=

N∑
j=1,j �=i

[
−Qij(ρ)

d

dρ
− 1

ρ

d

dρ
ρQij(ρ) − Hij(ρ)

]
χji′ (ρ).

The coefficients of Eqs. (32), where Hij = V b
ij +Hij are presented in the form

of the inverse power series (31). In particular, εi(ρ)/ρ
2 = ε

(0)
i + ε

(2)
i /ρ

2.

Step 1. We construct the solution of Eqs. (32) in the form:

χji′ (ρ) =

(
φji′ (ρ) + ψji′ (ρ)

d

dρ

)
Ri′(ρ), (33)

where φji′ (ρ) and ψji′ (ρ) are unknown functions, Ri′(ρ) is a known function.
We choose Ri′(ρ) as solutions of the auxiliary problem treated like an etalon
equation: [

−1

ρ

d

dρ
ρ
d

dρ
+
Z

(2)
i′

ρ2
− p2i′

]
Ri′(ρ) = 0, (34)

where Z
(2)
i′ = ε

(2)
i′ .

Step 2. At this step, we compute the coefficients φi′ (ρ) and ψi′(ρ) of the ex-
pansion (33) in the form of truncated expansion in inverse powers of ρ

(φ
(k′<0)
ji′ =ψ

(k′<0)
ji′ =0):

φji′ (ρ) = φ
(0)
ji′ +

kmax∑
k′=1

φ
(k′)
ji′

ρk′ , ψji′ (ρ) = ψ
(0)
ji′ +

kmax∑
k′=1

ψ
(k′)
ji′

ρk′ . (35)

After the substitution of Eqs.(33)–(35) into Eq. (32) with the use of Eq.(34), we
arrive at the set of recurrence relations at k′ ≤ kmax:(

ε
(0)
i − 2E + p2i′

)
φ
(k′)
ii′ − 2p2i′(k

′ − 1)ψ
(k′−1)
ii′ = −f (k′)

ii′ , (36)
(
ε
(0)
i − 2E + p2i′

)
ψ
(k′)
ii′ + 2(k′ − 1)φ

(k′−1)
ii′ = −g(k′)

ii′ ,
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where the right-hand sides f
(k)
ii′ and g

(k)
ii′ are defined by the relations

f
(k′)
ii′ = (−(k′ − 2)2 − Z(2)

i′ )φ
(k′−2)
ii′ +

k′∑
k=2

H(k)
ii φ

(k′−k)
ii′

+Z
(2)
i′ (2k′ − 4)ψ

(k′−3)
ii′ +

k′∑
k=1

N∑
j=1,j �=i

(
2Q

(k)
ij Z

(2)
i′ ψ

(k′−k−2)
ji′

−2p2i′Q
(k)
ij ψ

(k′−k)
ji′ +Q

(k)
ij (−2k′ + k + 3)φ

(k′−k−1)
ji′ + H(k)

ij φ
(k′−k)
ji′

)
; (37)

g
(k)
ii′ = (−(k′ − 1)2 − Z(2)

i′ )ψ
(k′−2)
ii′ +

k′∑
k=2

H(k)
ii ψ

(k′−k)
ii′

+

N∑
j=1,j �=i

k′∑
k=1

(
2Q

(k)
ij φ

(k′−k)
ji′ −Q(k)

ij (2k′ − 1 − k)ψ
(k′−k−1)
ji′ + H(k)

ij ψ
(k′−k)
ji′

)

with the initial conditions p2i′ = 2E − ε(0)i′ , φ
(0)
ii′ = δii′ , ψ

(0)
ii′ = 0.

Step 3. Here we calculate the coefficients φ
(k′)
ii′ and ψ

(k′)
ii′ using the step-by-step

procedure of solving Eqs. (36) for 2E �= ε(0)i′ , i �= i′ and k′ = 2, . . . , kmax:

φ
(k′)
ii′ =

[
ε
(0)
i − ε(0)i′

]−1 [
−f (k′)

ii′ + 2p2i′(k
′ − 1)ψ

(k′−1)
ii′

]
,

ψ
(k′)
ii′ =

[
ε
(0)
i − ε(0)i′

]−1 [
−g(k′)

ii′ − 2(k′ − 1)φ
(k′−1)
ii′

]
,

φ
(k′−1)
i′i′ = − [2(k′ − 1)]

−1
g
(k)
i′i′ , (38)

ψ
(k′−1)
i′i′ =

[
2(k′ − 1)

(
2E − ε(0)i′

)]−1
f
(k)
i′i′ .

The above described algorithm was implemented in MAPLE and FORTRAN to

calculate the desired φ
(k′)
ii′ and ψ

(k′)
ii′ in the output up to needed order of kmax.

The choice of appropriate values ρmin and ρmax for the constructed expansions
of the linearly independent solutions for pio > 0 is controlled by the fulfilment
of the Wronskian condition to the prescribed precision εWr:

Wr(Q(ρ);χ∗(ρ),χ(ρ)) =
2ı

π
Ioo, (39)

W (Q,χ∗,χ) ≡ ρ
(
χ∗T

(
dχ

dρ
− Qχ

)
− χT

(
dχ∗

dρ
− Qχ∗

))
.

5 Analysis of Quantum Tunneling Problem

The solutions of the BVPs (8)–(15) and (24)–(27) were performed on the finite-
element grids Ωy = {−12(Nelem = 120)12} and Ωρ = {0(Nelem = 1200)120},
respectively, with Nelem fourth-order Lagrange elements p = 4 between the
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Fig. 9. The total probability of penetration from the first channels with the energies
E1 = −1044.879649, E2 = −646.1570935, E3 = −342.7919791, E4 = −134.7843058,
E5 = −22.13407384 (in K) to all five open channels simulated by the Galerkin and
Kantorovich expansions

nodes using the program KANTBP 3.0. The expansion of the desirable solution
(5) over such orthogonal basis at (jmax = 15) with only ten closed channels taken
into account allows the calculation of approximate solutions of the original 2D
problem (1) at E < 0 with the required accuracy. Fig. 9 shows the resonance
behavior of the total penetration probability with the transition from the first
channels having the energies E1 = −1044.879649, E2 = −646.1570935, E3 =
−342.7919791, E4 = −134.7843058, E5 = −22.13407384 (in K) to all five open
channels, simulated using the Galerkin expansion (5) as well as the Katorovich
one (18). The total transmission probability is seen to demonstrate the resonance
behavior, i.e., effect of quantum transparency. Some peaks are high and narrow,
and the positions of peaks corresponding to transitions from different bound
states are similar.

As the energy of the initial excited state increases, the transmission peaks
demonstrate a shift towards higher energies, the set of peak positions keeping
approximately the same as for the transitions from the ground state and the
peaks just replacing each other. For example, the left epure shows that the
positions of the 13th and 14th peaks for transitions from the first state coincide
with the positions of the 1st and 2nd peaks for the transitions from the second
state, while the right epure shows that the positions of the 25th and 26th peaks
for transitions from the first state coincide with the positions of the 13th and
14th peaks for transitions from the second state and with the positions of the
1st and 2nd peaks for the transitions from the third state.

As one can see from Fig. 2, the diagonal matrix elements of the potential
V b
jj(y) have the shapes of double barriers, and the nondiagonal matrix elements
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V b
ij(y) are by more than four times smaller than V b

jj(ρ) and V b
ij(ρ) in Figs. 5 and

8. It means that the position of peaks corresponds to the real part of energy of
the metastable states embedded in the continuum, which are mainly localized
between double barriers.

6 Conclusions

We have demonstrated efficiency of symbolic-numeric algorithms for solving the
boundary-value problems that describe the quantum tunneling of diatomic low-
dimensional model systems, coupled via realistic molecular potentials, through
repulsive barriers below a dissociation threshold. We presented a comparative
analysis of the potential matrix elements and solutions with different asymptotic
behavior calculated in the Cartesian and polar coordinates. The necessity for
two statements of the problem follows from the important practical applications
of further self-consistent study of the system above the dissociation threshold,
which is convenient in polar coordinates. The effect of quantum transparency in
resonance tunneling of diatomic molecules through repulsive potential barriers
was revealed that produced by metastable states imbedded in continuum. The
proposed models and elaborated symbolic-numerical algorithms, the quantum
transparency effect itself, and the developed software can find further appli-
cations in barrier heavy-ion reactions and molecular quantum diffusion. The
authors thank Prof. F.M. Penkov for collaboration. The work was supported
partially by grants RFBR 14-01-00420 and 13-01-00668 and 0602/GF MES RK.
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Abstract. A computational scheme for solving elliptic boundary value
problems with axially symmetric confining potentials using different sets
of one-parameter basis functions is presented. The efficiency of the pro-
posed symbolic-numerical algorithms implemented in Maple is shown
by examples of spheroidal quantum dot models, for which energy spec-
tra and eigenfunctions versus the spheroid aspect ratio were calculated
within the conventional effective mass approximation. Critical values of
the aspect ratio, at which the discrete spectrum of models with finite-
wall potentials is transformed into a continuous one in strong dimen-
sional quantization regime, were revealed using the exact and adiabatic
classifications.

1 Introduction

To analyze the geometrical, spectral and optical characteristics of quantum dots
in the effective mass approximation and in the regime of strong dimensional
quantization following [1], many methods and models were used, including the
exactly solvable model of a spherical impermeable well [2], the adiabatic ap-
proximation for a lens-shaped well confined to a narrow wetting layer [3] and
a hemispherical impermeable well [4], the model of strongly oblate or prolate
ellipsoidal impermeable well [5], as well as numerical solutions of the boundary
value problems (BVPs) with separable variables in the spheroidal coordinates for
wells with infinite and finite wall heights [6,7,8]. However, thorough comparative
analysis of spectral characteristics of models with different potentials, including
those with non-separable variables, remains to be a challenging problem. This
situation stimulates the study of a wider class of model well potentials with ap-
plication of symbolic-numerical algorithms (SNA) and problem-oriented software
developed by the authors of the present paper during years [9,10,11,12,13,14].

Here we analyse the spectral characteristics of the following models: a spherical
quantum dot (SQD), an oblate spheroidal quantum dot (OSQD), and a prolate
spheroidal quantum dot (PSQD). We make use of the Kantorovich method that
reduces the problem to a set of ordinary differential equations (ODE) [15]. In
contrast to the well-known method of adiabatic representation [16], this method

V.P. Gerdt et al. (Eds.): CASC 2010, LNCS 6244, pp. 106–122, 2010.
c© Springer-Verlag Berlin Heidelberg 2010
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implies neither adiabatic separation of fast and slow variables nor the presence of
a small parameter. We present a calculation scheme for solving elliptical BVPs
with axially-symmetric potentials in cylindrical coordinates (CC), spherical co-
ordinates (SC), oblate spheroidal coordinates (OSC), and prolate spheroidal co-
ordinates (PSC). Basing on the SNA developed for axially-symmetric potentials,
different sets of solutions are constructed for the parametric BVPs related to the
fast subsystem, namely, the eigenvalue problem solutions (the terms and the ba-
sis functions), depending upon the slow variable as a parameter, as well as the
matrix elements, i.e., the integrals of the products of basis functions and their
derivatives with respect to the parameter, which are calculated analytically by
means of elaborated SNA MATRA implemented in MAPLE, or numerically us-
ing the program ODPEVP [13] implementing the finite-element method (FEM).
These terms and matrix elements form the matrices of variable coefficients in the
set of second-order ODE with respect to the slow variable. The BVP for this set
of ODEs is solved by means of the program KANTBP [11], also implementing
the FEM. The efficiency of the calculation scheme and the SNA used is demon-
strated by comparison of the spectra versus the ellipticity of the prolate or oblate
spheroid in the models of quantum dots with different confining potentials, such
as the isotropic and anisotropic harmonic oscillator, the spherical and spheroidal
well with finite or infinite walls approximated by smooth short-range potentials
as well as by constructing the adiabatic classification of the states.

The paper is organized as follows. In Section 2, the calculation scheme for
solving elliptic BVPs with axially-symmetric confining potentials is presented. In
Section 3, SNA MATRA for solving parametric BVP and corresponding integrals
implemented in Maple is described. Section 4 is devoted to the analysis of the
spectra of quantum dot models with three types of axially-symmetric potentials,
including the benchmark exactly solvable models. In Conclusion we summarize
the results and discuss the future applications of our calculation scheme and the
SNA project presented.

2 Problem Statement

Within the effective mass approximation under the conditions of strong dimen-
sional quantization, the Schrödinger equation for the slow envelope of the wave
function Ψ̃(r̃) of a charge carrier (electron e or hole h) in the models of a spher-
ical, prolate or oblate spheroidal quantum dot (SQD, PSQD or OSQD) has the
form

{ ˜̂
H − Ẽ}Ψ̃(r̃) = {(2μp)−1 ˜̂

P
2

+ Ũ(r̃) − Ẽ}Ψ̃(r̃) = 0, (1)

where r̃ ∈ R3 is the position vector of the particle having the effective mass
μp = μe (or μp = μh), ˜̂

P = −i�∇r̃ is the momentum operator, Ẽ is the energy of
the particle, Ũ(r̃) is the axially-symmetric potential confining the particle motion
in SQD, PSQD or OSQD. In Model A, Ũ(r̃) is chosen to be the potential of an
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isotropic or anisotropic axially-symmetric harmonic oscillator with the angular
frequency ω̃ = γr̃0�/(μpr̃

2
0), γr̃0 ∼ π2/3 being an adjustable parameter:

ŨL(r̃) = μpω̃
2(ζ1(x̃2 + ỹ2) + ζ3z̃

2)/2, (2)

r0 =
√

ζ1(x̃2
0 + ỹ2

0) + ζ3z̃2
0 is the radius of a spherical QD (ζ1 = 1, ζ3 = 1) or that

of a spheroidal QD (ζ1 = (r̃0/ã)4, ζ3 = (r̃0/c̃)4), inscribed into a spherical one,
where ã and c̃ are the semiaxes of the ellipse which transforms into a sphere at
ã = c̃ = r̃0. For Model B, Ũ(r̃) is the potential of a spherical or axially-symmetric
well

ŨB(r̃) = {0, 0 ≤ (x̃2 + ỹ2)/ã2 + z̃2/c̃2 < 1; Ũ0, (x̃2 + ỹ2)/ã2 + z̃2/c̃2 ≥ 1}, (3)

with walls of finite or infinite height 1 � Ũ0 < ∞. For Model C, Ũ(r̃) is taken
to be a spherical or axially-symmetric diffuse potential

ŨC(r̃) = Ũ0

[
1 + exp(((x̃2 + ỹ2)/ã2 + z̃2/c̃2 − 1)/s)

]−1
, (4)

where s is the edge diffusiveness parameter of the function smoothly approximat-
ing the vertical walls of finite height Ũ0. Below we restrict ourselves by consider-
ing Model B with infinite walls Ũ0 → ∞ and Model C with walls of finite height
Ũ0. We make use of the reduced atomic units: a∗

B = κ�
2/μpe

2 is the reduced
Bohr radius, κ is the DC permittivity, ER ≡ Ry∗ = �

2/(2μpa
∗
B

2) is the reduced
Rydberg unit of energy, and the following dimensionless quantities are intro-
duced: Ψ̃(r̃) = a∗

B
−3/2Ψ(r), 2Ĥ = ˜̂

H/Ry∗, 2E = Ẽ/Ry∗, 2U(r) = Ũ(r̃)/Ry∗,
r = r̃/a∗

B, a = ã/a∗
B, c̃ = c/a∗

B, r0 = r̃0/a∗
B, ω = γr0/r2

0 = �ω̃/(2Ry∗). For
an electron with the reduced mass μp ≡ μe = 0.067m0 at κ = 13.18 in GaAs:
a∗

B = 102Å= 10.2 nm, Ry∗ = ER = 5.2 meV.
Since the Hamiltonian Ĥ in (1)–(4) commutes with the z-parity operator

(z → −z or η → −η), the solutions are divided into even (σ = +1) and odd
(σ = −1) ones. The solution of Eq. (1), periodical with respect to the azimuthal
angle ϕ, is sought in the form of a product Ψ(xf , xs, ϕ) = Ψmσ(xf , xs)eimϕ/

√
2π,

where m = 0,±1,±2, ... is the magnetic quantum number. Then the function
Ψmσ(xf , xs) satisfies the following equation in the two-dimensional domain Ω =
Ωxf

(xs) ∪ Ωxs ⊂ R2\{0}, Ωxf
(xs) = (xmin

f (xs), xmax
f (xs)), Ωxs = (xmin

s , xmax
s ):

(
Ĥ1(xf ; xs) + Ĥ2(xs) + V (xf , xs) − 2E

)
Ψmσ(xf , xs) = 0. (5)

The Hamiltonian of the slow subsystem Ĥ2(xs) is expressed as

Ĥ2(xs) = Ȟ2(xs) = − 1
g1s(xs)

∂

∂xs
g2s(xs)

∂

∂xs
+ V̌s(xs), (6)

and the Hamiltonian of the fast subsystem Ĥ1(xf ; xs) is expressed via the re-
duced Hamiltonian Ȟf (xf ; xs) and the weighting factor g3s(xs):

Ĥ1(xf ; xs) = g−1
3s (xs)Ȟf (xf ; xs), (7)

Ȟf (xf ; xs) = − 1
g1f(xf )

∂

∂xf
g2f (xf )

∂

∂xf
+ V̌f (xf ) + V̌fs(xf , xs).
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Table 1. The values of conditionally fast xf and slow xs independent variables, the
coefficients gis(xs), gjf (xf ), and the potentials V̌f (xf ), V̌s(xs), V̌fs(xf , xs), in Eqs.(5)–
(7) for SQD, OSQD and PSQD in cylindrical (CC), spherical (SC), and oblate & prolate
spheroidal (OSC & PSC) coordinates with (d/2)2 = ±(a2−c2), + for OSC, − for PSC.

CC SC OSC &PSC
OSQD PSQD SQD OSQD & PSQD

xf z ρ η η

xs ρ z r ξ

g1f 1 ρ 1 1

g2f 1 ρ 1 − η2 1 − η2

g1s ρ 1 r2 1

g2s ρ 1 r2 ξ2 ± 1

g3s 1 1 r2 1

V̌f (xf ) ω2ζ3z
2 m2/ρ2 + ω2ζ1ρ

2 m2/g2f m2/g2f ± (d/2)2g2f2E

V̌s(xs) m2/ρ2 + ω2ζ1ρ
2 ω2ζ3z

2 0 ∓m2/g2s − ((d/2)2g2s − 1)2E

V̌fs(xf , xs) 0 0 V̌ (r, η) V̌ (ξ, η)

Table 1 contains the values of conditionally fast xf and slow xs independent
variables, the coefficients g1s(xs), g2s(xs), g3s(xs), g1f(xf ), g2f(xf ), and the
reduced potentials V̌f (xf ), V̌s(xs), V̌fs(xf , xs), entering Eqs. (5)–(7) for SQD,
OSQD, and PSQD in cylindrical (x = (z, ρ, ϕ)), spherical (x = (r, η = cos θ, ϕ)),
and oblate/prolate spheroidal (x = (ξ, η, ϕ)) coordinates [17]. In spherical co-
ordinates, the potential V̌ (r, η) in Table 1 using the definitions (2), (4) in the
reduced atomic units, for Model A is expressed as

V̌ (r, η) = 2r2V (r, η) = ω2r4(ζ1(1 − η2) + ζ3η
2),

and for Model C as

V̌ (r, η) = 2r2V (r, η) = 2r2U0

[
1 + exp((r2((1 − η2)/a2 + ζ3η

2/c2) − 1)/s)
]−1

,

both having zero first derivatives in the vicinity of the origin r = 0 (equlibrium
point). For Model B. the potentials V̌fs are zero, since the potential (3) is refor-
mulated below in the form of boundary conditions with respect to the variables
xf and xs. The solution Ψmσ

i (xf , xs) ≡ ΨEmσ
i (xf , xs) of the problem (5)–(7) is

sought in the form of Kantorovich expansion [15]

ΨEmσ
i (xf , xs) =

jmax∑
j=1

Φmσ
j (xf ; xs)χ

(mσi)
j (E, xs), (8)

using as a set of trial functions the eigenfunctions Φmσ
j (xf ; xs) of the Hamiltonian

Ȟf (xf ; xs) from (7), i.e., the solutions of the parametric BVP
{
Ȟf (xf ; xs) − λ̌i(xs)

}
Φmσ

i (xf ; xs) = 0, (9)
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in the interval xf ∈ Ωxf
(xs) depending on the conditionally slow variable xs ∈

Ωxs as on a parameter. These solutions obey the boundary conditions

lim
xf→xt

f (xs)

(
N

(mσ)
f (xs)g2f (xf )

dΦmσ
j (xf ; xs)

dxf
+ D

(mσ)
f (xs)Φmσ

j (xf ; xs)
)

=0 (10)

at the boundary points {xmin
f (xs), xmax

f (xs)} = ∂Ωxf
(xs), of the interval Ωxf

(xs).
In Eq. (10), N

(mσ)
f (xs) ≡ N

(mσ)
f , D

(mσ)
f (xs) ≡ D

(mσ)
f , unless specially declared,

are determined by the relations N
(mσ)
f = 1, D

(mσ)
f = 0 at m = 0, σ = +1 (or at

σ = 0, i.e., without parity separation), N
(mσ)
f = 0, D

(mσ)
f = 1 at m = 0, σ = −1

or at m �= 0. The eigenfunctions satisfy the orthonormality condition with the
weighting function g1f (xf ) in the same interval xf ∈ Ωxf

(xs):

〈
Φmσ

i |Φmσ
j

〉
=

∫ xmax
f (xs)

xmin
f (xs)

Φmσ
i (xf ; xs)Φmσ

j (xf ; xs)g1f (xf )dxf = δij . (11)

Here λ̌1(xs) < ... < λ̌jmax(xs) < ... is the desired set of real eigenvalues. The
corresponding set of potential curves 2E1(xs) < ... < 2Ejmax(xs) < ... of Eqs.
(7) is determined by 2Ej(xs) = g−1

3s (xs)λ̌j(xs). Note that for OSC and PSC, the
desired set of real eigenvalues λ̌j(xs) depends on a combined parameter, xs →
p2 = (d/2)22E, the product of spectral 2E and geometrical (d/2)2 parameters
of the problem (5). The solutions of the problem (9)–(11) for Models A and B
are calculated in the analytical form, while for Model C this is done using the
program ODPEVP [13].

Substituting the expansion (8) into Eq. (5) in consideration of (9) and (11),
we get a set of ODEs for the slow subsystem with respect to the unknown vector
functions χ(mσi)(xs, E) ≡ χ(i)(xs) = (χ(i)

1 (xs), ..., χ
(i)
jmax

(xs))T :
(
− 1

g1s(xs)
I

d

dxs
g2s(xs)

d

dxs
+ 2E(xs) + IV̌s(xs) − 2IE

)
χ(i)(xs) = (12)

=−
(

g2s(xs)
g1s(xs)

W(xs) +
1

g1s(xs)
dg2s(xs)Q(xs)

dxs
+

g2s(xs)
g1s(xs)

Q(xs)
d

dxs

)
χ(i)(xs).

Here 2E(xs) = diag(g−1
3s (xs)λ̌j(xs)), W(xs), and Q(xs) are matrices of the di-

mension jmax × jmax,

Wij(xs) = Wji(xs) =
∫ xmax

f (xs)

xmin
f (xs)

g1f (xf )
∂Φi(xf ; xs)

∂xs

∂Φj(xf ; xs)
∂xs

dxf , (13)

Qij(xs) = −Qji(xs) = −
∫ xmax

f (xs)

xmin
f

(xs)

g1f(xf )Φi(xf ; xs)
∂Φj(xf ; xs)

∂xs
dxf ,
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calculated analytically for Model B and by means of the program ODPEVP [13]
for Model C. Note that for Model A in SC or CC and Model B in OSC or PSC,
the variables xf and xs are separated so that the matrix elements Wij(xs) =
Qij(xs) ≡ 0 are put into the r.h.s. of Eq. (12), and V̌s(xs) are substituted from
Table 1. The discrete spectrum solutions 2E : 2E1 < 2E2 < ... < 2Et < ... that
obey the boundary conditions at points xt

s = {xmin
s , xmax

s } = ∂Ωxs bounding the
interval Ωxs :

lim
xs→xt

s

(
N (mσ)

s g2s(xs)
dχ(mσp)(xs)

dxs
+ D(mσ)

s χ(mσp)(xs)
)

= 0, (14)

where N
(mσ)
s = 1, D

(mσ)
s = 0 at m = 0, σ = +1 (or at σ = 0, i.e without parity

separation), N
(mσ)
s = 0, D

(mσ)
s = 1 at m = 0, σ = −1 or at m �= 0, and the

orthonormality conditions∫ xmax
s

xmin
s

(χ(i)(xs))T χ(j)(xs)g1s(xs)dxs = δij , (15)

are calculated by means of the program KANTBP [11]. To ensure the prescribed
accuracy of calculation of the lower part of the spectrum discussed below with
eight significant digits we used jmax = 16 basis functions in the expansion (8) and
the discrete approximation of the desired solution by Lagrange finite elements
of the fourth order with respect to the grid pitch Ωp

hs(xs) = [xs
min, xs

k = xs
k−1 +

hs
k, xs

max].

3 SNA MATRA for Calculation of the BVP
and Integrals

To calculate the effective potentials of the problem (12)–(15) for each value xs =
xs

k of the FEM grid Ωp
hs(xs)

= [xs
min, xs

max] we consider a discrete representation
of solutions Φ(xf ; xs) ≡ Φmσ(xf ; xs) of the problem (9) by means of the FEM
on the grid, Ωp

hf (xf )
(xs) = [xf

0 =xf
min(xs), xf

k = xf
k−1 + hf

k , xf
n̄ =xf

max(xs)], in a
finite sum:

Φ(xf ; xs) =
n̄p∑

μ=0

Φh
μ(xs)Np

μ(xf ) =
n̄∑

k=1

p∑
r=0

Φh
r+p(k−1)(xs)N

p
r+p(k−1)(xf ), (16)

where Np
μ(xf ) are local functions, and Φh

μ(xs) are node values of Φ(xf
μ; xs). The

local functions Np
μ(xf ) are piece-wise polynomials of the given order, p equals

one only in the node xf
μ and equals zero in all other nodes xf

ν �= xf
μ of the

grid Ωp
hf (xf )

(xs), i.e., Np
ν (xf

μ) = δνμ, μ, ν = 0, 1, . . . , n̄p. The coefficients Φν(xs)

are formally connected with the solution Φ(xfp
k,r ; xs) in a node xf

ν = xfp
k,r , k =

1, . . . , n̄, r = 0, . . . , p:

Φh
ν (xs) = Φh

r+p(k−1)(xs) ≈ Φ(xfp
k,r ; xs), xfp

k,r = xf
k−1 +

hf
k

p
r.
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The theoretical estimate for the H0 norm between the exact and numerical
solution has the order of

|λ̌j(xs) −λ̌h
j (xs)|≤c1h

2p,
∥∥∥Φj(xf ; xs)− Φh

j (xs)
∥∥∥

0
≤c2h

p+1, (17)

where hf = max1<j<n̄ hf
j is the maximal step of the grid, and the constants

c1 > 0, c2 > 0 do not depend on the step hf [19]. It has been shown possible
to construct schemes for solving the BVPs and integrals with high order of
accuracy comparable with that of the computer in accordance with the following
estimations [13]

∣∣∣∣∣
∂λ̌j(xs)

∂xs
−

∂λ̌h
j (xs)
∂xs

∣∣∣∣∣ ≤ c3h
2p,

∥∥∥∥∥
∂Φj(xf ; xs)

∂xs
−

∂Φh
j (xs)
∂xs

∥∥∥∥∥
0

≤ c4h
p+1, (18)

∣∣Qij(xs) − Qh
ij(xs)

∣∣ ≤ c5h
2p,

∣∣Wij(xs) − Wh
ij(xs)

∣∣ ≤ c6h
2p, (19)

where hf is the grid step, p is the order of finite elements, i, j are the numbers of
the corresponding solutions, and the constants c3, c4, c5, and c6 do not depend
on the step hf . The proof is straightforward following the scheme of the proof of
estimations (17) in accordance with [19,20]. Verification of the above estimations
is provided by numerical analysis on condensed grids and by comparison with
examples of exact solvable models A and B.

Let us consider the reduction of BVP (9), (11) in the interval Δ : xf
min(xs) <

xf <xf
max(xs) with the boundary conditions (10) at points xf

min(xs) and xf
max(xs)

rewritten in the form

A(xs)Φj(xf ; xs) = λ̌j(xs)B(xs)Φj(xf ; xs), (20)

where A(xs) is a differential operator, and B(xs) is a multiplication opera-
tor, differentiable with respect to the parameter xs ∈ Ωxs . Substituting the
expansion (16) into (20) and performing integration with respect to xf by
parts in the interval Δ = ∪n̄

k=1Δk, we arrive at a set of linear algebraic
equations

ap
μν(xs)Φh

j,μ(xs) = λ̌h
j (xs)bp

μν(xs)Φh
j,μ(xs), (21)

in the framework of the briefly described FEM. Using the p-order Lagrange ele-
ments [19], we present below Algorithm 1 for constructing the algebraic problem
(21) by the FEM in the form of conventional pseudocode. Its MAPLE realization
allows us to show explicitly the recalculation of indices μ, ν and to test the cor-
responding modules of the parametric matrix problems, derivatives of solutions
by parameter, and calculation of integrals.
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Algorithm 1. Generation of parametric algebraic problems

Input:
Δ = ∪n̄

k=1Δk = [xf
min(xs), xf

max(xs)] is the interval of changing of the indepen-
dent variable xf , whose boundaries depend on the parameter xs = xs

k′ ;
hf

k = xf
k − xf

k−1 is the grid step;
n̄ is the number of subintervals Δk = [xf

k−1, x
f
k ];

p is the order of finite elements;
A(xs),B(xs) are the differential operators in Eq. (20);
Output:
Np

μ(xf ) are the basis functions in (16);
ap

μν(xs), bp
μν(xs) are the matrix elements in the system of algebraic equations

(21);
Local:
xfp

k,r are the nodes; φp
k,r(xf ) are the Lagrange elements; μ, ν = 0, 1, . . . , n̄p ;

1: for k:=1 to n̄ do
for r:=0 to p do

xfp
k,r = xf

k−1 + hf
k

p r
end for;

end for;
2: φp

k,r(xf ) =
∏

r′ �=r[(xf − xfp
k,r′)(xfp

k,r − xfp
k,r′)−1]

3: Np
0 (xf ):= if xf ∈ Δ1 then φp

1,0(xf ) else 0;
for k:=1 to n̄ do

for r:=1 to p − 1 do
Np

r+p(k−1)(xf ): = if xf ∈ Δk then φp
k,r(xf ) else 0;

end for;
Np

kp(xf ):= if xf ∈ Δk then φp
k,p(xf )

else if xf ∈ Δk+1 then φp
k+1,0(xf ) else 0;

end for;
Np

n̄p(xf ):= if xf ∈ Δn̄ then φp
n̄,p(xf ) else 0;

4: for μ, ν:=0 to n̄p do
ap

μν(xs) :=
∫
Δ

g1(xf )Np
μ(xf )A(xs)Np

ν (xf )dxf ;

bp
μν(xs) :=

∫
Δ

g1(xf )Np
μ(xf )B(xs)Np

ν (xf )dxf ;

end for;

Remarks:

1. For equation (9), the matrix elements of the operator (7), and V (xf ; xs) =
V̌fs(xf , xs) + V̌f (xf ) between the local functions Nμ(xf ) and Nν(xf ) defined in
the same interval Δj calculated by formula using xf = xf

k−1 + 0.5hf
k(1 + ηf ),

q, r = 0, p:
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(a(xs))μ,ν =
+1∫
−1

{
4

(hf
k)2

g2f (xf )(φp
k,q)

′(φp
k,r)

′ + g1f (xf )V (xf ; xs)φ
p
k,qφ

p
k,r

}
hf

k

2 dηf ,

(b(xs))μ,ν =
+1∫
−1

g1f(xf )φp
k,qφ

p
k,r

hf
k

2 dηf , μ = q + p(k − 1), ν = r + p(k − 1).

2. If the integrals can not be calculated analytically (see, e.g., section 4), then
they are calculated by numerical methods [19], namely, by means of the Gauss
quadrature formulae of the order p + 1.

3. For OSQD&PSQD model C, the problem (9)–(11) has been solved using
the grid Ωp

hf (xf )
(xs)[x

f
min, xf

max] = −1(20)1 (the number in parentheses denotes
the number of finite elements of order p = 4 in each interval).

Generally, 10-16 iterations are required for the subspace iterations to converge
the subspace to within the prescribed tolerance. If the matrix ap ≡ ap(xs) in
Eq. (21) is not positively defined, the problem (21) is replaced by the following
problem:

ãp Φh = λ̃h bp Φh, ãp = ap − αbp. (22)

The number α (the shift of the energy spectrum) is chosen in such a way that
the matrix ãp is positive. The eigenvector of the problem (22) is the same, and
λ̌h = λ̃h + α, where the shift α is evaluated by Algorithm 2.

Algorithm 2. Evaluating the lower bound for the lowest eigenvalue of the gen-
eralized eigenvalue problem

Generally it is impossible to define the lower bound for the lowest eigenvalue
of Eq. (22) because the eigenvalues λ̌h

1 (xs) < ... < λ̌h
i (xs) < ... < λ̌h

jmax
(xs)

depend upon the parameter xs. However, we can use the following algorithm to
find the lower bound for the lowest eigenvalue λ̌h

1 (xs) at a fixed value of xs:

Step 1. Calculate LDLT factorization of Ap − αBp.
Step 2. If some elements of the diagonal matrix D are less than zero

then put α = α − 1 and go to Step 3, else go to Step 5.
Step 3. Calculate LDLT factorization of Ap − αBp.
Step 4. If some elements of the diagonal matrix D are less than zero

then put α = α − 1 and go to Step 3, else put α = α − 0.5
and go to Step 8.

Step 5. Put α = α + 1 and calculate LDLT factorization of Ap − αBp.
Step 6. If all elements of the diagonal matrix D are greater than zero

then go to Step 5.
Step 7. Put α = α − 1.5.
Step 8. End.

After using the above algorithm one should find the lower bound for the lowest
eigenvalue, and always λ̌h

1 (xs) − α ≤ 1.5.
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a) b)

Fig. 1. The energies 2E = Ẽ/ER of even σ = +1 lower states for OSQD versus the
minor c, ζca = c/a ∈ (1/5, 1) being the spheroid aspect ratio: a) well with impermeable
walls, b) diffusion potential with 2U0 = 36, s = 0.1, the major semiaxis a = 2.5 and
m = 0. Tine lines are minimal values 2Emin

i ≡ 2Ei(xs = 0) of potential curves.

4 Spectral Characteristics of Spheroidal QDs

Models B and C for Oblate Spheroidal QD. At fixed coordinate xs of the
slow subsystem, the motion of the particle in the fast degree of freedom xf is
localized within the potential well having the effective width

L̃ (xs) = 2c
√

1 − x2
s/a2, (23)

where L = L̃/a∗
B. The parametric BVP (9)–(11) at fixed values of the coor-

dinate xs, xs ∈ (0, a), is solved in the interval xf ∈ (−L (xs) /2, L (xs) /2)
for Model C using the program ODPEVP, and for Model B the eigenvalues
Ẽno (xs) /ER ≡ 2Ei (xs), no = i = 1, 2, ..., and the corresponding parametric
eigenfunctions Φσ

i (xf ; xs), obeying the boundary conditions (10) and the nor-
malization condition (11), are expressed in the analytical form:

2Ei (xs)=
π2n2

o

L2 (xs)
, Φσ

i (xf ; xs)=

√
2

L (xs)
sin

(
πno

2

(
xf

L (xs) /2
− 1

))
, (24)

where the even solutions σ = +1 are labelled with odd no = nzo +1 = 2i−1, and
the odd ones σ = −1 with even no = nzo + 1 = 2i, i = 1, 2, 3, ... . The effective
potentials (13) in Eq. (12) for the slow subsystem are expressed analytically
via the integrals over the fast variable xf of the basis functions (24) and their
derivatives with respect to the parameter xs including states with both parities
σ = ±1:

2Ei(xs) =
a2π2n2

o

4c2(a2 − x2
s)

, Wii(xs) =
3 + π2n2

o

12
x2

s

(a2 − x2
s)2

, (25)

Wij(xs) =
2non

′
o(n

2
o + n′

o
2)(1 + (−1)no+n′

o)
(n2

o − n′
o
2)2

x2
s

(a2 − x2
s)2

,
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Fig. 2. Contour lines of the first five even-parity wave functions σ = +1 in the xz plane
of Model B of OSQD for the major semiaxis a = 2.5 and different values of the minor
semiaxis c (ζca = c/a ∈ (1/5, 1))

Qij(xs) =
non

′
o(1 + (−1)no+n′

o)
(n2

o − n′
o
2)2

xs

a2 − x2
s

, n′
o �= no.

For Model B at c = a = r0 the OSQD turns into SQD with known analytically
expressed energy levels Et ≡ Esp

nlm and the corresponding eigenfunctions

2Esp
nlm =

α2
nr+1,l+1/2

r2
0

, Φsp
nlm(r, θ, ϕ)=

√
2Jl+1/2(

√
2Esp

nlmr)
r0
√

r|Jl+3/2(αnr+1,l+1/2)|
Ylm(θ, ϕ), (26)

where αnr+1,l+1/2 are zeros of the Bessel function of semi-integer index l +
1/2, numbered in ascending order 0 < α11 < α12 < ... < αiv < ... by the
integer i, v = 1, 2, 3, .... Otherwise one can use equivalent pairs iv ↔ {nr, l} with
nr = 0, 1, 2, ... numbering the zeros of Bessel function and l = 0, 1, 2, ... being
the orbital quantum number that determines the parity of states σ̂ = (−1)l =
(−1)mσ, σ = (−1)l−m = ±1. At fixed l, the energy levels Ẽnlm/ER = 2Et

degenerate with respect to the magnetic quantum number m, are labelled with
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Fig. 3. Contour lines of the first five even-parity wave functions σ = +1 in the xz plane
of Model C of OSQD with 2U0 = 36 and s = 0.1 for the major semiaxis a = 2.5 and
different values of the minor semiaxis c (ζca = c/a ∈ (1/5, 1))

the quantum number n = nr + 1 = i = 1, 2, 3, ... , in contrast to the spectrum
of a spherical oscillator, degenerate with respect to the quantum number λ =
2nr + l. Figures 1, 2, and 3 show the lower part of non-equidistant spectrum
Ẽ(ζca)/ER = 2Et and the eigenfunctions Ψmσ

t from Eq. (8) for even states
OSQD Models B and C at m = 0. There is a one-to-one correspondence rule
no = nzo + 1 = 2n − (1 + σ)/2, n = 1, 2, 3, ..., nρ = (l − |m| − (1 − σ)/2)/2,
between the sets of spherical quantum numbers (n, l, m, σ̂) of SQD with radius
r0 = a = c and spheroidal ones (nξ = nr, nη = l − |m|, m, σ) of OSQD with the
major a and the minor c semiaxes, and the adiabatic set of cylindrical quantum
numbers (nzo, nρ, m, σ) at continuous variation of the parameter ζca = c/a.
The presence of crossing points of the energy levels of similar parity under the
symmetry change from spherical ζca = 1 to axial, i.e., under the variation of the
parameter 0 < ζca < 1, in the BVP with two variables at fixed m for Model B
is caused by the possibility of variable separation in the OSC [17], i.e., the r.h.s.
of Eq. (12) equals zero. The transformation of eigenfunctions occurring in the
course of a transition through the crossing points (marked by circles) in Fig. 1, is
shown in Fig. 2 for model B and in Fig. 3 for model C (marked by arrows). From
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a) b)

Fig. 4. The energies 2E = Ẽ/ER of even σ = +1 lowest states for PSQD depending
on the minor semiaxis a (ζac = a/c ∈ (1/5, 1) is the spheroid aspect ratio): a) well with
impermeable walls, b) diffusion potential, 2U0 = 36, s = 0.1, for the major semiaxis
c = 2.5 and m = 0. Tine lines are minimal values 2Emin

i ≡ 2Ei(xs = 0) of potential
curves.

comparison of these Figures one can see that if the eigenfunctions are ordered
according to increasing eigenvalues of the BVPs, then for both Models B and C,
the number of nodes [18] is invariant under the variation of parameter c from
c = a = 2.5 to c = 0.5 of potentials (3) and (4). For Model B, such a behavior
follows from the fact of separation of variables of the BVP with potential (3)
in the OSC (see Table 1), while for Model C, further investigation is needed
because the coordinate system, where the variables of the BVP with potential
(4) are separated, is unknown. So, at small value of deformation parameter (ζca

for OSQD or ζac for PSQD) there are nodes only along corresponding major
axis. For Model C, at each value of the parameter a their is a finite number of
discrete energy levels limited by the value 2U0 of the well walls height. As shown
in Fig. 1b, the number of levels of OSQD, equal to that of SQD at a = c = r0,
is reduced with the decrease of the parameter c (or ζca), in contrast to Models
A and B that have countable spectra, and avoided crossings appear just below
the threshold.

Models B and C for Prolate Spheroidal QD. In contrast to OSQD, for
PSQD at fixed coordinate xs of the slow subsystem the motion of the particle is
confined to a 2D potential well with the effective variable radius

ρ0 (xs) = a
√

1 − x2
s/c2, (27)

where ρ0 (xs) = ρ̃0 (xs) /aB. The parametric BVP (9)–(11) at fixed values of
the coordinate xs from the interval xs ∈ (−c, c) is solved in the interval xf ∈
(0, ρ0 (xs)) for Model C using the program ODPEVP, while for Model B the
eigenvalues Ẽnρp+1 (xs) /ER ≡ 2Ei (xs), nρp + 1 = i = 1, 2, ..., and the cor-
responding parametric basis functions Φmσ=0

i (xf ; xs) ≡ Φm
i (xf ; xs) without
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Fig. 5. Contour lines of the first five even-parity wave functions σ = +1 in the xz plane
of Model B of PSQD for the major semiaxis c = 2.5 and different values of the minor
semiaxis a (ζac = a/c ∈ (1/5, 1))

parity separation obeying the boundary conditions (10) and the normalization
condition (11) are expressed in the analytical form:

2Ei (xs) =
α2

nρp+1,|m|

ρ2
0 (xs)

, Φm
nρp

(xs) =
√

2
ρ0 (xs)

J|m|(
√

2Enρp+1,|m| (xs)xf )

|J|m|+1(αnρp+1,|m|)|
, (28)

where αnρp+1,|m| = J̄
nρp+1

|m| are positive zeros of the Bessel function of the first
kind J|m|(xf ) labeled in the ascending order with the quantum number nρp+1 =
i = 1, 2, .... The effective potentials (13) in Eq.(12) for the slow subsystem are
calculated numerically in quadratures via the integrals over the fast variable xf

of the basis functions(28) and their derivatives with respect to the parameter
xs using SNA MATRA from Section 2. Figures 4 and 5 illustrate the lower
part of the non-equidistant spectrum E(ζac)/ER = 2Ẽt and the eigenfunctions
Ψmσ

t from Eq. (8) of even states of PSQD Models B and C. There is a one-
to-one correspondence rule nρp + 1 = np = i = n = nr + 1, i = 1, 2, ... and
nzp = l− |m| between the sets of quantum numbers (n, l, m, σ̂) of SQD with the
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radius r0 = a = c and spheroidal ones (nξ = nr, nη = l − |m|, m, σ) of PSQD
with the major c and the minor a semiaxes, and the adiabatic set of quantum
numbers (n = nρp+1, nzp, m, σ) under the continuous variation of the parameter
ζac = a/c. The presence of crossing points of similar-parity energy levels in
Fig. 4 under the change of symmetry from spherical ζac = 1 to axial, i.e., under
the variation of the parameter 0 < ζac < 1, in the BVP with two variables at
fixed m for Model B is caused by the possibility of variable separation in the
PSC [17], i.e., r.h.s. of Eq. (12) equals zero. For Model C, at each value of the
parameter c there is also only a finite number of discrete energy levels limited by
the value 2U0 of the well walls height. As shown in Fig. 4b, the number of energy
levels of PSQD, equal to that of SQD at a = c = r0, which is determined by
the product of mass μe of the particle, the well depth Ũ0, and the square of the
radius r̃0, is reduced with the decrease of the parameter ã (or ζac) because of the
promotion of the potential curve (lower bound) into the continuous spectrum, in
contrast to Models A and B having countable spectra. Note that the spectrum
of Model C for PSQD or OSQD should approach that of Model B with the
growth of the walls height U0 of the spheroidal well. However, at critical values
of the ellipsoid aspect ratio it is shown that in the effective mass approximation,
both the terms (lower bound) and the discrete energy eigenvalues in models of
the B type move into the continuum. Therefore, when approaching the critical
aspect ratio values, it is necessary to use models such as the lens-shaped self-
assembled QDs with a quantum well confined to a narrow wetting layer [3] or
if a minor semiaxis becomes comparable with the lattice constant to consider
models (see,e.g.[21]), different from the effective mass approximation.

5 Conclusion

By examples of the analysis of energy spectra of SQD, PSQD, and OSQD mod-
els with thee types of axially symmetric potentials, the efficiency of the developed
computational scheme and SNA is demonstrated. Only Model A (anisotropic har-
monic oscillator potential) is shown to have an equidistant spectrum, while Models
B and C (wells with infinite and finite walls height) possess non-equidistant spec-
tra. In Model C, there is a finite number of energy levels. This number becomes
smaller as the parameter a or c (ζac or ζca) is reduced because the potential curve
(lower bound) moves into the continuum. Models A and B have countable discrete
spectra. This difference in spectra allows verification of SQD, PSQD, and OSQD
models using experimental data [2], e.g., photoabsorption, from which not only
the energy level spacing, but also the mean geometric dimensions of QD may be
derived [5,7,8]. It is shown that there are critical values of the ellipsoid aspect ra-
tio, atwhich in the approximation of effective mass the discrete spectrum ofmodels
with finite-wall potentials turns into a continuous one. Hence, using experimental
data, it is possible to verify different QD models like the lens-shaped self-assembled
QDs with a quantum well confined to a narrow wetting layer [3], or to determine
the validity domain of the effective mass approximation, if a minor semiaxis be-
comes comparable with the lattice constant and to proceed opportunely to more
adequate models such as [21].
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Note a posteriori that the diagonal approximation of the slow-variable ODE
(12) without the diagonal matrix element Wii (so-called rude adiabatic approxi-
mation) provides the lower estimate of the calculated energy levels. With this ma-
trix element taken into account (adiabatic approximation), the upper estimate of
energy is provided, unless in the domain of the energy level crossing points. There-
fore, the Born–Oppenheimer (BO) approximation is generally applicable only for
estimating the ground state at an appropriate value of the small parameter. For
Model B in the first BO approximation 2Ei ≈ E

(0)
i + E

(1)
i is given by the mini-

mal value of the slow subsystem energy Emin
1 (xs) at the equilibrium points xs = 0

(namely, E
(0)
i = π2n2

o/(2c)2 from Eq. (24) for OSQD and E
(0)
i = α2

nρp+1/a2 from

Eq. (28) for PSQD), and by the corresponding energy values E
(1)
i =π(ac)−1no(2nρ

+ |m|+1) and E
(1)
i =2(ac)−1αnρp+1,|m|(nz +1/2) of the 2D and 1D harmonic os-

cillator, respectively. It is shown in [4] that the terms Ei(xs) allow high-precision
approximation by the Hulten potential. This can be accomplished by means of
computer algebra software, e.g., Maple, Mathematica, which allows (in the rude
adiabatic approximation) to obtain the lower bound of the spectrum by solving
transcendental equations expressed analytically in terms of known special func-
tions, and to use this approach for further development of our SNA project.

The software package developed is applicable to the investigation of impurity
and exciton states in semiconductor nanostructure models. Further development
of the method and the software package is planned for solving the quasi-2D
and quasi-1D BVPs with both discrete and continuous spectrum, which are
necessary for calculating the optical transition rates, channeling and transport
characteristics in the models like quantum wells and quantum wires.
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Abstract. We present new symbolic-numeric algorithms for solving
the Schrödinger equation describing the scattering problem and res-
onance states. The boundary-value problems are formulated and dis-
cretized using the finite element method with interpolating Hermite
polynomials which provide the required continuity of the derivatives of
the approximated solutions. The efficiency of the algorithms and pro-
grams implemented in the Maple computer algebra system is demon-
strated by analysing the scattering problems and resonance states for
the Schrödinger equation with continuous (piecewise continuous) real
(complex) potentials like single (double) barrier (well).

1 Introduction

High-accuracy efficient algorithms and programs for solving boundary-value
problems are presently indispensable for studying important mathematical mod-
els, describing wave propagation in smoothly irregular waveguides, tunnelling
and channelling of compound quantum systems through multidimensional poten-
tial barriers, photoionization, photoabsorption, and transport in atomic, molec-
ular, and quantum-dimensional semiconductor systems [1–15].

For this class of problems not only the solution itself, but also its first deriva-
tive must be continuous, which is of particular importance in the case of quantum-
dimensional semiconductor systems and smoothly irregular waveguides, described
by partial differential equations with piecewise-continuous coefficient functions
[2, 16–18]. As shown by the example of solving an eigenvalue problem for the
Schrödinger equation [19], the required continuity of the derivatives can be effi-
ciently implemented in the approximating numerical solution on a finite-element
grid using the Hermite interpolating elements [17, 20]. The reduction of the initial
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boundary-value problems to the corresponding algebraic problems is a cumber-
some problem of the Finite-Element Method using high-order approximation.
The generation of the local functions using the high-order Hermite interpolation
polynomials and the elements of mass and stiffness matrices is performed in the
analytic form using the algorithm elaborated by the authors and implemented in
CAS Maple. Using CAS Maple is a key point of the approach. Now it is possible
to work with multiprocessor computers that implement parallel computations of
algebraic problem with high-dimension matrices using the LinearAlgebra pack-
age of CAS Maple. Moreover, in our previous paper [19] we also used the symbolic
algorithm to generate Fortran routines that allow the solution of the general-
ized algebraic eigenvalue problem with high-dimension matrices for real-valued
potentials. Further development of this approach for solving the scattering prob-
lem and calculating the resonance metastable states for real-valued and complex
potentials is an important problem that constitutes the goal of the present paper.

In this paper we present a new approach to the study of the resonance scatter-
ing problem and the metastable states for both continuous and piecewise contin-
uous real-valued and complex potentials. The discretization of the corresponding
boundary-value problem reformulated in terms of symmetric quadratic function-
als is implemented using the Hermite interpolation polynomials which provide
the required continuity of the derivatives of the approximated solutions. The
continuity of the approximate solutions derivatives is the key point in the prob-
lems of quantum mechanics, waveguide theory, etc. For the scattering problem
with the fixed real energy value E=�E, �E>0 we formulate the boundary-value
problem for the Schrödinger equation in the finite interval |z|≤|zmax| with the
conditions of the third kind at the boundary points of the interval and construct
the appropriate variational functional. The asymptotic solutions of the scatter-
ing problem at |zmax| ≤ |z| < ∞ comprise the incident wave and the unknown
amplitudes of transmitted T (E) and reflected R(E) waves, which are calculated
together with the desired numerical solution in the finite interval and its logarith-
mic derivatives at the boundary points of the interval. To calculate the resonance
state with the unknown complex eigenvalue of energy Er=�Er+ı�Er, �Er>0,
�E<0 we formulate the boundary-value problem for the Schrödinger equation
in the finite interval with the conditions of the third kind at the boundary points
of the interval and construct the appropriate variational functional. In contrast
to the scattering problem, in the asymptotic solutions of this problem the am-
plitude of the incident waves is zero, i.e., only the outgoing waves are present,
exp(ı

√
Er|z|), that meet the radiation condition [23] and are considered within

the sufficiently large but finite interval |z|≤|zmax|.
The constructed stiffness and mass matrices for the variational functionals,

comprising the boundary conditions of the first, second, or third kind, are used
to formulate the generalized algebraic eigenvalue problem. To calculate the res-
onance states with unknown complex energy eigenvalues Er we use the Newton
iteration scheme, in which the initial approximation is chosen as the solution of
the scattering problem with the boundary conditions of the third kind and the
real values of energy E=�E>0, close to the resonance ones, Er=�Er+ı�Er,
and corresponding to the maximal value of the transmission coefficient |T (E)|2.
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We also used the appropriate solutions of the eigenvalue problem with the bound-
ary conditions of the first or the second kind.

The efficiency (the order of approximation with respect to the finite element
grid step) and the capability of time saving (the execution time for the Maple
algorithms for banded matrices with the dimension up to 300) is demonstrated
by the test calculations of scattering and resonance states for the Schrödinger
equation with continuous (piecewise continuous) real (complex) barrier (double
barrier) or well (double well) potential functions.

The paper is organized as follows. In Section 2 the formulation of the
boundary-value problems with the boundary conditions of the first, second,
and third kind is presented, as well as the appropriate variational functionals.
Sections 3 presents the finite-element scheme with the interpolating Hermite
polynomials and describes the algorithm of reducing the boundary-value prob-
lems to the algebraic ones. Section 4 is devoted to test calculations that demon-
strate the efficiency and time-saving capability of the proposed computational
schemes, implemented as a Maple program. In the Conclusion we discuss the re-
sults and the possible applications of the proposed computational schemes and
computer programs.

2 Formulation of Boundary-Value Problems

Consider the second-order differential equation with respect to the unknown
function Φ(z) in the interval z ∈ Ωz = (zmin, zmax) [19]

(D−2E)Φ(z) = 0, D = − 1

f1(z)

∂

∂z
f2(z)

∂

∂z
+ V (z). (1)

The coefficient functions f1(z) > 0, f2(z) > 0 and the real or complex potential
function V (z) are assumed to be continuous and to possess derivatives up to the
order κmax−1 ≥ 1 in the domain z ∈ Ω̄z = [zmin, zmax]. Alternative assumptions
for piecewise continuous functions will be also considered below.

Depending on the physical problem, the desired solution is to obey the appro-
priate boundary conditions at the end points zmin and zmax of the interval Ω̄z:

(I) : Φm(zt) = 0, t = min and/or max, (2)
(II) : dΦm(z)/dz

∣
∣
z=zt= 0, t = min and/or max, (3)

(III) : dΦm(z)/dz
∣
∣
z=zt= R(zt)Φm(zt), t = min and/ormax . (4)

The solution of the boundary-value problem can be reduced to the determi-
nation of stationary point (or minimal value) of the variational functional [21]

Ξ(Φ,E, zmin, zmax)≡
∫ zmax

zmin

Φ(z) (D−2E)Φ(z)f1(z)dz = Π(Φ,E, zmin, zmax) + C,

C = −f2(z
max)Φ(zmax)R(zmax)Φ(zmax) + f2(z

min)Φ(zmin)R(zmin)Φ(zmin),
(5)

where Π(Φ,E, zmin, zmax) is the symmetric functional
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Fig. 1. Real (solid line) and imaginary (dotted line) parts of the eigenfunctions Φ+
1 (z),

Φ−
1 (z) and Φ1(z) with eigenvalues E±

1 and E1, respectively, given in Table 1.

Π(Φ,E, zmin, zmax) =

∫ zmax

zmin

[

f2(z)dΦ(z)/dzdΦ(z)/dz (6)

+f1(z)Φ(z)V (z)Φ(z)−f1(z)2EΦ(z)Φ(z)
]

dz.

Problem 1. For bound states the eigenfunctions are considered that obey the
boundary conditions of the second kind (3) or the first kind (2) for R(z) = 0 or
R(z) → ∞ in the functional (5), (6), respectively.

In the case (a) of the complex potential and complex eigenvalues Em =
�Em + ı�Em the eigenfunctions Φm(z) obey the normalization and orthogo-
nality conditions

〈Φm|Φm′〉 =
∫ zmax

zmin

Φm(z)Φm′(z)f1(z)dz = δmm′ . (7)

In the case (b) of the real eigenvalues Em, i.e., Em = E∗
m, �E = 0, the

left-hand function Φm(z) in the scalar product (7) and the functional (5), (6) is
replaced with the complex conjugate function Φ∗

m(z), corresponding to the same
eigenvalue E∗

m = Em.
Problem 2. For solving the scattering problem with fixed real eigenvalues E

the eigenfunctions Φ(E, z) are to satisfy the boundary conditions of the third
kind (4). The asymptotic solutions of the scattering problem at |zmax| ≤ |z| < ∞
comprise the incident wave and the unknown amplitudes of transmitted T (E)
and reflected R(E) waves, which are calculated together with the desired nu-
merical solution in the finite interval and its logarithmic derivatives R(zt) at the
boundary points of the interval. The unknown eigenvalues R(zmin) (or R(zmax))
are determined by solving the problem (19) with the boundary conditions (4)
taken into account in a way similar to [9]. The parameter R(zt), t = max (or
t = min), in the functional (5), (6) is determined from the asymptotic bound-
ary conditions, R(zt) = dΦas(E,z)

dz

∣
∣
∣
z=zt

1
Φas(E,zt) , where the asymptotic solutions

Φas(E, z) are δ-function normalized.
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In the case (a) of the complex potential the eigenfunctions Φ(E, z) obey the
normalization and orthogonality conditions

〈Φ(E)|Φ(E′)〉 =
∫ zmax

zmin

Φ(E, z)Φ(E′, z)f1(z)dz + C(E,E′) = 2πδ(E−E′), (8)

C(E,E′)=
∫ zmin

−∞
Φas(E, z)Φas(E

′, z)f1(z)dz+
∫ +∞

zmax

Φas(E, z)Φas(E
′, z)f1(z)dz.

In the case (b) of the real potential the left-hand function Φ(E, z) in the scalar
product (8) and in the functional (5), (6) is replaced with the complex conjugate
eigenfunction Φ∗(E, z). The detailed consideration of the asymptotic functions
Φas(E, z) will be presented below.

Problem 3. For metastable states the solution satisfies the boundary condi-
tions of the third kind (4), where the parameter R(zt) depends upon the com-
plex energy value E = �E + ı�E in the lower semiplane: R(zmin) = −√−2E,
R(zmax) =

√−2E, with �E > 0 and �E < 0. In this case for the real (b)
and complex (a) potentials (provided that the real and imaginary parts of the
latter are specifically chosen, see [13]) the solution satisfies the normalization
condition

(Φm|Φm)= 2
√

−2Em

(
∫ zmax

zmin

Φm(z)Φm(z)f1(z)dz − 1

)

+ Cmm = 0, (9)

Cmm = −f2(z
max)Φm(zmax)Φm(zmax) + f2(z

min)Φm(zmin)Φm(zmin),

and the orthogonality condition

(Φm|Φm′)=(
√

−2Em+
√

−2Em′)

∫ zmax

zmin

Φm(z)Φm′(z)f1(z)dz + Cmm′ = 0, (10)

Cmm′ = −f2(z
max)Φm(zmax)Φm′(zmax) + f2(z

min)Φm(zmin)Φm′(zmin),

that follows from calculating the difference of the functionals (5) with the eigen-
values Em, Em′ and the corresponding eigenfunctions Φm(z), Φm′(z) substituted
into them and with ıpm = ı

√
2Em and ıpm′ = ı

√
2Em′ substituted into the pa-

rameter R(zmax) and with inverse sign into the parameter R(zmin), respectively.
Similar orthogonality condition for real potentials was derived earlier using the
Green function of the semiaxis [22].

2.1 Scattering Problem: The Physical Asymptotic Solutions in
Longitudinal Coordinates and the Scattering Matrix

The solutions of the scattering problem with the fixed energy value E > 0
normalized by the condition (8) on the axis z ∈ (−∞,+∞) possess the “incident
wave + outgoing waves” asymptotic form

Φv(z → ±∞) =

⎧

⎪⎪⎨

⎪⎪⎩

{
X(+)(z)Tv, z > 0,

X(+)(z) +X(−)(z)Rv, z < 0,
v =→,

{

X(−)(z) +X(+)(z)Rv, z > 0,
X(−)(z)Tv, z < 0,

v =←,
(11)
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Fig. 2. The system of two complex Scarf potentials with V1 = 2, V2 = 1 separated by
the distance d = 7/2, and the system of two complex rectangular potential barriers. The
solid line shows the real part and the dotted line shows the imaginary part (left-hand
panel). The coefficients of transmission TL = |T→|2 (solid line), reflection RL = |R→|2
(dotted line), and absorption AL (dash-dotted line) versus the wave number k =

√
2E

for the systems of two purely real potentials (center panel) and complex potentials
(right-hand panel).

where Tv and Rv are the transmission and reflection amplitudes, v is the initial
direction of the particle motion along the z axis. For example, for f1(z) = f2(z) =
1 and rapidly decreasing V (z → ±∞) → 0 the asymptotic solutions X(±)(z) ≡
X(±)(z, E) have the form

X(±)(z) → (p)−1/2 exp (±ıpz) , p =
√
2E (12)

with the normalization condition
∫ ∞

−∞
(X(±)(z, E′))∗X(±)(z, E)dz = 2πδ(E′−E). (13)

Generally, the functions X(±)(z) satisfy the conditions with the Wronskian

Wr(X(∓)(z), X(±)(z)) = ±2ı, Wr(X(±)(z), X(±)(z)) = 0, (14)
Wr(a(z), b(z)) = f2(z) (a(z)db(z)/dz−da(z)/dzb(z)) .

For real-valued potentials the Wronskian is constant, which yields the follow-
ing properties of the reflection and transmission amplitudes
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T ∗
→T→ +R∗

→R→ = T ∗
←T← +R∗

←R← = 1, T→ = T←
T ∗
→R← +R∗

→T← = R∗
←T→ + T ∗

←R→ = 0, (15)

as well as the symmetric and unitary properties of the scattering matrix

S =

(
R→ T←
T→ R←

)

, S†S = SS† = 1. (16)

3 Generation of Algebraic Problems

First, the initial interval [zmin, zmax] is divided into n′ subintervals Ω̃i = [z′i−1, z
′
i],

each of them being divided into ni finite elements of different length hi =
(z′i−z′i−1)/ni. As a result we arrive at the following partitioning of the domain
into n = n1 + ...+ ni + ...+ nn′ ≥ n′ finite elements

Ωp
hj(z)

[zmin, zmax] = ∪n
j=1Ωj = ∪n′

i=1Ω̄i, Ω̄i = ∪n1+...+ni−1+ni

j=n1+...+ni−1+1Ωj , (17)

Ωj = [zmin
j , zmax

j ≡ zmin
j+1], j = 0, ..., n,

zmax
j=i′+n1+...+ni−1

= (z′i−1(ni−i′)+z′ii
′)/ni, i′ = 0, ..., ni, i = 1, ..., n′.

Each of the finite elements is then divided into p similar intervals, thus forming
the finite-element grid Ωp

hj(z)
[zmin, zmax] = {z0, z1, ..., znp}, where zp(j−1)+r =

(zmin
j (p−r) + zmax

j r)/p, r = 0, ..., p.
The solutions Φ̂(z) are sought for in the form of a finite sum over the basis of

local functions Ng
μ(z) at each nodal point z = zk of the grid Ωp

hj(z)
[zmin, zmax]:

Φ̂(z) =

L−1∑

μ=0

Φh
μN

g
μ(z), Φ̂(zl) = Φh

lκmax , dκΦ̂(z)/dzκ
∣
∣
z=zl

= Φh
lκmax+κ (18)

where L = (pn+1)κmax is the number of local functions and Φh
μ at μ = lκmax+κ

are the nodal values of the κ-th derivatives of the function Φ̂(z) (including the
function Φ̂(z) itself for κ = 0) at the points zl.

The local functions Ng
μ(z) ≡ Ng

lκmax+κ(z) are piecewise polynomials of the
given order p′ = κmax(p + 1)−1 constructed in our previous paper [19]. Their
derivative of the order κ at the node zl equals one, and the derivative of the order
κ′ �= κ at this node equals zero, while the values of the function Ng

μ(z) with all
its derivatives up to the order (κmax−1) equal zero at all other nodes zl′ �= zl of
the grid Ωp

hj(z)
[zmin, zmax], i.e., dκNg

l′κmax+κ′/dzκ
∣
∣
z=zl

= δll′δκκ′ , l = 0, . . . , np,
κ = 0, . . . , κmax−1.

The substitution of the expansion (18) into the variational functional (5), (6)
reduces the solution of the eigenvalue problem 1 or 3 (1)–(4) with the normal-
ization condition (7)) or (9), or the scattering problem 2 (1)–(4) with the fixed
energy E to the solution of the algebraic problem with respect to the desired set
Φh = {Φh

μ}L−1
μ=0 :

(A−Mmax +Mmin−2EB)Φh = 0. (19)



FEM Using Interpolation Hermite Polynomials 189

Here A and B are the symmetric L × L stiffness and mass matrices, L =
κmax(np+ 1),

Aμ1;μ2 =

∫ zmax

zmin

f2(z)
dNg

μ1
(z)

dz

dNg
μ2
(z)

dz
dz +

∫ zmax

zmin

f1(z)dzN
g
μ1
(z)V (z)Ng

μ2
(z),

Bl1;l2 =

∫ zmax

zmin

f1(z)N
g
μ1
(z)Ng

μ2
(z)dz,

Mmax and Mmin are L × L the matrices with zero elements except M11 =
f2(z

min)R(zmin) and ML+1−κmax, L+1−κmax = f2(z
max)R(zmax), respectively.

The unknown eigenvalues R(zmin) or R(zmax) are determined by solving the
problem (19) with the boundary conditions (4) taken into account in a way
similar to [9].

The theoretical estimate for the H0 norm of the difference between the exact
solution Φm(z) ∈ H2

2 and the numerical one Φh
m(z) ∈ Hκmax

has the order of

|Eh
m−Em| ≤ c1 h

2p′
,

∥
∥Φh

m(z)−Φm(z)
∥
∥
0
≤ c2h

p′+1, (20)

where h = max1<j<n hj is the maximal step of the grid [21].
Remark. To obtain the eigenvalue estimate of the order 2p′ the integrals are to

be calculated with the same order of accuracy 2p′. If the integrals are calculated
with the accuracy p′ +1, then we get the estimate of the same order p′ +1 both
for eigenvalues and for eigenfunctions.

3.1 The Calculation Scheme for the Solution Matrix Φh = Φh
←

In this case Eq. (19) can be written in the following form

(G+Mmin)

(
Φa

←
Φb

←

)

≡
(
Gaa

← Gab
←

Gba
← Gbb

←

)(
Φa

←
Φb

←

)

=

(
0 0
0 G(zmax)

)(
Φa

←
Φb

←

)

, (21)

where (Mmin)11 = M11 = f2(z
min)R(zmin), R(zmin) = ı

√
2E, the solutions Φa

←
and Φb

← ≡ Φ←(zmax) are vectors with the dimension (L−1) and 1, respectively.
Hence the explicit expressions follow

Φa
← = −(Gaa

← )−1Gab
←Φb

←, G(zmax) = Gbb
←−Gba

←(Gaa
← )−1Gab

←. (22)

Form Eqs. (21) and (22) the relation between Φb
← and its derivative follows

dΦb
←/dz = R(zmax)Φb

←, R(zmax) = G(zmax). (23)

Note, that the matrix G(zmax) is defined as the inverse of the submatrix
Gaa

← , the calculation of which requires significant computer resources. To solve
Eq. (23) without inverting Gaa← , let us consider the set of algebraic equations
with respect to the vectors Fa

← и Fb
←

(

Gaa← Gab←
Gba

← Gbb
←

)(
Fa

←
Fb←

)

= f2(z
max)

(

0
I

)

. (24)
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Since the determinant of the matrix G+Mmin is nonzero, the set of equations
has the unique solution

Fa
← = −(Gaa

← )−1Gab
←Fb

←, Fb
← = f2(z

max)
(

Gbb
←−Gba

←(Gaa
← )−1Gab

←
)−1

. (25)

Then the expression for R(zmax) follows

R(zmax) =
(

Fb
←
)−1

. (26)

From Eqs. (23) and (11) we get the equation for the reflection amplitude R←:

Y (+)
← (zmax)R←=−Y (−)

← (zmax), Y (±)
← (z)=dX(±)(z)/dz −R(z)X(±)(z). (27)

Having solved this equation, we find the reflection amplitude R←

R← = −(Y (+)
← (zmax))−1Y (−)

← (zmax). (28)

Then the desired solution Φh
← is calculated from Eqs. (11), (22), and (25)

Φb
← = X(−)(zmax) +X(+)(zmax)R←, Φa

← = F a
←

(

F b
←
)−1

Φb
←. (29)

The transmission amplitude T← is determined by solving the equation

X(−)(zmin)T← = Φh
←(zmin), T← =

(

X(−)(zmin)
)−1

Φh
←(zmin).

3.2 The Calculation Scheme for the Solution Matrix Φh = Φh
→

In this case Eq. (19) can be written as follows:

(G−Mmax)

(
Φa

→
Φb

→

)

≡
(
Gaa

→ Gab
→

Gba
→ Gbb

→

)(
Φa

→
Φb

→

)

=

(−G(zmin) 0
0 0

)(
Φa

→
Φb

→

)

,(30)

where (Mp
max)LL = ML+1−κmax,L+1−κmax = f2(z

max)R(zmax), R(zmax) =

−ı
√
2E, the solutions Φa

→ and Φb
→ ≡ Φ→(zmin) are vectors with the dimen-

sion 1 and (L−1), respectively.
The desired matrix G(zmin) = R(zmin) is expressed as

R(zmin) = (Fa
→)−1 , (31)

and the desired solution Φh
→ is calculated as

Φb
→ = Fb

→ (Fa
→)

−1
Φa

→, Φa
→ = X(+)(zmin) +X(−)(zmin)R→. (32)

Here Φa
→ ≡ Φ→(zmin) and Φb

→ are vectors with the dimension 1 and (L − 1).
The column vectors Fa

→ and Fb
→ with the dimension 1 and (L− 1) are solutions

of the sets of algebraic equations

(G−Mmax)

(
Fa

→
Fb→

)

≡
(

Gaa→ Gab→
Gba

→ Gbb
→

)(
Fa

→
Fb→

)

= −f2(z
min)

(

I
0

)

. (33)
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Fig. 3. Wave functions of the scattering problem for the first resonance value of energy
2Emax T

1 , corresponding to the full transparency, i.e., the maximal transmission coef-
ficient, for Φ→ (left-hand panels) and Φ← (central panels); the functions of resonance
metastable states with the energies 2Er

1 (right-hand panels), respectively, given in Ta-
ble 3. The upper panels refer to the system of two real Scarf potentials with V1 = 2,
V2 = 0, the lower panels refer to the system of two complex Scarf potentials with
V1 = 2, V2 = 1. Solid and dotted lines show the real and imaginary parts of the wave
functions, respectively.

Finally, we arrive at the following equations for the amplitudes of reflection R→
and transmission T→:

Y (−)
→ (zmin)R→ = −Y (+)

→ (zmin), X(+)(zmax)T→ = Φh
→(zmax). (34)

Y (±)
→ (z) =

dX(±)(z)

dz
−R(z)X(±)(z), (35)

The amplitudes of reflection R→ and transmission T→ take the form

R→ = −
(

Y (−)
→ (zmin)

)−1

Y (+)
→ (zmin), T→ =

(

X(+)(zmax)
)−1

Φh
→(zmax).

3.3 Algorithm for Calculating the Complex Eigenvalues and
Eigenfunctions of Metastable States

To calculate a complex eigenvalue and the corresponding eigenfunction a discrete
problem is solved for the equation

F(u) = 0, ⇔ {F1(u) = 0, F2(u) = 0
}

(36)

with respect to the pair of unknowns u = {Eh,Φh}, where F1(u) and F2(u) are
given by the expressions

F1(u) =
[

A− 2EhB+Mmin(E
h)−Mmax(E

h)
]

Φh, F2(u) = (Φh)TF1(u).

The transition from the approximate solution uk to the approximate solution
uk+1 is given by the formulas

2Eh
k+1 = 2Eh

k + μkτk, Φh
k+1 = Φh

k + vkτk, (37)

vk = v
(1)
k + v

(2)
k μk, Φh

k+1 = Φh
k+1((Φ

h
k+1)

TBΦh
k+1)

−1/2,
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where 2Ek=0 = 2E0, Φh
k=0 = Φ0 is the initial approximation from the vicinity of

the solution 2E = 2E∗, Φh = Φ∗. The iteration corrections v(1)
k , v(2)

k are found
by solving the inhomogeneous algebraic problems

F1(E
h
k ,v

(1)
k ) = −F1(E

h
k ,Φ

h
k) = −F1(uk), ⇒ v

(1)
k = −Φh

k , (38)

F1(E
h
k ,v

(2)
k ) =

(

B− dMmin(E
h
k )

2dEh
k

+
dMmax(E

h
k )

2dEh
k

)

Φh
k , (39)

and the correction μk to the eigenvalue Eh
k is found using the formula

μk =
F2(E

h
k ,Φ

h
k)

(Φh
k)

TBΦh
k

≡ (Φh
k)

TF1(E
h
k ,Φ

h
k)

(Φh
k)

TBΦh
k

.

that follows from Eq. (36). The expressions for nonzero elements of Mmin(E
h
k ),

Mmax(E
h
k ), and their derivatives by 2Eh

k have the form (L′ = L+ 1− κmax)

(Mmin(E
h
k ))11 = −f2(z

min)
√

−2Eh
k , (Mmax(E

h
k ))L′,L′ = f2(z

max)
√

−2Eh
k ,

d(Mmin(E
h
k ))11

d(2Eh
k )

=
f2(z

min)

2
√

−2Eh
k

,
d(Mmax(E

h
k ))L′,L′

d(2Eh
k )

= − f2(z
max)

2
√

−2Eh
k

.

The iteration step τk in the vicinity of the solution is equal to one, and the
optimal step τk is calculated using the formula [24]

τk = max (θ, δk(0)/(δk(0) + δk(1))) , θ = 0.1.

Here δk(0) = |F1(E
h
k ,Φ

h
k)|2 and δk(1) = |F1(E

h
k+1,Φ

h
k+1)|2 are the residuals and

Ek+1 и Φh
k+1 are calculated using Eqs. (37) at τk = 1. In all cases θ < τk < 1.

The iteration process (37) is terminated when the condition |F2(E
h
k ,Φ

h
k)|2 < ε

becomes valid, where ε > 0 is the predetermined accuracy of the approximate
solution calculation.

4 Benchmark Calculations

As an example, let us consider the Schrödinger equation (1) at f1(z) = f2(z) = 1
with the complex Scarf potential on the axis z ∈ (−∞,+∞):

VScarf (z) = V1cosh
−2 z + ıV2 sinh zcosh

−2 z. (40)

Problem 1. For V1 < 0 and V 2
2 ∈ R the bound state problem has a finite set of

known analytic solutions [12]. At |V2| < 1/4− V1 the eigenvalues are essentially
complex conjugate pairs:

E±
n =− (

n−(g∗+±ıg∗−−1)/2
)2
, g∗±=

√

1/4−V1 ∓ V2, n=0, 1, ...<(g∗+−1)/2. (41)

At |V2| > 1/4−V1 (or when V2 is imaginary) the eigenvalues are real:

En=− (

n−(g∗++g∗−−1)/2
)2

, n=0, 1, ...<(g∗++g∗−−1)/2. (42)
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Table 1. Eigenvalues E±
1 , E1 and their differences from the corresponding analytic val-

ues calculated using the grid (−20(N1)− 4(N2)4(N3)20) with the number N1=N2=N3

of the eighth-order finite elements (κmax=3, p=2) in each of the subintervals, depending
on N1. The last row presents the analytic values and the Runge coefficient (43).

N1 V1 = −2, V2 = −3 V1 = −2, V2 = −1

4 −0.229080666±0.559461207*I 2.8E– 4∓3.1E–4*I −0.921836165 5.4E–4+6E–14*I
8 −0.229357025±0.559142713*I –9.5E– 7±1.3E–6*I −0.922378370 –9.6E–7–6E–13*I

16 −0.229356076±0.559144037*I 3E–10±2.5E–9*I −0.922377406 –6 E–10–3E–11*I
ext −0.229356076±0.559144040*I Ru = 8.005 −0.922377405 Ru = 9.130

Table 2. Dependence of the coefficients of transmission T , reflection R, and absorption
A calculated using the grid (−20(N1)20) upon the number N1 of the eighth-order finite
elements (κmax = 3, p = 2) for V1 = 2, V2 = 2, k = 2E = 1. The last two rows present
the analytical solution and the Runge coefficient (43).

N1 Digits T→ R→ A→
20 16 0.6005954018870188 0.0007394643169153872 0.3986651337960658
40 16 0.5984475588608321 0.0007498888028424546 0.4008025523363254
80 16 0.5984514912751766 0.0007498689244704378 0.4007986398003530
80 8 0.59845983 0.00074979961 0.4007903704
ext 0.5984515130037975 0.0007498688034693990 0.4007986181927332
Ru 16 9.088 9.029 9.088

The numerical experiments using the finite-element grid Ωp
hj(z)

[zmin, zmax]

demonstrated strict correspondence to the theoretical estimations (20) for both
eigenvalues and eigenfunctions. In particular, we calculated the Runge coeffi-
cients

βl = log2

∣
∣
∣(σh

l − σ
h/2
l )/(σ

h/2
l − σ

h/4
l )

∣
∣
∣ , l = 1, 2, (43)

on three twice condensed grids with the absolute errors

σh
1 = |F (Eexact

m )− F (Eh
m)|, σh

2 = max
z∈Ωh(z)

|Φexact
m (z)− Φh

m(z)| (44)

for the eigenvalues and eigenfunctions, respectively. From Eq. (44) we obtained
the numerical assessment of the convergence order Ru ∼ 8 ÷ 9 of the proposed
numerical schemes (shown for F (E) = E in Table 1 and for F (E) = T→, R→, A→
in Table 2), the theoretical estimates being β1 = p′ + 1 and β2 = p′ + 1, in
accordance with the Remark following Eq. (20).

Problem 2. For the scattering problem with fixed real-valued energy 2E =
k2 > 0 and the complex Scarf potential (40) the coefficients of transmission |T |2
and reflection |R|2 are expressed as
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|R→|2=D→/D, |R←|2=D←/D, |T→|2=|T←|2=sinh2(2πk)/D, (45)
D→ = (2 cosh(πg+) cosh(πg−)+ cosh2(πg+)e

−2πk+cosh2(πg−)e2πk),
D← = (2 cosh(πg+) cosh(πg−)+ cosh2(πg+)e

2πk+cosh2(πg−)e−2πk),

D=sinh2(2πk)+2 cosh(2πk) cosh(πg+) cosh(πg−)+ cosh2(πg+)+ cosh2(πg−).

Here the notation g±=
√

V1 ± V2−1/4 is used. It has been proved [11] that when
the potential is complex and spatially non-symmetric, the reflectivity depends on
whether the particle is incident from the left or the right side. For the complex
potential scattering with the fixed real E > 0 the conditions (15) are modified
as follows:

|R→|2 + |T→|2 = 1− A→, |R←|2 + |T←|2 = 1−A←, T→ = T← ≡ T.

For the complex Scarf potential A→ and A← are expressed as

A→=
s+s−−s2−
1+s+s−

, A←=
s+s−−s2+
1+s+s−

, s±=
cosh(πg+)e

±πk+cosh(πg−)e∓πk

sinh(2πk)
.(46)

Here we consider only positive values A→ > 0 (or A← > 0), commonly inter-
preted as the probability of absorption [11, 13].

The Problem 1 of determining the eigenvalues Eh
m and the corresponding

eigenfunctions Φh
m(z) for Eq. (19) was solved using the built-in package Lin-

earAlgebra of the Maple system. Table 1 presents the dependence of the eigen-
values calculated using the grid (−20(N1) − 4(N2)4(N3)20) with the number
N1 = N2 = N3 of the eighth-order finite elements (κmax = 3, p = 2) in each
of the subintervals upon N1. One can see that these sequences converge to the
analytical results (41) and (42). The behaviour of the eigenfunctions Φh

m(z) is
illustrated by Fig. 1. The time of computing the auxiliary integrals is nearly 42
seconds, the time of constructing the matrices and solving the algebraic eigen-
value problem at N = 16 amounts to 4.5 seconds. Table 2 illustrates the de-
pendence of the coefficients of transmission T , reflection R, and absorption A
calculated using the grid (−20(N1)20) upon the number N1 of the eighth-order
finite elements (κmax = 3, p = 2). One can see that these sequences converge to
the analytical results (45) and (46) . The time of constructing the matrices and
solving the algebraic problem for N1 = 20 and N1 = 80 (Digits:=16) amounts to
5 and 22 seconds, respectively, and for N1 = 80 Digits:=8 this time is 5 seconds.

For a system of multiple barrier Scarf potentials separated from each other
the approximate analytic expressions for the coefficients of transmission, reflec-
tion, and absorption are also available. In particular, for a system of two Scarf
potential the analytic expressions are presented in Ref. [13]).

The scattering Problem 2 with Eqs. (21) and (30) was solved following the
algorithm of Sections 3.1 and 3.2 and using the built-in package LinearAlgebra
of the Maple system using the finite-element grid (−8(N1 = 40)8) с N1 with
Hermite eighth-order finite elements (κmax = 3, p = 2). The dependence upon
k for the coefficients of transmission, reflection, and absorption, calculated with
the absolute accuracy 0.001, in the system of two Scarf potentials with V1 = 2,
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Table 3. The first resonance energy values 2Emax T
i for the maximal transmission

coefficient (full transparency) and the eigenvalues 2Er
i of resonance metastable states.

Scarf V1 = 2 2Emax T
1 = 0.310918 2Er

1 = 0.31093782 − ı0.00069129

V2 = 0 2Emax T
2 = 1.025359 2Er

2 = 1.02413913 − ı0.01733149

V1 = 2 2Emax T
1 = 0.360240 2Er

1 = 0.36025570 − ı0.00103794

V2 = 1 2Emax T
2 = 1.036324 2Er

2 = 1.03383748 − ı0.02383030

Steps/ V1 = 2 2Emax T
1 = 0.329476 2Er

1 = 0.32921557 − ı0.00247662

wells V2 = 0 2Emax T
2 = 1.254400 2Er

2 = 1.25175270 − ı0.03351010

V1 = 2 2Emax T
1 = 0.331776 2Er

1 = 0.33292316 − ı0.00247662

V2 = 1/2 2Emax T
2 = 1.263376 2Er

2 = 1.26054650 − ı0.03359483

V2 = 1 separated by the interval d = 7/2, is presented in the upper panel of
Fig. 2. The resonance structure of the transmission coefficient is due to the
presence of metastable states submerged in the continuous spectrum.

Problem 3. The complex eigenvalues and the corresponding eigenfunctions of
the metastable states are calculated by means of the Newton iteration algorithm
of Section 3.3 using the built-in package LinearAlgebra of the Maple system. For
the initial approximation we used both the solutions of the bound-state Problem
1 and the solutions of the scattering Problem 2 with the resonance values of
energy E = Er, corresponding to the peaks of the transmission coefficient.

For the system of two real- and complex-valued Scarf potentials Fig. 3 presents
the wave functions of the scattering problem for the first resonance state, cor-
responding to the maximal transmission coefficient (full transparency), and
the functions of a resonance metastable state. The first resonance energy val-
ues 2EmaxT

i corresponding to the maximal transmission coefficient (full trans-
parency) and the eigenvalues 2Er

i of the resonance metastable states are shown
in Table 3. The calculations were performed using the grid (−8(N1 = 40)8) with
N1 Hermite eighth-order finite elements (κmax = 3, p = 2).

In a similar way the piecewise continuous potentials are considered, in par-
ticular, the systems of potential steps/wells with rectangular-shaped walls. The
latter problem can be solved analytically. The lower panel of Fig. 2 presents the
approximation of the system of two Scarf potentials with a system of potential
steps/wells. As seen from Fig. 2, with the increase of the wave number k the
transmission, reflection, and absorption coefficients differ stronger. The calcula-
tions were performed using the grid (−7(N1=10)−2−7/4(N2=3)−2−7/8(N3=3)
−2(N4=20)2(N5=3)2+7/8(N6=3)2+7/4(N7=10)7) with Ni (i = 1, ..., 7) Her-
mite seventh-order finite elements (κmax=2, p = 3). The eigenvalues for the sys-
tem of real and complex potential steps/wells (see Table 3) qualitatively agree
with the results presented in the above paragraph. The scattering wave functions
for the first two resonance energy values and for the resonance metastable states
behave qualitatively similar to those of the system of Scarf potentials, and for
this reason are not presented here.
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5 Conclusion

The presented analysis of solving the eigenvalue problem, the scattering problem,
and the calculation of resonance metastable states for the Schrödinger equation
with continuous and piecewise continuous real-valued and complex potentials
demonstrated the efficiency of the developed algorithms and programs, imple-
mented in the Maple computer algebra system. The algorithm conserves the
derivative continuity property, inherent in the desired solution, in the approx-
imating numeric solution, defined on the finite-element grid using the Hermite
interpolating elements.

Further development of the proposed algorithms and programs is targeted
at the solution of the problems that describe the scattering processes in the
quantum-dimensional semiconductor systems and smoothly irregular waveguides
with piecewise continuous real-valued and complex coefficient functions in the
partial differential equations, which require the continuity of not only the solution
itself, but also of its first derivative.

The authors thank Prof. V.P. Gerdt for collaboration and support of this work.
The work was partially supported by the Russian Foundation for Basic Research
(RFBR) (grants No. 14-01-00420 and 13-01-00668) and the Bogoliubov-Infeld
program.
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Krassovitskiy, P.: Symbolic-numeric algorithm for solving the problem of quan-
tum tunneling of a diatomic molecule through repulsive barriers. In: Gerdt, V.P.,
Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660,
pp. 472–490. Springer, Heidelberg (2014)

9. Gusev, A.A., Chuluunbaatar, O., Vinitsky, S.I., Abrashkevich, A.G.: KANTBP 3.0:
New version of a program for computing energy levels, reflection and transmission
matrices, and corresponding wave functions in the coupled-channel adiabatic ap-
proach. Comput. Phys. Commun. 185, 3341–3343 (2014)
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Fig. 1. Isolines of potential energy surface as function of two independent variables ρ̄, z̄ with shift of center of Coulomb potential
along variable z̄ on z̄c = 0.4. Left panel: Model A for values of parameters mz = 0, Z = 1 and ω̄ = 3. Right panel: Model B for
values of parameters mz = 0, Z = 1, and L̄ = 1.

+ U(z, ρ)
]
ψmz(z, ρ) = Eψmz (z, ρ).

Here, E is the energy of the discrete spectrum,
U(z, ρ) is the quantum well potential taken as the
sum of the confining potential Vconf(z), depending
on the longitudinal coordinate z, and the Coulomb
potential (see Fig. 1)

U(z, ρ) = Vconf(z) − Ze2

εd

√
(z − zc)2 + ρ2

,

where m∗ = βme is the reduced mass, Z is the re-
duced Coulomb charge, zc is the shift of the Coulomb
center along z, εd is the relative dielectric constant.
The confining potential is chosen as the potential
VA(z) of a harmonic oscillator having the frequency
ω (Model A):

Vconf(z) = VA(z) =
m∗ω2

2
z2

or as an infinitely deep potential well with vertical wall
VB(z) (Model B):

Vconf(z) = VB(z) =

{
0, |z| < L/2,
+∞, |z| ≥ L/2.

At a fixed value of the magnetic quantum number
mz the wave functions ψmz (z, ρ) ≡ ψmz i(z, ρ) ∈
W 1

2 (Ω) [10] of the discrete spectrum satisfy the
normalization condition

〈ψmz i(z, ρ)|ψmzj(z, ρ)〉Ωz̄ (2)

=

+∞∫
0

+∞∫
−∞

ψmz i(z, ρ)ψmzj(z, ρ)ρdρdz = δij .

Let us introduce the new independent variables
ρ̄ = ρ/a∗0, z̄ = z/a∗0 and the notations z̄c = zc/a

∗
0,

2Ē = E/R∗
0, where a∗0 = (εd/β)a0 and R∗

0 ≡ Ry∗ =
m∗e∗4/(2�

2) = Ryβ/(ε2
d) are the reduced atomic

units, m∗ = βme is the effective mass, e∗ = e/
√

εd

is the effective charge, a0 = �
2/(mee

2), ω =
γ�/(meβL2), L = a∗0L̄, ω̄ = γ/L̄2, ω = �/(a∗0

2m∗)ω̄,
Ry = mee

4/(2�
2).

In the reduced atomic units the Schrödinger equa-
tion, describing the Models A and B, takes the form[

− 1
ρ̄

∂

∂ρ̄
ρ̄

∂

∂ρ̄
+

m2
z

ρ̄2
− ∂2

∂z̄2
+ ω̄2(z̄)2 (3)

− 2Z√
(z̄ − z̄c)2 + ρ̄2

− 2Ē
]
ψmz(z̄, ρ̄) = 0,

[
− 1

ρ̄

∂

∂ρ̄
ρ̄

∂

∂ρ̄
+

m2
z

ρ̄2
− ∂2

∂z̄2
(4)

− 2Z√
(z̄ − z̄c)2 + ρ̄2

− 2Ē
]
ψmz(z̄, ρ̄) = 0,

where the wave function ψmz(z̄, ρ̄) ≡ ψmzi(z̄, ρ̄; z̄c) at
fixed mz obeys the conditions at the boundary of the
domain Ωz̄,ρ̄ = Ω(z̄, ρ̄)

lim
ρ̄→0

ρ̄
∂ψmz (z̄, ρ̄)

∂ρ̄
= 0, if m = 0, (5)

and ψmz(z̄, 0) = 0, if m 	= 0,
lim

z̄→±∞
ψmz (z̄, ρ̄) = 0 →← ψmz (z̄min, ρ̄) = 0, (6)

ψmz (z̄max, ρ̄) = 0,

ψmz (z̄min = −L̄/2, ρ̄) = 0, (7)

ψmz(z̄max = L̄/2, ρ̄) = 0.
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The wave functions of the discrete spectrum at large
ρ̄ = ρ̄max � 1 satisfy the Dirichlet boundary condi-
tion following the asymptotic form of the solution

lim
ρ̄→+∞

ρ̄ψmz (z̄, ρ̄) = 0 → ψmz (z̄, ρ̄max) = 0 (8)

and the normalization condition

(a∗0)
3

z̄max∫
z̄min

ρ̄max∫
0

ψmz i(z̄, ρ̄)ψmzj(z̄, ρ̄)ρ̄dρ̄dz̄ = δij . (9)

The solution of the problem (1), (2) is sought in
the form of the expansion with respect to the set of
single-parameter functions Bj(z̄; ρ̄):

ψmz i(z̄, ρ̄) =
jmax∑
j=1

Bj(z̄; ρ̄)χji(ρ̄). (10)

Here the vector functions χji(ρ̄) are to be found,
while the basis functions Bj(z̄; ρ̄) are defined as the
solutions of the boundary-value problem[

− ∂2

∂z̄2
+ ω̄2z̄2 − 2Z√

(z̄ − z̄c)2 + ρ̄2

]
(11)

× Bj(z̄; ρ̄) = Ēj(ρ̄)Bj(z̄; ρ̄),[
− ∂2

∂z̄2
− 2Z√

(z̄ − z̄c)2 + ρ̄2

]
Bj(z̄; ρ̄) (12)

= Ēj(ρ̄)Bj(z̄; ρ̄).

The eigenfunctions Bj(z̄; ρ̄) at each fixed value of
the parameter ρ̄ ∈ R1

+, obey the Dirichlet boundary
conditions with respect to the variable z̄:

Bj(z̄; ρ̄)|z̄=z̄min = 0, Bj(z̄; ρ̄)|z̄=z̄max = 0, (13)

and satisfy the orthogonality and normalization con-
ditions in the interval Ωz̄ = [z̄min, z̄max]:

〈Bi(z̄; ρ̄)|Bj(z̄; ρ̄)〉Ω (14)

= a∗0

z̄max∫
z̄min

Bi(z̄; ρ̄)Bj(z̄; ρ̄)dz̄ = δij .

Note, that due to the singular behavior of the one-
dimensional Coulomb potential in the vicinity of z̄ =
z̄c the eigenfunctions Bj(z̄; ρ̄) ∈ Fρ̄ ∼ L2[z̄min, z̄max]
of the problem (11)–(14) at ρ̄ = 0 have only gener-
alized partial derivatives of the first order, i.e., belong

to Sobolev space Bj(z̄; ρ̄) ∈
0

W 1
2[z̄min, z̄max] [10, 11].

The Model A is considered in configuration space
R3 with an additional oscillator potential providing
a confinement along z-axis and is known in literature
as parabolic quantum well [1], while the Model
B is considered explicitly in quasi-2D space R2 ⊗

[−L̄/2, L̄/2], and is known in literature as quantum
well [2, 9]. As one can see, potential surface of the
Model A can be considered as some approximation
of potential surface of the Model B by means of
appropriate variation of parameters ω̄ and L̄, and
z̄c ∈ (−L̄/2, L̄/2) (see Fig. 1). In limits ω̄ → ∞ and
L̄ → 0 both models transfer to exact solvable model of
planar hydrogen-like atom with known eigenfunction
and eigenenergies En/R∗

0 = −Z2/(n + 1/2)2, n =
0, 1, 2, ... [12].

At ρ̄ → +∞ the eigenfunctions Bj(z̄; ρ̄) in the

domain Ωas :
z̄2

ρ̄2
� 1 for Model B are expressed via

the eigenfunctions of a one-dimensional oscillator

B
(0)
j (z̄; ρ̄ → ∞) ≡ B

(0)
j (z̄) depending on the scaled

variable ξ: z̄ = aω̄ξ, where aω̄ = (ω̄)−1/2, normalized
by the condition (14):

B
(0)
j (z̄) =

1
(a∗0)1/2(aω̄)1/2π1/4(2nn!)1/2

(15)

× exp

(
−1

2

(
z̄

aω̄

)2
)

Hn

(
z̄

aω̄

)
,

where Hn are the Hermite polynomials, and the
eigenvalues Ēj(ρ̄ → ∞) = Ēth

j are expressed via the
corresponding eigenvalues of the energy of one-
dimensional harmonic oscillator Ēth

j = ω̄(2j − 1) =
ω̄(2n + 1), j = n + 1 = 1, 2, . . . , jmax (n = j − 1 =
0, 1, . . . , jmax − 1). This follows from the fact that at
ρ̄ → ∞ the correction ΔĒj(ρ̄ → ∞) to the eigen-
values Ēth

j , calculated using the asymptotic basis
functions, has the order of smallness

ΔĒj(ρ̄ → ∞) = −2Z
ρ̄

z̄max∫
z̄min

B
(0)
j (z̄; ρ̄ → ∞)

× 1√
1 + (z̄−z̄c)2

ρ̄2

B
(0)
j (z̄; ρ̄ → ∞)dz̄

= −2Z
ρ̄

+ O(ρ̄−3).

For Model B at ρ̄ → +∞ the eigenfunctions Bj(z̄; ρ̄)

in the domain Ωas :
z̄2

ρ̄2
� 1 are expressed via the

eigenfunctions of the one-dimensional rectangular

potential well B
(0)
j (z̄; ρ̄ → ∞) ≡ B

(0)
j (z̄), normalized

by the condition (14):

B
(0)
j (z̄) =

1
(a∗0)1/2

√
2
L̄

⎧⎪⎨
⎪⎩

sin
πj

L
z̄, even j ≥ 2,

cos
πj

L
z̄, odd j ≥ 1,
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while the eigenvalues Ēj(ρ̄ → ∞) = Ēth
j are ex-

pressed via the corresponding eigenvalues of the
energy of a particle in a one-dimensional rectangular
potential well Ēth

j = π2j2/L̄2, j = 1, 2, . . . , jmax.

Under the variable change z̄′ = z̄ − z̄c the eigen-
value problem (11)–(14) takes the form[

− ∂2

∂z̄′2
+ ω̄2(z̄′ + z̄c)2 −

2Z√
z̄′2 + ρ̄2

]
(16)

× Φj(z̄′; ρ̄) = Ēj(ρ̄)Φj(z̄′; ρ̄),[
− ∂2

∂z̄′2
− 2Z√

z̄′2 + ρ̄2

]
Φj(z̄′; ρ̄) (17)

= Ēj(ρ̄)Φj(z̄′; ρ̄).

The eigenfunctions

Φj(z̄′; ρ̄) = exp(−iz̄cp̄z̄)Bj(z̄; ρ̄)

= exp
(

z̄c
d

dz̄

)
Bj(z̄; ρ̄)

form a complete orthogonal basis, obey the symmetry
conditions

Bj(z̄; ρ̄, z̄c) = exp(iπνmzq)Bj(−z̄; ρ̄,−z̄c)

and

Ēj(ρ̄, z̄c) = Ēj(ρ̄,−z̄c),

where νmzq is the real phase, q is the number of zeros
in z̄ ∈ R for Model A and z̄ ∈ [z̄min, z̄max] for Model B,
and the Dirichlet boundary conditions with respect to
the variable z̄′ at each fixed value of the parameter
ρ̄ ∈ R1

+:

Φj(z̄′min; ρ̄) = 0, Φj(z̄′max; ρ̄) = 0, (18)

z̄′min = z̄min − z̄c, z̄′max = z̄max − z̄c.

They also satisfy the orthonormality conditions
in the interval Ω′

z̄ = [z̄′min = z̄min − z̄c, z̄
′
max = z̄max −

z̄c]:

〈Φi(z̄′; ρ̄)|Φj(z̄′; ρ̄)〉Ω′ (19)

= a∗0

z̄′max∫
z̄′min

Φi(z̄′; ρ̄)Φj(z̄′; ρ̄)dz̄′ = δij .

By means of the variation of the correspond-
ing Rayleigh–Ritz functional [7] using the expan-
sion (10), Eq. (1) is reduced to the set of jmax ordinary
differential equations of the second order with respect
to the unknown functions χ(ρ̄) ≡ χ(i)(ρ̄):(

− 1
ρ̄d−1

I
d

dρ̄
ρ̄d−1 d

dρ̄
+ V(ρ̄) + Q(ρ̄)

d

dρ̄
(20)

+
1

ρ̄d−1

dρ̄d−1Q(ρ̄)
dρ̄

− 2ĒI
)

χ(ρ̄) = 0.

Here, d = 2 is the dimensionality of the space, I,
V(ρ̄), and Q(ρ̄) are jmax × jmax matrices, the ele-
ments of which are defined by the relations

Vij(ρ̄) = Hij(ρ̄) +
Ēi(ρ̄) + Ēj(ρ̄)

2
δij (21)

+
m2

z

ρ̄2
δij , Iij = δij ,

Hij(ρ̄) = Hji(ρ̄) =
〈

∂Bi(z̄′; ρ̄)
∂ρ̄

∣∣∣∣∂Bj(z̄′; ρ̄)
∂ρ̄

〉
Ωz̄′

,

Qij(ρ̄) = −Qji(ρ̄) = −
〈

Bi(z̄′; ρ̄)
∣∣∣∣∂Bj(z̄′; ρ̄)

∂ρ̄

〉
Ωz̄′

.

Due to (5)–(9) the discrete spectrum solutions obey
the asymptotic boundary and orthonormality condi-
tions

lim
ρ̄→0

ρ̄d−1 dχ(ρ̄)
dρ̄

= 0, if mz = 0, (22)

and χ(0) = 0, if mz 	= 0,

lim
ρ̄→∞

ρ̄d−1χ(i)(ρ̄) = 0 → χ(i)(ρ̄max) = 0, (23)

(a∗0)
d

ρ̄max∫
0

ρ̄d−1
(
χ(i)(ρ̄)

)T
χ(j)(ρ̄)dρ̄ = δij . (24)

Since the equation (16) (or (17)) is linear and the
boundary conditions (18) are homogeneous, the sign
of the phase of the basis functions is arbitrary. Hence,
the sign of the phase at the point z̄′min was fixed by
imposing the condition

∂

∂z̄′
Φj(z̄′; ρ̄)

∣∣∣∣
z̄′=z̄′max

> 0,

which is necessary for the calculation of integrals (21),
including the basis functions and their derivatives
with respect to the parameter ρ̄, i.e., the variables
coefficients in Eq. (20).

3. ADIABATIC REPRESENTATION
FOR THE PARABOLIC QUANTUM WELL

IN SPHERICAL COORDINATES

Using the reduced atomic units the Schrödinger
equation (1) in the spherical coordinates (r̄, η =
cos θ, φ) takes the form(

− 1
r̄2

∂

∂r̄
r̄2 ∂

∂r̄
+

1
r̄2

Â(c) − 2Z
r̄

)
(25)

× ψmz (r̄, η) = 2Ēψmz(r̄, η).
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Here Â(c) ≡ Â(c, b) = Â(0)(c) + c2 + f , Â(0)(c) is
the operator of modified angular functions [13] that at
b = 0 corresponds to prolate spheroidal functions [14]

Â(0)(c) = − ∂

∂η
(1 − η2)

∂

∂η
(26)

+
m2

z

1 − η2
+ c2(η2 − 1) − bη,

where c = ω̄r̄2, b = −2ω̄2z̄cr̄
3, and f = (ω̄z̄cr̄)2 are

the parameter depending on ω̄, zc, and r̄ ∈ R1
+.

The wave functions ψmz (r̄, η, b) ≡ ψmz i(r̄, η, b) ≡
ψmz i(r̄, η, z̄c) at fixed mz obey the conditions at the
boundary of the domain Ωr̄,η = Ω(r̄, η)

lim
η→±1

(1 − η2)
∂ψmz (r̄, η)

∂η
= 0, if mz = 0,

and ψmz (r̄,±1) = 0, if mz 	= 0,

lim
r̄→0

r̄2 ∂ψmz (r̄, η)
∂r̄

= 0.

At large r̄ = r̄max � 1 the discrete-spectrum wave
functions obey the Dirichlet boundary condition that
follows from the asymptotic behavior of the solution

lim
r̄→+∞

r̄2ψmz(r̄, η) = 0

→ ψmz(r̄max, η) = 0,

and also the orthonormality condition

(a∗0)
3

r̄max∫
0

1∫
−1

ψmz i(r̄, η) (27)

× ψmzj(r̄, η)r̄2drdη = δij .

The solution of (25)–(27) at fixed mz is sought in
the form of the expansion with respect to single-
parameter functions Φj(η; r̄) ≡ Φmzj(η; r̄):

ψmzi(r̄, η) =
jmax∑
j=1

Φmzj(η; r̄)χji(r̄). (28)

Here the vector functions χji(r̄) are to be found, while
the basis functions Φj(η; r̄) ∈ Fρ̄ ∼ L2[−1, 1] are de-
fined as a set of regular solutions of the eigenvalue
problem:

Â(c)Φmzj(η; r̄) = Ēj(r̄)Φmzj(η; r̄). (29)

The eigenfunctions Φmzj(η; r̄) ≡ Φmzj(r̄, η, zc) at
fixed mz obey the symmetry condition Φmzj(r̄, η,
z̄c) = exp(iπνmzq)Φmzj(r̄,−η,−z̄c), where νmzq is
the real phase, q is the number of zeros in η ∈ [−1, 1],
Ēj(r̄, z̄c) = Ēj(r̄,−z̄c), and the boundary conditions
with respect to the variable η, analogous to those

imposed on the wave function ψj(η, r̄) at each fixed
value of the parameter r̄ ∈ R1

+

lim
η→±1

(1 − η2)
∂Φmzj(η; r̄)

∂η
= 0, if mz = 0, (30)

and Φmzj(r̄,±1) = 0, if mz 	= 0,

as well as the orthonormality conditions in the interval
Ωη = [−1, 1]:

〈Φmzi(η; r̄)|Φmzj(η; r̄)〉Ωη (31)

=

1∫
−1

Φmzi(η; r̄)Φmzj(η; r̄)dη = δij .

By means of the variation of the corresponding
Rayleigh–Ritz functional [7, 8] using the expan-
sion (28) Eq. (25) is reduced to the set of jmax ordinary
differential equations of the second order with respect
to the unknown functions χ(r̄) ≡ χ(i)(r̄):(

− 1
r̄d−1

I
d

dr̄
r̄d−1 d

dr̄
+

U(r̄)
r̄2

+ Q(r̄)
d

dr̄
(32)

+
1

r̄d−1

dr̄d−1Q(r̄)
dr̄

− 2ĒI
)

χ(r̄) = 0.

Here, d = 3 is the dimensionality of the space, I,
U(r̄), and Q(r̄) are jmax × jmax matrices with the
elements defined by the relations similar to (21) with
V(r̄) replaced with U(r̄), the Coulomb potential
−2Zr̄δij added and with additional division by r̄2 due
to the definition of Â(c):

Uij(r̄) = r̄2Hij(r̄) +
Ēi(r̄) + Ēj(r̄)

2
δij (33)

− 2Zr̄δij , Iij = δij ,

Hij(r̄) = Hji(r̄) =
〈

∂Φi(η; r̄)
∂r̄

∣∣∣∣∂Φj(η; r̄)
∂r̄

〉
Ωη

,

Qij(r̄) = −Qji(r̄) = −
〈

Φi(η; r̄)
∣∣∣∣∂Φj(η; r̄)

∂r̄

〉
Ωη

.

Note, that Eq. (29) is linear and the boundary con-
ditions (31) are homogeneous, the sign of the phase of
the basis functions Φj(η; r̄) is arbitrary. Hence, we fix
the phase sign at the point η = +1 by the condition

∂

∂η
Φmzj(η; r̄)

∣∣∣∣
η=+1

> 0,

which is necessary to calculate the integrals (33) in-
volving the basis functions and their derivatives with
respect to the parameter r̄, i.e., the variable coeffi-
cients in Eq. (32).
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Table 1. Dependence of the calculated binding energy
EB/R∗

0 = −(2Ē(z̄c) − Ēi(∞)) of the parabolic quantum
well upon the number of the basis functions jmax, compared
with the energy obtained by means of the crude adiabatic
approximation (C) and variation calculation (V) from [1]

jmax z̄c = 0 z̄c = ±0.2 z̄c = ±0.3 z̄c = ±0.5

Cylindrical coordinates

C 1.86807 1.80379 1.72781 1.51517

1 1.53006 1.44930 1.35848 1.13252

4 1.71971 1.67525 1.60682 1.40688

8 1.77801 1.71637 1.63800 1.42465

12 1.79548 1.72927 1.64846 1.43391

16 1.80389 1.73567 1.65399 1.43763

20 1.80878 1.73948 1.65764 1.43958

24 1.81194 1.74201 1.66020 1.44081

V 1.72040 1.63506 1.54708 1.32406

Spherical coordinates

C 2.04328 2.00216 1.94853 1.77774

1 1.75493 1.62950 1.50485 1.23289

2 1.75493 1.69037 1.61395 1.40265

4 1.82171 1.75050 1.66764 1.44490

6 1.82758 1.75567 1.67215 1.44803

8 1.82773 1.75581 1.67228 1.44813

10 1.82774 1.75582 1.67229 1.44814

The discrete-spectrum solutions obey the asymp-
totic boundary conditions and the orthonormality
condition

lim
r̄→0

r̄d−1 dχ(r̄)
dr̄

= 0, (34)

lim
r̄→∞

r̄d−1χ(i)(r̄) = 0 → χ(i)(ρmax) = 0,

(a∗0)
d

r̄max∫
0

r̄d−1
(
χ(i)(r̄)

)T
χ(j)(r̄)dr̄ = δij . (35)

4. ANALYSIS AND DISCUSSION
OF NUMERICAL RESULTS

Solving the boundary problems (20)–(24)
and (32)–(35), the eigenfunctions χ(ρ̄) and χ(r̄), as
well as the corresponding energy eigenvalues 2Ē are
calculated, in terms of which the total energy E in re-
duced Rydbergs E/R∗

0 = 2Ē, the relative energy ε̄i =
2Ē − Ēi(∞) with respect to the threshold Ēi(∞) =

Table 2. Dependence of the calculated binding energy
EB/R∗

0 = −(2Ē(z̄c) − Ēi(∞)) of the rectangular quan-
tum well with infinitely high walls upon the number of the
basis functions jmax, compared with the energy obtained
by means of the crude adiabatic approximation (C) and
variation calculation (V) from [16]

jmax z̄c = 0 z̄c = ±0.1 z̄c = ±0.2 z̄c = ±0.3 z̄c = ±0.4

C 2.38323 2.30772 2.10042 1.81957 1.55033

1 2.13116 2.02095 1.75055 1.46353 1.28534

2 2.13117 2.16691 2.02381 1.76819 1.51999

3 2.32502 2.23095 2.02692 1.78287 1.52827

4 2.32502 2.26106 2.04603 1.78449 1.52974

8 2.35034 2.27160 2.05932 1.78818 1.53035

12 2.35281 2.27363 2.06042 1.78852 1.53038

16 2.35338 2.27409 2.06065 1.78863 1.53041

20 2.35356 2.27422 2.06074 1.78869 1.53042

24 2.35366 2.27430 2.06079 1.78871 1.53042

V 2.31025 2.21933 1.99129 1.72052 1.48128

Ēth
i and the binding energy ε̄B

i = −(2Ē − Ēi(∞))
or EB/R∗

0 = −(2Ē(z̄c) − Ēi(∞)) are expressed. For
GaAs we use the following parameters: a∗0 = 102 Å,
R∗

0 = 5.2 meV, β = 0.067, εd = 13.18, L = 102 Å,
γ = 3.

Model A. The calculations for the parabolic quan-
tum well were carried out with Z = 1,
ω̄ = 3, mz = 0, and z̄c ∈ [−0.5, 0.5] using the soft-
ware package, based on the program KANTBP [7],
implementing the finite-element method for solving
the boundary problems (11), (13), (14)
(or (16), (18), (19)) and (29)–(31) on the grids Ωz̄ =
{−12(70) − 5(100) − 1(200)1(100)5(70)12} and
Ωη = {−1(800)1} with the Lagrange elements of
the order p = 4 between the nodes, respectively (the
number of elements given in parentheses). For the
problems (20)–(24) and (32)–(35) we used the finite-
element grid Ωρ̄ = Ωr̄ = {0(200)1(200)5(200)100}
with the Lagrange elements of the order p = 4 be-
tween the nodes, ρ̄ = ρ̄max.

As follows from the theorem [15], for the ground
state the adiabatic approximation (jmax = 1) gives
the upper bound for the energy, while in the so-
called crude adiabatic approximation, when the di-
agonal adiabatic positive correction Hjj(ρ̄) = 0 is
neglected, one gets the lower bound for the energy.
The corresponding inverse estimators for the binding
energy EB/R∗

0 in cylindrical and spherical coordi-
nates are presented in Table 1. From this table it fol-
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Fig. 2. Isolines of ground-state wave function of Model A for values of parameters mz = 0, Z = 1, and ω̄ = 3. Left panel:
z̄c = 0, right panel: z̄c = 0.4.
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Fig. 3. Isolines of ground-state wave function of Model B for values of parameters mz = 0, Z = 1, and L̄ = 1. Left panel:
z̄c = 0, right panel: z̄c = 0.4.

lows that these values are upper and lower estimates
of the binding energy from the variational calcula-
tion [1]. The corresponding inverse lower estimators
of the binding energy for increasing number of single-
parameter basis functions jmax allow one to analyze
the convergence rate of the method used for the solu-
tion of the boundary problem in the two-dimensional
domain (for example, see Fig. 2). As seen from table 1,
the lower estimate of the binding energy, calculated
in the cylindrical coordinates at jmax = 4, is closest
to the variational calculation. This is because in the
variational calculation at all values of ρ̄ ∈ R1

+ the
function B

(0)
1 of the ground state of the oscillator

with the threshold energy Ēth
1 = ω̄, corresponding to

the single-parameter basis function B1(z̄; ρ̄ → ∞) at
ρ̄ → ∞, was used. From Table 1 it is seen that the
rate of convergence with respect to the basis func-
tions’ number in the spherical parameterization (29)
is considerably higher than that in the cylindrical
one (11), (16). This is due to the singular behavior

of the Coulomb potential, which for the choice of the
basis in the cylindrical parameterization leads to the
solution of the problem in the class of generalized
functions belonging to the Sobolev space W 1

2 .
Model B. The calculations for the rectangular

quantum well with infinitely high walls were carried
out with Z = 1, L̄ = 1, mz = 0 and
z̄c ∈ (−0.5, 0.5) using the above-mentioned software
package implementing the finite-element method
for solving the boundary problems (12), (13), (14)
(or (17), (18), (19)) on the grid
Ωz̄ = {−0.5(200)0.25(200)0.25(200)0.5} with the
Lagrange elements of the order p = 4 between the
nodes (the number of elements given in parenthe-
ses). For the problem (20)–(24) we used the finite-
element grid Ωρ̄ = Ωr̄ = {0(50)1(50)5(50)100} with
the Lagrange elements of the order p = 4 between the
nodes. ρ̄ = ρ̄max.

The corresponding inverse estimators of the bind-
ing energy EB/R∗

0, calculated in the cylindrical co-

PHYSICS OF ATOMIC NUCLEI Vol. 73 No. 2 2010



338 GUSEV et al.

ordinates, are presented in Table 2. From this ta-
ble it follows that these values are upper and lower
estimates of the binding energy from the variational
calculations, carried out in [2]. The corresponding
inverse lower estimates of the binding energy for in-
creasing number jmax of single-parameter basis func-
tions alow one to analyze numerically the rate of
convergence of the method of solving the boundary
problem in the two-dimensional domain (for example,
see Fig. 3). As seen from Table 2, the lower estimate of
the binding energy, calculated in the cylindrical coor-
dinates at jmax = 4 is closest to the variational calcu-
lation. This is because in the variational calculation at
all values of ρ̄ ∈ R1

+ the function B
(0)
1 of the ground

state of the rectangular well with the threshold energy
Ēth

1 = π2/L2, corresponding to the single-parameter
basis function B1(z̄; ρ̄ → ∞) at ρ̄ → ∞ was used.

5. CONCLUSION

We presented the scheme of the solution of the
boundary problem with discrete spectrum for a
parabolic quantum well and a rectangular quantum
well with infinitely high walls in the adiabatic repre-
sentation. The upper and lower bounds for the energy
of the ground state of the systems are obtained under
the conditions of the shift of the Coulomb center in a
given range of the parameter with respect to earlier
variational estimates. It is shown that the rate of
convergence depends significantly on the appropriate
choice of the adiabatic basis parameterization taking
the specific features of the considered problem into
account. The presented results allow one to estimate
the efficiency of the method and the software package
developed for the investigation of the semiconductor
nanostructure models. Further development of the
method and the software package is planned in
relation with solving the quasi-2D and quasi-1D
boundary problems with both discrete and continuous
spectrum, which are necessary for calculating the
optical transition rates and transport characteristics
in the models like quantum wells and quantum wires.

The work was carried out in the framework of the
Collaboration Protocol JINR-YeSU 3720 of May 26,
2006 and the National Program of the Republic of Ar-
menia “Semiconductor micro- and nanoelectronics”
and supported partially by RFBR (grants nos. 07-
01-00660 and 08-01-00604) and CRDF–NFSAT
(grant no. UC-06/07).
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Abstract—A model for quantum tunnelling of a cluster comprised of A identical particles, interacting
via oscillator-type potential, through short-range repulsive barrier potentials is introduced for the first
time in symmetrized-coordinate representation and numerically studied in the s-wave approximation. A
constructive method for symmetrizing or antisymmetrizing the (A − 1)-dimensional harmonic oscillator
basis functions in the new symmetrized coordinates with respect to permutations of coordinates of A
identical particles is described. The effect of quantum transparency, manifesting itself in nonmonotonic
resonance-type dependence of the transmission coefficient upon the energy of the particles, their number
A = 2, 3, 4 and the type of their symmetry, is analyzed. It is shown that the total transmission coefficient
demonstrates the resonance behavior due to the existence of barrier quasi-stationary states, embedded in
the continuum.
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1. INTRODUCTION

During a decade the mechanism of quantum pen-
etration of two bound particles through repulsive bar-
riers, manifested in [1], attracts attention from both
theoretical and experimental viewpoints in relation
with such problems as near-surface quantum diffu-
sion of molecules [2–5], fragmentation in producing
very neutron-rich light nuclei [6–9], and heavy-ion
collisions through multidimensional barriers [10–16].
In a general formulation of the scattering problem
for ions having different masses a benchmark model
with long-range potentials was proposed in [17, 18].
The generalization of the two-particle model over a
quantum system of A identical particles is of great
importance for appropriate description of molecular
and heavy-ion collisions as well as a microscopic
study of tetrahedral-symmetric nuclei [19, 20]. The
aim of this paper is to present a suitable formula-
tion of the problem stated above and calculation
methods for solving it.

We consider the penetration of A identical quan-
tum particles, coupled by short-range oscillator-like

∗The text was submitted by the authors in English.
1)Joint Institute for Nuclear Research, Dubna, Russia.
2) National University of Mongolia, Ulaanbaatar.
3)Saratov State University, Russia.
4)Department of Mathematical Physics, Institute of Physics,

University of Maria Curie–Skłodowska, Lublin, Poland.
5)Institute of Nuclear Physics, Almaty, Kazakhstan.
**E-mail: gooseff@jinr.ru

interaction, through a repulsive potential barrier. We
assume that the spin part of the wave function is
known, so that only the spatial part of the wave
function is to be considered, which may be symmetric
or antisymmetric with respect to a permutation of
A identical particles [21–24]. The initial problem is
reduced to penetration of a composite system with
the internal degrees of freedom, describing an (A −
1) × d-dimensional oscillator, and the external de-
grees of freedom, describing the center-of-mass mo-
tion of A particles in d-dimensional Euclidean space.
For simplicity, we restrict our consideration to the
so-called s-wave approximation [1], corresponding
to one-dimensional Euclidean space (d = 1). It is
shown that the reduction is provided by using ap-
propriately chosen symmetrized coordinates, rather
than the conventional Jacoby coordinates. The main
goal of introducing the symmetrized coordinates is
to provide invariance of the Hamiltonian with respect
to permutations of A identical particles. This allows
construction not only of basis functions, symmetric or
antisymmetric under permutations of A − 1 relative
coordinates, but also of basis functions, symmetric
(S) or antisymmetric (A) under permutations of A
Cartesian coordinates. We refer the expansion of the
solution in the basis of such type as symmetrized
coordinate representation (SCR).

We seek for the solution in the form of Galerkin
or Kantorovich expansions [25] with unknown co-
efficients having the form of matrix functions of the
center-of-mass variables in the SCR. As a result, the
problem is reduced to a boundary-value problem for a

389
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system of ordinary second-order differential equations
with respect to the center-of-mass variable. Conven-
tional asymptotic boundary conditions are imposed
on the desired matrix solution. The results of calcu-
lations are analyzed with particular emphasis on the
effect of quantum transparency that manifests itself
as nonmonotonic energy dependence of the trans-
mission coefficient due to resonance tunnelling of the
bound particles in S (A) states through the repulsive
potential barriers.

The paper is organized as follows. In Section 2
we present the statement of the problem in con-
ventional Jacobi and symmetrized coordinates. In
Section 3 we introduce the SCR of the solution of
the considered problem. In Section 4 we formu-
late the boundary-value problem for close-coupling
equations in Galerkin and Kantorovich forms using
conventional and parametric SCRs, respectively. In
Section 5 we analyze the results of a numerical ex-
periment on resonance transmission of a few coupled
identical particles in S (A) states. In Conclusion we
sum up the results and discuss briefly the perspectives
of application of the developed approach.

2. THE STATEMENT OF THE PROBLEM

The problem of penetration of A identical quantum
particles with the mass m and a set of the Cartesian
coordinates xi ∈ Rd in d-dimensional Euclidean
space, considered as vector x̃ = (x̃1, . . . , x̃A) ∈ RA×d

in A × d-dimensional configuration space, coupled
by the pair potential Ṽ pair(x̃ij) of relative coordi-
nates, x̃ij = x̃i − x̃j , similar to a harmonic oscillator

Ṽ hosc(x̃ij) = mω2

2 (x̃ij)2 with frequency ω, through
the repulsive potential barriers Ṽ (x̃i) is described by
the Schrödinger equation⎡

⎣− �
2

2m

A∑
i=1

∂2

∂x̃2
i

+
A∑

i,j=1;i<j

Ṽ pair(x̃ij)

+
A∑

i=1

Ṽ (x̃i) − Ẽ

]
Ψ̃(x̃1, . . . , x̃A) = 0,

where Ẽ is the total energy of the system of A particles
and P̃ 2 = 2mẼ/�

2, P̃ is the total momentum of the
system of A particles. Using the oscillator units

xosc =
√

�/(mω
√

A), posc =
√

(mω
√

A)/� = x−1
osc,

and Eosc = �ω
√

A/2 to introduce the dimension-
less coordinates xi = x̃i/xosc, xij = x̃ij/xosc =
xi − xj , E = Ẽ/Eosc = P 2, P = P̃ /posc = P̃ xosc,
V pair(xij) = Ṽ pair(xijxosc)/Eosc, V hosc(xij) =
Ṽ hosc(xijxosc)/Eosc = 1

A(xij)2, and V (xi) =
Ṽ (xixosc)/Eosc, one can rewrite the above equation
in the form⎡

⎣−
A∑

i=1

∂2

∂x2
i

+
A∑

i,j=1;i<j

1
A

(xij)2 (1)

+
A∑

i,j=1;i<j

Upair(xij) +
A∑

i=1

V (xi) − E

⎤
⎦

× Ψ(x1, . . . , xA) = 0,

where Upair(xij) = V pair(xij) − V hosc(xij), i.e., if
V pair(xij) = V hosc(xij), then Upair(xij) = 0.

Our goal is to find the solutions Ψ(x1, . . . , xA)
of Eq. (1), totally symmetric (or antisymmetric) with
respect to the permutations of A particles that belong
to the permutation group Sn. The permutation of
particles is nothing but a permutation of the Cartesian
coordinates xi ↔ xj , i, j = 1, . . . , A.

First, we introduce the Jacobi coordinates follow-
ing one of the possible definitions [7]

y0 =
1√
A

(
A∑

t=1

xt

)
, (2)

ys =
1√

s(s + 1)

(
s∑

t=1

xt − sxs+1

)
,

s = 1, . . . , A − 1.

In the matrix form Eqs. (2) read as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0

y1

y2

y3

...

yA−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= J

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

...

xA−1

xA

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/
√

A 1/
√

A 1/
√

A 1/
√

A · · · 1/
√

A

1/
√

2 −1/
√

2 0 0 · · · 0

1/
√

6 1/
√

6 −2/
√

6 0 · · · 0

1/
√

12 1/
√

12 1/
√

12 −3/
√

12 · · · 0
...

...
...

...
. . .

...
1√

(A−1)A

1√
(A−1)A

1√
(A−1)A

1√
(A−1)A

· · · − A−1√
(A−1)A

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The inverse coordinate transformation is imple-
mented using the transposed matrix J−1 = JT , i.e.
J is an orthogonal matrix with pairs of complex
conjugate eigenvalues, the absolute values of which
are equal to one.

The Jacobi coordinates have the property∑A−1
i=0 (yi · yi) =

∑A
i=1(xi · xi) = r2. Consequently,

A∑
i,j=1

(xij)2 = 2A
A−1∑
i=0

(yi)2

− 2

(
A∑

i=1

xi

)2

= 2A
A−1∑
i=1

(yi)2,

so that Eq. (1) takes the form[
− ∂2

∂y2
0

+
A−1∑
i=1

(
− ∂2

∂y2
i

+ (yi)2
)

+ U(y0, . . . , yA−1) − E

]
Ψ(y0, . . . , yA−1) = 0,

U(y0, . . . , yA−1)

=
A∑

i,j=1;i<j

Upair(xij(y1, . . . , yA−1))

+
A∑

i=1

V (xi(y0, . . . , yA−1)),

which, as follows from Eq. (2), is not invariant with
respect to permutations yi ↔ yj at i, j =1, . . . , A − 1.

The construction of desirable solutions of Eq. (1)
in the form of linear combinations of the solu-
tions of Eq. (3), totally symmetric (antisymmetric)
with respect to permutations of coordinates xi ↔
xj (at i, j = 1, . . . , A) of A identical particles is
implemented using various special procedures (see,
e.g., [26–35]).

Symmetrized Coordinates

As will be shown below, a simple and clear way to
construct the states keeping the symmetry (antisym-
metry) under the permutations of A initial Cartesian
coordinates, which we refer as S (A) states, is to use
the symmetrized relative coordinates rather than the
Jacobi coordinates.

The transformation from the Cartesian coordi-
nates to one of the possible choices of symmetrized
ones ξi has the form:

ξ0 =
1√
A

(
A∑

t=1

xt

)
, (3)

ξs =
1√
A

(
x1 +

A∑
t=2

a0xt +
√

Axs+1

)
,

s = 1, . . . , A − 1,

x1 =
1√
A

(
A−1∑
t=0

ξt

)
,

xs =
1√
A

(
ξ0 +

A−1∑
t=1

a0ξt +
√

Aξs−1

)
,

s = 2, . . . , A,

or, in the matrix form,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ0

ξ1

ξ2

...

ξA−2

ξA−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= C

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

...

xA−1

xA

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

...

xA−1

xA

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= C−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ0

ξ1

ξ2

...

ξA−2

ξA−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

C =
1√
A

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 · · · 1 1

1 a1 a0 a0 · · · a0 a0

1 a0 a1 a0 · · · a0 a0

1 a0 a0 a1 · · · a0 a0

...
...

...
...

. . .
...

...

1 a0 a0 a0 · · · a1 a0

1 a0 a0 a0 · · · a0 a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where a0 = 1/(1 −
√

A) < 0, a1 = a0 +
√

A. The
inverse coordinate transformation is performed using
the same matrix C−1 = C, C2 = I, i.e. C = CT is
a symmetric orthogonal matrix with the eigenvalues
λ1 = −1, λ2 = 1, . . . , λA = 1 and detC = −1. At
A = 2 the symmetrized variables (4) are similar up
to normalization factors to the symmetrized Jacobi
coordinates (2) considered in [36], while at A = 4
they correspond to another choice of symmetrized co-
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ordinates (ẍ4, ẍ1, ẍ2, ẍ3)T = C(x4, x1, x2, x3)T con-
sidered in [26, 37], and mentioned earlier in [38]. We
could not find a general definition of symmetrized
coordinates for A identical particles like (4) in the
available literature, so we believe that in the present
paper it is introduced for the first time.

With the relations a1 − a0 =
√

A, a0 − 1 = a0

√
A

taken into account, the relative coordinates xij ≡
xi − xj of a pair of particles i and j are expressed in
terms of the internal A − 1 symmetrized coordinates
only:

xij ≡ xi − xj = ξi−1 − ξj−1 ≡ ξi−1,j−1, (5)

xi1 ≡ xi − x1 = ξi−1 + a0

A−1∑
i′=1

ξi′ ,

i, j = 2, . . . , A.

So, if only the absolute values of xij are to be con-
sidered, then there are (A − 1)(A − 2)/2 old relative
coordinates transformed into new relative ones and
A − 1 old relative coordinates expressed in terms of
A − 1 internal symmetrized coordinates. These im-
portant relations essentially simplify the procedures of
symmetrization (or antisymmetrization) of the oscil-
lator basis functions and the calculations of the cor-
responding pair-interaction integrals V pair(xij). Note
that the symmetrized coordinates are related with the
Jacobi ones as⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0

y1

y2

...

yA−2

yA−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= B

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ0

ξ1

ξ2

...

ξA−2

ξA−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, B = JC

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 · · · 0 0

0 b0
1 b−1 b−1 b−1 · · · b−1 b−1

0 b+
2 b0

2 b−2 b−2 · · · b−2 b−2

0 b+
3 b+

3 b0
3 b−3 · · · b−3 b−3

0 b+
4 b+

4 b+
4 b0

4 · · · b−4 b−4
...

...
...

...
...

. . .
...

...

0 b+
A−1 b+

A−1 b+
A−1 b+

A−1 · · · b+
A−1 b0

A−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where b+
s = 1/((

√
A − 1)

√
s(s + 1)), b−s =√

A/((
√

A − 1)
√

s(s + 1)), and b0
s = (1 + s −

s
√

A)/((
√

A − 1)
√

s(s + 1)). One can see that

for the center of mass the symmetrized and Jacobi
coordinates are equal, y0 = ξ0, while the relative
coordinates are related via the (A − 1) × (A − 1)
matrix M with the elements Mij = Bi+1,j+1 and
detM = (−1)A×d, i.e. the matrix, obtained by
cancelling the first row and the first column. The
inverse transformation is given by the matrix B−1 =
(JC)−1 = CJT = BT , i.e., B is also an orthogonal
matrix.

Note, that for A = 3 and d = 1 the relation be-
tween the Jacobi coordinates

y1 = 1/
√

2(x1 − x2), y2 = 1/
√

6(x1 + x2 − 2x3)

and the symmetrized ones

ξ1 = 1/
√

3(x1 + 1/2(
√

3 − 1)x2 − 1/2(
√

3 + 1)x3),

ξ2 = 1/
√

3(x1 − 1/2(
√

3 + 1)x2 + 1/2(
√

3 − 1)x3)

is given by the orthogonal matrix M :

M =

⎛
⎝b0

1 b−1

b+
2 b0

2

⎞
⎠ (6)

=

⎛
⎝(

√
6 −

√
2)/4 (

√
6 +

√
2)/4

(
√

6 +
√

2)/4 −(
√

6 −
√

2)/4

⎞
⎠

=

⎛
⎝sin φ1 cos φ1

cos φ1 − sin φ1

⎞
⎠

=

⎛
⎝0 1

1 0

⎞
⎠

⎛
⎝cos φ1 − sin φ1

sinφ1 cos φ1

⎞
⎠

=

⎛
⎝ cos φ1 sin φ1

− sinφ1 cos φ1

⎞
⎠

⎛
⎝0 1

1 0

⎞
⎠

= M1(φ1)M0.

This transformation is a product of the permutation of
coordinates (ξ1, ξ2) → (ξ2, ξ1) and the counterclock-
wise rotation by the angle φ1 = π/12. A schematic
3D image in the left panel of Fig. 1 shows the co-
ordinate planes (marked with 1 , 2 , 3 ) and the
center-of-mass plane in R3 (its visible part having
the shape of a hexagon), together with the lines of
intersection of these planes with pair-collision planes
(xi = xj), which correspond to pair-collision lines
({xi = xj , x1 + x2 + x3 = 0}) (marked with 12, 23,
13) in the center-of-mass plane x1 + x2 + x3 = 0,
belonging to R2. Different projections of this ge-
ometry clarify the nature of the Jacobi (y1, y2) and
the symmetric (ξ1, ξ2) coordinates (middle and right
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Fig. 1. (Left panel) The coordinate planes 1, 2, 3, labelled with boxes, the center-of-mass plane in R3, and the lines of
intersection of these planes with the pair-collision planes xi = xj , corresponding to pair-collision lines {xi = xj , x1 + x2 +

x3 = 0} (labelled 12, 23, 13) in the center-of-mass plane x1 + x2 + x3 = 0, belonging to R2. (Middle and right panels)
The equilateral triangle showing the isomorphism between the group of its symmetry operations D3 in R2 and the group of
permutations S3 of three objects 1, 2, 3, labelled with circles. The symmetric (ξ1, ξ2) and Jacobi (y1, y2) coordinates, related
via the transformation (6) in the center-of-mass plane R2, respectively.

panels, respectively), related by the above transfor-
mation in the center-of-mass plane R2. This illus-
trates the isomorphism between the symmetry group
of an equilateral triangle D3 in R2 and the 3-body
permutation group S3 (A = 3), discussed in [34, 39,
40] in a different context.

At A = 4 and d = 1 the relation between the Ja-
cobi coordinates

y1 = 1/
√

2(x1 − x2),

y2 = 1/
√

6(x1 + x2 − 2x3),

y3 = 1/
√

12(x1 + x2 + x3 − 3x4)

and the symmetrized ones
ξ1 = 1/2(x1 + x2 − x3 − x4),
ξ2 = 1/2(x1 − x2 + x3 − x4),
ξ3 = 1/2(x1 − x2 − x3 + x4)

is given by the orthogonal matrix M :

M =

⎛
⎜⎜⎜⎝

b0
1 b−1 b−1

b+
2 b0

2 b−2

b+
3 b+

3 b0
3

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0
√

2/2
√

2/2
√

6/3 −
√

6/6
√

6/6
√

3/3
√

3/3 −
√

3/3

⎞
⎟⎟⎟⎠ .

One of the possible decompositions M = M3(φ3) ×
M2(φ2)M1(φ1) of this matrix is

M =

⎛
⎜⎜⎜⎝

1 0 0

0 cos φ3 sin φ3

0 − sinφ3 cos φ3

⎞
⎟⎟⎟⎠ (7)

×

⎛
⎜⎜⎜⎝

cos φ2 sin φ2 0

− sinφ2 cos φ2 0

0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1 0 0

0 cos φ1 sin φ1

0 − sin φ1 cos φ1

⎞
⎟⎟⎟⎠ .

This transformation is a product of three counter-
clockwise rotations: the first of them by the angle
φ1 = 3π/4 about the first old axis, the second one
by the angle φ2 = π − arctan(

√
2) ≈ 16π/23 about

the third new axis, and the third one by the angle
φ3 = π/3 about the first new axis. Note, that the
second angle φ2 is supplementary to the angle be-
tween an edge and a face of a regular tetrahedron, as-
sociated with the system of symmetrized coordinates
{ξ1, ξ2, ξ3} ∈ R3. This transformation illustrates the
isomorphism between the tetrahedron group Td in
R3 and the 4-particle permutation group S4 (A = 4),
discussed in [26] in the case of d = 3. The three
transformations M = M3(φ3)M2(φ2)M1(φ1) are il-
lustrated in Fig. 2.

Note, that the transformations from the initial
coordinates to Jacobi coordinates are rotations in
A× d-configuration space, while the transformations
from the initial coordinates to the symmetrized ones
involve also permutations or reflections. The trans-
formations between Jacobi and symmetrized coordi-
nates in the center-of-mass hyperplane are rotations
in the (A − 1) × d-configuration space, but for odd
A × d they involve also a permutation or reflection.
The key point of using the symmetrized coordinates is
that in these coordinates the symmetry with respect
to a permutation of two identical particles coincides
with the symmetry with respect to a geometrical re-
flection in the (A − 2) × d-dimensional plane ξi −
ξj = 0. For example, at A = 3 and d = 1, such ((A −
2)× d = 1)-dimensional objects are lines ξi − ξj = 0,
see Fig. 1, while at A = 4 and d = 1, such ((A −
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Fig. 2. (Left panel) Intersections in R4 of the coordinate spaces R3 (labelled 1, 2, 3, 4) and the spaces R3 of pair collisions
(labelled 12, etc.) with the sphere S2 in the center-of-mass space R3. (Middle and right panels) The tetrahedron showing the
isomorphism between the group of its symmetry operations Td in R3 and the group of permutations S4 of four objects 1, 2, 3,
4, labelled with circles. The two systems of coordinates, (y1, y2, y3) and (ξ1, ξ2, ξ3), are related via the transformation (7), i.e.
via three counterclockwise rotations by the angles φ1 = 3π/4, φ2 = π − arctan

√
2, and φ3 = π/3 about the axes ξ1, ξ′3, and

y1 = ξ′′1 , respectively, are used in the text.

2) × d = 2)-dimensional objects are 2D planes. The
lines in R4, corresponding to the intersection of the
coordinate spaces R3 (labelled 1, 2, 3, 4) and the
pair-collision spaces R3 (labelled 12, etc.) with the
sphere S2 in the center-of-mass space R3 are shown
in Fig. 2.

In the symmetrized coordinates Eq. (1) takes the
form [

− ∂2

∂ξ2
0

+
A−1∑
i=1

(
− ∂2

∂ξ2
i

+ (ξi)2
)

(8)

+ U(ξ0, . . . , ξA−1) − E

]
Ψ(ξ0, . . . , ξA−1) = 0,

U(ξ0, . . . , ξA−1)

=
A∑

i,j=1;i<j

Upair(xij(ξ1, . . . , ξA−1))

+
A∑

i=1

V (xi(ξ0, . . . , ξA−1)),

which is invariant under permutations ξi ↔ ξj at
i, j = 1, . . . , A − 1, as follows from Eq. (4), i.e., the
invariance of Eq. (1) under permutations xi ↔ xj

at i, j = 1, . . . , A survives. This remarkable fact is
one of the most prominent features of the proposed
approach.

Here and below we use the oscillator units intro-
duced above.

Asymptotic Boundary Conditions
For simplicity we restrict our consideration to

the so-called s-wave approximation [1], i.e., one-

dimensional Euclidean space (d = 1). The asymp-
totic boundary conditions for the solution Ψ(ξ0, ξ) =
{Ψio(ξ0, ξ)}No

io=1 (ξ0, ξ = {ξ1, . . . , ξA−1}) have the
form

Ψ�
io

(ξ0 → ±∞, ξ) (9)

→ Φ̃io(ξ)
exp (∓ı (pioξ0))√

pio

+
No∑
j=1

Φ̃j(ξ)
exp (±ı (pjξ0))√

pj
R�

jio
(E),

Ψ�
io

(ξ0 → ∓∞, ξ)

→
No∑
j=1

Φ̃j(ξ)
exp (∓ı (pjξ0))√

pj
T�

jio
(E),

Ψ�
io

(ξ0, |ξ| → ∞) → 0.

Here, v =←,→ indicates the initial direction of
the particle motion along the ξ0 axis, No is the
number of open channels at the fixed energy E
and relative momentum p2

io = E − Eio > 0 of the
cluster; R←

jio
= R←

jio
(E), R→

jio
= R→

jio
(E) and T←

jio
=

T←
jio

(E), T→
jio

= T→
jio

(E) are unknown amplitudes of
the reflected and transmitted waves. We can rewrite
Eqs. (9) in the matrix form Ψ = ΦTF, describing the
incident wave and outgoing waves at ξ+

0 → +∞ and
ξ−0 → −∞ as ⎛

⎝F→(ξ+
0 ) F←(ξ+

0 )

F→(ξ−0 ) F←(ξ−0 )

⎞
⎠ (10)
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=

⎛
⎝ 0 X(−)(ξ+

0 )

X(+)(ξ−0 ) 0

⎞
⎠

+

⎛
⎝ 0 X(+)(ξ+

0 )

X(−)(ξ−0 ) 0

⎞
⎠S,

where the unitary and symmetric scattering matrix S

S =

⎛
⎝R→ T←

T→ R←

⎞
⎠ , S†S = SS† = I (11)

is composed of the matrices, whose elements are
reflection and transmission amplitudes that enter
Eqs. (9). These matrices possess the following
properties (see [41] for details):

T→
†T→ + R→

†R→ = Ioo (12)

= T←
†T← + R←

†R←,

T→
†R← + R→

†T← = 0 = R←
†T→ + T←

†R→,

T→
T = T←, R→

T = R→, R←
T = R←.

If V pair(xij) = V hosc(xij), then the basis functions
of (A − 1)-dimensional oscillator Φj(ξ) correspond-
ing to the energy Ei = (2

∑A−1
k=1 ik + A − 1) have the

form: (
− ∂2

∂ξ2
+ ξ2 − Ej

)
Φj(ξ) = 0, (13)

+∞∫
−∞

Φi(ξ)Φj(ξ)dA−1ξ = δij .

In the next section we describe the procedure of
constructing the required sets of basis functions that
depend on A − 1 symmetrized internal coordinates
and are symmetric (S) or antisymmetric (A) with
respect to permutation of the initial A Cartezian coor-
dinates of A identical particles and the corresponding
eigenvalues for a cluster of A identical particles in
the center-of-mass system (CMS), which we refer as
symmetrized coordinates representation.

3. SYMMETRIZED COORDINATES
REPRESENTATION

For simplicity, consider the solutions of Eq. (8)
in the internal symmetrized coordinates {ξ1, . . . ,
ξA−1} ∈ RA−1, xi ∈ R1, in the case of 1D Euclidean
space (d = 1). The relevant equation describes
an (A − 1)-dimensional oscillator with the eigen-
functions Φj(ξ1, . . . , ξA−1) and the energy eigenval-
ues Ej : [

A−1∑
i=1

(
− ∂2

∂ξ2
i

+ (ξi)2
)
− Ej

]
(14)

× Φj(ξ1, . . . , ξA−1) = 0,

Ej = 2
A−1∑
k=1

ik + A − 1,

where the numbers ik, k = 1, . . . , A − 1, are inte-
ger, ik = 0, 1, 2, 3, . . . The eigenfunctions Φj(ξ1, . . . ,
ξA−1) can be expressed in terms of the conventional
eigenfunctions of individual 1D oscillators as

Φj(ξ1, . . . , ξA−1) (15)

=
∑

2
∑A−1

k=1 ik+A−1=Ej

βj[i1,i2,...,iA−1]

× Φ̄[i1,i2,...,iA−1](ξ1, . . . , ξA−1),

Φ̄[i1,i2,...,iA−1](ξ1, . . . , ξA−1) =
A−1∏
k=1

Φ̄ik(ξk),

Φ̄ik(ξk) =
exp(−ξ2

k/2)Hik (ξk)
4
√

π
√

2ik
√

ik!
,

where Hik(ξk) are Hermite polynomials [42]. Gener-
ally, the energy level Ef = 2f + A− 1, f =

∑A−1
k=1 ik,

of an (A − 1)-dimensional oscillator is known [43]
to possess the degeneracy multiplicity p = (A + f −
2)!/f !/(A − 2)! with respect to the conventional
oscillator eigenfunctions Φ̄[i1,i2,...,iA−1](ξ1, . . . , ξA−1).
This degeneracy allows further symmetrization by

choosing the appropriate coefficients β
(j)
[i1,i2,...,iA−1]

.

Degeneracy multiplicity p of all states with the given
energy Ej is defined by formula

p =
∑

2
∑A−1

k=1 ik+A−1=Ej

Nβ, (16)

Nβ = (A − 1)!
/ Nυ∏

k=1

υk!,

where Nβ is the number of multiset permutations
(m.p.) of [i1, i2, . . . , iA−1], and Nυ ≤ A − 1 is the
number of different values ik in the multiset
[i1, i2, . . . , iA−1], and υk is the number of repetitions
of the given value ik.

Step 1. Symmetrization with Respect
to Permutation of A − 1 Particles

For the states Φs
j(ξ1, . . . , ξA−1) ≡ Φs

[i1,i2,...,iA−1]
×

(ξ1, . . . , ξA−1), symmetric with respect to permuta-
tion of A − 1 particles i = [i1, i2, . . . , iA−1], the coef-
ficients βi[i′1,i′2,...,i′A−1]

in Eq. (15) are

βi[i′1,i′2,...,i′A−1]
(17)
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Table 1. The eigenvalues Es
j = Es

[i1,i2,...,iN−1]
for the first oscillator symmetric eigenfunctions Φs

j(ξ1, . . . , ξN−1) =

|[i1, i2, . . . , iA−1]〉 = Φs
[i1,i2,...,iA−1]

(ξ1, . . . , ξA−1) with Es
j − Es

1 = 2
∑A−1

k=1 ik ≤ 10, Es
1 = A − 1 and corresponding

number Nβ of a multiset permutations [i1, i2, . . . , iA−1] of quantum numbers i1, i2, . . . , iA−1 from (16) (see (17))

A = 3 A = 4 A = 5 A = 6
Es

j − Es
1

j |[i1, i2]〉 Nβ j |[i1, i2, i3]〉 Nβ j |[i1, i2, i3, i4]〉 Nβ j |[i1, i2, i3, i4, i5]〉 Nβ

1 |[0, 0]〉 1 1 |[0, 0, 0]〉 1 1 |[0, 0, 0, 0]〉 1 1 |[0, 0, 0, 0, 0]〉 1 0

2 |[0, 1]〉 2 2 |[0, 0, 1]〉 3 2 |[0, 0, 0, 1]〉 4 2 |[0, 0, 0, 0, 1]〉 5 2

3 |[0, 2]〉 2 3 |[0, 0, 2]〉 3 3 |[0, 0, 0, 2]〉 4 3 |[0, 0, 0, 0, 2]〉 5

4 |[1, 1]〉 1 4 |[0, 1, 1]〉 3 4 |[0, 0, 1, 1]〉 6 4 |[0, 0, 0, 1, 1]〉 10 4

5 |[0, 3]〉 2 5 |[0, 0, 3]〉 3 5 |[0, 0, 0, 3]〉 4 5 |[0, 0, 0, 0, 3]〉 5

6 |[1, 2]〉 2 6 |[0, 1, 2]〉 6 6 |[0, 0, 1, 2]〉 12 6 |[0, 0, 0, 1, 2]〉 20 6

7 |[1, 1, 1]〉 1 7 |[0, 1, 1, 1]〉 4 7 |[0, 0, 1, 1, 1]〉 10

7 |[0, 4]〉 2 8 |[0, 0, 4]〉 3 8 |[0, 0, 0, 4]〉 4 8 |[0, 0, 0, 0, 4]〉 5

8 |[1, 3]〉 2 9 |[0, 1, 3]〉 6 9 |[0, 0, 1, 3]〉 12 9 |[0, 0, 0, 1, 3]〉 20

9 |[2, 2]〉 1 10 |[0, 2, 2]〉 3 10 |[0, 0, 2, 2]〉 6 10 |[0, 0, 0, 2, 2]〉 10 8

11 |[1, 1, 2]〉 3 11 |[0, 1, 1, 2]〉 12 11 |[0, 0, 1, 1, 2]〉 30

12 |[1, 1, 1, 1]〉 1 12 |[0, 1, 1, 1, 1]〉 5

10 |[0, 5]〉 2 12 |[0, 0, 5]〉 3 13 |[0, 0, 0, 5]〉 4 13 |[0, 0, 0, 0, 5]〉 5

11 |[1, 4]〉 2 13 |[0, 1, 4]〉 6 14 |[0, 0, 1, 4]〉 12 14 |[0, 0, 0, 1, 4]〉 20

12 |[2, 3]〉 2 14 |[0, 2, 3]〉 6 15 |[0, 0, 2, 3]〉 12 15 |[0, 0, 0, 2, 3]〉 20

15 |[1, 1, 3]〉 3 16 |[0, 1, 1, 3]〉 12 16 |[0, 0, 1, 1, 3]〉 30 10

16 |[1, 2, 2]〉 3 17 |[0, 1, 2, 2]〉 12 17 |[0, 0, 1, 2, 2]〉 30

18 |[1, 1, 1, 2]〉 4 18 |[0, 1, 1, 1, 2]〉 20

19 |[1, 1, 1, 1, 1]〉 1

=

⎧⎪⎪⎨
⎪⎪⎩

1√
Nβ

, if [i′1, i
′
2, . . . , i

′
A−1] is a multiset

permutation of [i1, i2, . . . , iA−1];
0, otherwise.

In Table 1 we demonstrate the rules of correspon-
dence between the multisets of quantum numbers
[i1, i2, . . . , iA−1] and the numbers j of the eigen-
functions Φs

j(ξ1, . . . , ξA−1) for symmetric states of
an (A − 1)-dimensional harmonic oscillator with
the energy eigenvalues Es

j , enumerated in nonde-
creasing order, Es

1 = A − 1 < Es
2 ≤ Es

3 ≤ Es
4 ≤ . . .,

for A particles with the degenerate spectrum Es
j =

2
∑A−1

k=1 ik + A − 1. The corresponding isolines of
the first eight symmetric oscillator eigenfunctions
Φs

[i1,i2](ξ1, ξ2) for A = 3 are shown in Fig. 3.

With increasing A for given E′ = Es
j − Es

1 the
multiplicity of degeneracy, i.e., the number ps ≤ p

of symmetric eigenfunctions, corresponding to the
same eigenvalue, sharply increases and reaches a
plateau. At fixed A with increasing E′ the multiplicity
increases faster, when A is larger. For example, the
eigenvalue E′ = 6 at A = 2 is nondegenerate (ps =
1), at A = 3 it is doubly degenerate (ps = 2), and
at large A ≥ 4 it is triply degenerate (ps = 3). For
A = 4, when the eigenvalue increases from E′ = 8
to E′ = 10, the multiplicity increases from ps = 4 to
ps = 5, while for A = 6 under the same conditions the
multiplicity increases from ps = 5 to ps = 7.

For example, we can construct the states, an-
tisymmetric with respect to permutation of A − 1
particles with spin 1/2, in a conventional way as a
product of two determinants of K × K and [(A −
1)K] × [(A − 1)K] matrices, involving K and [(A −
1)K] states of pairs of particles with compensated
and noncompensated spins, respectively, such that
the total spin equals (A − 1)/2 − K [22, 23]. For
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Fig. 3. Profiles of the first eight oscillator s eigenfunctions Φs
[i1,i2](ξ1, ξ2), at A = 3 in the coordinate frame (ξ1, ξ2). The lines

correspond to pair collision x2 = x3, x1 = x2 and x1 = x3 of projection (x1, x2, x3) → (ξ1, ξ2) marked only in the left upper
panel by 23, 12, and 13, respectively. The additional lines are nodes of the eigenfunctions Φs

[i1,i2](ξ1, ξ2).

simplicity we consider a restricted case. The states
Φa

j (ξ1, . . . , ξA−1) ≡ Φa
[i1,i2,...,iA−1](ξ1, . . . , ξA−1), an-

tisymmetric with respect to permutation of A− 1 par-
ticles, are constructed in a conventional way

Φa
[i1,i2,...,iA−1]

(ξ1, . . . , ξA−1) =
1√

(A − 1)!
(18)

×

∣∣∣∣∣∣∣∣∣∣∣∣

Φ̄i1(ξ1) Φ̄i2(ξ1) · · · Φ̄iA−1
(ξ1)

Φ̄i1(ξ2) Φ̄i2(ξ2) · · · Φ̄iA−1
(ξ2)

...
...

. . .
...

Φ̄i1(ξA−1) Φ̄i2(ξA−1) · · · Φ̄iA−1
(ξA−1)

∣∣∣∣∣∣∣∣∣∣∣∣
,

i.e., the coefficients βi[i′1,i′2,...,i′A−1]
in Eq. (15) are ex-

pressed as βi[i′1,i′2,...,i′A−1] = εi′1,i′2,...,i′A−1
/
√

(A − 1)!,
where εi′1,i′2,...,i′A−1

is a totally antisymmetric tensor.
This tensor is defined as follows: εi′1,i′2,...,i′A−1

=
+1(−1) if i′1, i

′
2, . . . , i

′
A−1 is an even (odd) per-

mutation of the numbers i1 < i2 < . . . < iA−1 and
εi′1,i′2,...,i′A−1

= 0 otherwise, i.e., when some two num-

bers in the set i′1, i
′
2, . . . , i

′
A−1 are equal. Therefore,

for antisymmetric states the indices ik in Eq. (14)
take the integer values ik = k − 1, k, k + 1, . . .; k =
1, . . . , A − 1.

Table 2 demonstrates the rules of correspon-
dence between the multisets of quantum numbers
[i1, i2, . . . , iA−1] and the numbers j of the eigen-
functions Φa

j (ξ1, . . . , ξA−1) for antisymmetric states
of an (A − 1)-dimensional harmonic oscillator with
the energy eigenvalues Ea

j , enumerated in nonde-
creasing order, Ea

1 = (A − 1)2 < Ea
2 ≤ Ea

3 ≤ Ea
4 ≤

. . ., for A particles with the degenerate spectrum

Ea
j = 2

∑A−1
k=1 ik + A − 1. For given E′ = Ea

j − Ea
1

the number pa < p of degenerate antisymmetric
eigenfunctions is seen to equal the number pA−1

s ≤ p
of symmetric eigenfunctions with the same E′ =
Es

j − Es
1. Note, that the multisets, characterizing

symmetric states, are related with the sets, char-
acterizing antisymmetric states, by the following
rule: the first number is left unchanged, from the
second number we subtract one, from the third one
we subtract two, and so on. The corresponding
isolines of the first eight oscillator antisymmetric
eigenfunctions Φa

[i1,i2]
(ξ1, ξ2) for A = 3 are shown in

Fig. 4.
Here and below the indexes s and a are used for

the functions, symmetric (antisymmetric) under per-
mutations of A − 1 relative coordinates, constructed
at the first step of the procedure. On the contrary,
indexes S and A are used for functions, symmetric
(asymmetric) under permutations of A initial Carte-
sian coordinates. This is actually a symmetry with
respect to permutation of identical particles them-
selves; in this sense S and A states may be attributed
to boson- and fermion-like particles. However, we
prefer to use the S (A) notation as more rigorous.

Step 2. Symmetrization with Respect
to Permutation of A Particles

For A = 2 the symmetrized coordinate ξ1 corre-
sponds to the difference x2 − x1 of Cartesian coordi-
nates, so that a function even (odd) with respect to ξ1

appears to be symmetric (antisymmetric) with respect
to the permutation of two particles x2 ↔ x1. Hence,
even (odd) eigenfunctions with corresponding eigen-
values Es

j = 2(2n) + 1 (Ea
j = 2(2n + 1) + 1) describe

S (A) solutions.
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Table 2. The eigenvalues Ea
j = Ea

[i1,i2,...,iA−1] for the first oscillator antisymmetric eigenfunctions Φa
j (ξ1, . . . , ξA−1) =

|[i1, i2, . . . , iA−1]〉 = Φa
[i1,i2,...,iA−1]

(ξ1, . . . , ξA−1) from (18) with Ea
j − Ea

1 ≤ 10, Ea
1 = (A − 1)2

A = 3, Ea
1 = 4 A = 4, Ea

1 = 9 A = 5, Ea
1 = 16

Ea
j − Ea

1

j |[i1, i2]〉 j |[i1, i2, i3]〉 j |[i1, i2, i3, i4]〉

1 |[0, 1]〉 1 |[0, 1, 2]〉 1 |[0, 1, 2, 3]〉 0

2 |[0, 2]〉 2 |[0, 1, 3]〉 2 |[0, 1, 2, 4]〉 2

3 |[1, 2]〉 3 |[0, 2, 3]〉 3 |[0, 1, 3, 4]〉

4 |[0, 3]〉 4 |[0, 1, 4]〉 4 |[0, 1, 2, 5]〉 4

5 |[1, 3]〉 5 |[1, 2, 3]〉 5 |[0, 2, 3, 4]〉

6 |[0, 4]〉 6 |[0, 2, 4]〉 6 |[0, 1, 3, 5]〉 6

7 |[0, 1, 5]〉 7 |[0, 1, 2, 6]〉

7 |[2, 3]〉 8 |[1, 2, 4]〉 8 |[1, 2, 3, 4]〉

8 |[1, 4]〉 9 |[0, 3, 4]〉 9 |[0, 2, 3, 5]〉

9 |[0, 5]〉 10 |[0, 2, 5]〉 10 |[0, 1, 4, 5]〉 8

11 |[0, 1, 6]〉 11 |[0, 1, 3, 6]〉

12 |[0, 1, 2, 7]〉

10 |[2, 4]〉 12 |[1, 3, 4]〉 13 |[1, 2, 3, 5]〉

11 |[1, 5]〉 13 |[1, 2, 5]〉 14 |[0, 2, 4, 5]〉

12 |[0, 6]〉 14 |[0, 3, 5]〉 15 |[0, 2, 3, 6]〉 10

15 |[0, 2, 6]〉 16 |[0, 1, 4, 6]〉

16 |[0, 1, 7]〉 17 |[0, 1, 3, 7]〉

18 |[0, 1, 2, 8]〉

For A ≥ 3 the functions symmetric (antisymmet-
ric) with respect to permutations of Cartesian coordi-
nates xi+1 ↔ xj+1, i, j = 0, . . . , A − 1:
ΦS(A)(. . . , xi+1, . . . , xj+1, . . .) ≡ ΦS(A)(ξ1(x1, . . . ,

xA), . . . , ξA−1(x1, . . . , xA)) = ±ΦS(A)(. . . , xj+1, . . . ,
xi+1, . . .) become symmetric (antisymmetric) with
respect to permutations of symmetrized coordi-
nates ξi ↔ ξj , i, j = 1, . . . , A − 1: ΦS(A)(. . . , ξi, . . . ,

ξj , . . .) = ±ΦS(A)(. . . , ξj , . . . , ξi, . . .), as follows from
Eq. (5). However, the converse statement is not valid,
Φs(a)(. . . , ξi, . . . , ξj, . . .) = ±Φs(a)(. . . , ξj , . . . , ξi,

. . .) �⇒ Φs(a)(x1, . . . , xi+1, . . .) = ±Φs(a)(xi+1, . . . ,
x1, . . .), because we deal with a projection map
(ξ1, . . . , ξA−1)T = Ĉ(x1, . . . , xA)T , which is imple-
mented by the (A − 1) × A matrix Ĉ with the matrix
elements Ĉij = Ci+1,j , obtained from (4) by can-
celling the first row. Hence, the functions, symmetric
(antisymmetric) with respect to permutations of

symmetrized coordinates, are divided into two types,
namely, the S (A) solutions, symmetric (antisym-
metric) with respect to permutations x1 ↔ xj+1 at
j = 1, . . . , A − 1:

ΦS(A)(x1, . . . , xi+1, . . .)

≡ ΦS(A)(ξ1(x1, . . . , xA), . . . , ξA−1(x1, . . . , xA))

= ±ΦS(A)(xi+1, . . . , x1, . . .),

and the other s (a) solutions, Φs(a)(x1, . . . , xi+1,

. . .) �= ±Φs(a)(xi+1, . . . , x1, . . .), which should be
eliminated. These requirements are equivalent to
only one permutation x1 ↔ x2, as follows from (5),
which simplifies their practical implementation. With
these requirements taken into account in the Gram–
Schmidt process, implemented in a symbolic algo-
rithm SCR, we obtained the required characteristics
of S and A eigenfunctions

ΦS(A)
i (ξ1, . . . , ξA−1) (19)
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Fig. 4. The same as in Fig. 3, but for the first eight oscillator a eigenfunctions Φa
[i1,i2](ξ1, ξ2), at A = 3.
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Fig. 5. The same as in Fig. 3, but for the first eight oscillator S eigenfunctions ΦS
[i1,i2](ξ1, ξ2), at A = 3.

=
∑

2
∑A−1

k=1 ik+A−1=E
s(a)
i

α
S(A)
i[i1,i2,...,iA−1]

× Φs(a)
[i1,i2,...,iA−1]

(ξ1, . . . , ξA−1)

with respect to permutations of A identical particles,
the examples of which are presented in Tables 3 and 4.
Note, that for A = 4 the first four states from Table 3
are similar to those of the translation-invariant model
without excitation of the center-of-mass variable [37].
This SCR algorithm was implemented in Maple and
published in [44].

As an example, in Figs. 5 and 6 we show isolines
of the first eight S and A oscillator eigenfunctions
ΦS

[i1,i2](ξ1, ξ2) and ΦA
[i1,i2](ξ1, ξ2) for A = 3, calculated

at the second step of the algorithm. One can see
that the S (A) oscillator eigenfunctions are symmetric
(antisymmetric) with respect to reflections from three
straight lines. The first line (labelled 23) corresponds

to the permutation (x2, x3) and is rotated by π/4
counterclockwise with respect to the axis ξ1. The sec-
ond and the third lines (labelled 12 and 13) correspond
to the permutations (x1, x2) and (x1, x3) and are
rotated by π/3 clockwise and counterclockwise with
respect to the first line. These lines divide the plane
into six sectors, while the symmetric (antisymmetric)
oscillator eigenfunctions, calculated at the first step
of the algorithm, which are symmetric (or antisym-
metric) with respect to reflections from the first line,
generate the division of the plane into two parts.

The Jacobi coordinates (y1, y2) are related to the
symmetrized coordinates (ξ1, ξ2) via the orthogonal
transformation (6), i.e., the permutation of coordi-
nates (ξ1, ξ2) → (ξ2, ξ1) and the clockwise rotation
by the angle φ1 = π/12. Therefore, in the Jacobi
coordinates the lines, corresponding to pair collisions
of the particles (x2, x3), (x1, x2), and (x1, x3), will
be also clockwise rotated by the angle φ1 = π/12.
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Fig. 6. The same as in Fig. 3, but for the first eight oscillator A eigenfunctions ΦA
[i1,i2](ξ1, ξ2), at A = 3.

Counterclockwise rotation of the coordinate system
(ξ2, ξ1) to (y1, y2) by the angle φ1 = π/12 induces
a unitary transformation of the corresponding (A =
2)-oscillator functions 〈ξ2, ξ1|i2, i1〉 = Φ̄[i2,i1](ξ2, ξ1)
with j = (i2 + i1)/2:

〈j + m′, j − m′|y1, y2〉

=
m=j∑

m=−j

〈j + m′, j − m′|G21(φ1)|j + m, j − m〉

× 〈j + m, j − m|ξ2, ξ1〉.

The matrix elements 〈j + m′, j − m′|G21(φ1)|j +
m, j − m〉 are expressed as the integrals [45]:

〈j + m′, j − m′|G21(φ)|j + m, j − m〉

= dj
m′m(2φ1) =

∞∫
−∞

∞∫
−∞

dξ2dξ1〈j + m′,

j − m′|ξ2 cos φ1 + ξ1 sin φ1,

−ξ2 sin φ1 + ξ1 cos φ1〉
× 〈ξ2, ξ1|j + m, j − m〉,

where

dj
m′m(2φ1) = N j

m′m sin|m′−m| φ1

× cos|m
′+m| φ1P

|m′−m|,|m′+m|
j−(|m′−m|+|m′+m|)/2(cos(2φ1))

are Wigner functions [46], N j
m′m are the normaliza-

tion factors, Pμν
s (x) are Jacobi polynomials [42]. This

is the simplest integral representation of the oscilla-
tor Wigner functions [47].

Figure 7 shows examples of profiles of S and A
oscillator eigenfunctions ΦS,A

[i1,i2,i3]
(ξ1, ξ2, ξ3) for A =

4. Note that four maxima (black) and four minima

(grey) of the S eigenfunction ΦS
[1,1,1](ξ1, ξ2, ξ3) are po-

sitioned at the vertices of two tetrahedrons forming a
stella octangula, with the edges shown by black and
grey lines, respectively. Eight maxima and six outer
minima for S eigenfunction ΦS

[0,0,4](ξ1, ξ2, ξ3) are po-
sitioned at the vertices of a cube and an octahedron,
the edges of which are shown by black and grey lines,
respectively. The positions of twelve maxima of the
A oscillator eigenfunction, ΦA

[0,2,4](ξ1, ξ2, ξ3) coincide
with the vertices of a polyhedron with 20 triangle faces
(only 8 of them being equilateral triangles) and 30
edges, 6 of them having the length 2.25 and the other
having the length 2.66.

For A = 4 the 3D rotation (7), reducing the
coordinate system (ξ1, ξ2, ξ3) to (y1, y2, y3, ), can be
presented as a product of three counterclockwise
rotations M = M3(φ3)M2(φ2)M1(φ1) in separate
coordinate planes: by the angle φ1 = 3π/4 about the
first old axis, ξ1, by the angle φ2 = π − arctan(

√
2) ≈

16π/23 about the third new axis, ξ′3, and by the
angle φ3 = π/3 about the first new axis, y1 = ξ′′1 (see
Fig. 2). This 3D rotation induces a unitary trans-
formation of the corresponding (A = 3)-oscillator
functions 〈ξ1, ξ2, ξ3|i1, i2, i3〉 = Φ̄[i1,i2,i3](ξ1, ξ2, ξ3),
n = i1 + i2 + i3:

〈j′ + m′, j′ − m′, n − 2j′|y1, y2, y3〉

=
n/2∑
j=0

m=j∑
m=−j

〈j′ + m′, j′ − m′,

n − 2j′|G(3)|j + m, j − m,n − 2j〉
× 〈j + m, j − m,n − 2j|ξ1, ξ2, ξ3〉.

Here the matrix elements 〈j′ + m′, j − m′,
n− 2j′|G(3)|j + m, j −m,n− 2j〉 are defined as [45]

〈j′ + m′, j′ − m′,
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Fig. 7. (Upper panels) Profiles of the oscillator S eigenfunctions ΦS
[1,1,1](ξ1, ξ2, ξ3), ΦS

[0,0,4](ξ1, ξ2, ξ3) and A eigenfunction

ΦA
[0,2,4](ξ1, ξ2, ξ3), at A = 4 (left, middle, and right panels, respectively ). (Lower panels) Some maxima and minima positions

of these functions are connected by black and gray lines and duplicated: two tetrahedrons forming a stella octangula
for ΦS

[1,1,1](ξ1, ξ2, ξ3), a cube and an octahedron for ΦS
[0,0,4](ξ1, ξ2, ξ3), and a polyhedron with 20 triangle faces (only 8 of

them being equilateral triangles) and 30 edges, 6 of them having the length 2.25 and the other having the length 2.66 for
ΦA

[0,2,4](ξ1, ξ2, ξ3).

n − 2j′|G2,3(φ3)G1,2(φ2)G2,3(φ1)|j + m,

j − m,n − 2j〉

=
min(j,j′)∑

t

dj′

t−j′,m′(2φ3)d
(n−t)/2
2j′−(n+t)/2,2j−(n+t)/2

× (2φ2)d
j
m,t−j(2φ1),

where the values of t are such that the absolute values
of all t-dependent subscripts in the Wigner d func-
tions do not exceed those of the superscripts.

In the general case, the transformations of (A −
1)-dimensional oscillator functions induced by per-
mutation of coordinates and (A − 1)-dimensional
finite rotation, presented as a product of (A − 1)(A −
2)/2 rotations in separate coordinate planes, can
be constructed using the diagram method, which
reduces the analytic calculations of the (A − 1)-
dimensional oscillator Wigner functions to simple
geometric operations [47].

The degeneracy multiplicity (16), i.e., the number
p of all states with the given energy Ej , the num-
bers ps (pa) of the states, symmetric (antisymmetric)
under permutations of A − 1 relative coordinates to-
gether with the total numbers pS (pA) of the states,
symmetric (antisymmetric) under permutations of A

initial Cartesian coordinates are summarized in Ta-
ble 5 for the bottom part of the energy spectrum.

Note that the S and A states with E′ = ES,A
1 + 2

do not exist. The numbers ps (pa) are essentially
smaller than the total number p of all states, which
simplifies the procedure of constructing S (A) states
with possible excitation of the center-of-mass degree
of freedom and allows the use of a compact basis
with the reduced degeneracy pS (pA) of the S (A)
states in our final calculations. For clarity, in the case
A = 3, d = 1, the S (A)-type functions generated by
the SCR algorithm, in polar coordinates ξ1 = ρ cos ϕ,
ξ2 = ρ sin ϕ are expressed as:

ΦS(A)
k,m (ρ, ϕ) = Ckm(ρ2)3m/2 (20)

× exp(−ρ2/2)L3m
k (ρ2)

cos
sin

(3m(ϕ + π/12)),

where Ckm is the normalization constant, L3m
k (ρ2)

are the Laguerre polynomials [42], k = 0, 1, . . ., m =
0, 1, . . . for S states, while m = 1, 2, . . . for A states,
that are classified by irreducible representations of the
D3m symmetry group. The corresponding energy

levels E
S(A)
k,m = 2(2k + 3m + 1) = E

s(a)
[i1,i2]

= 2(i1 +
i2 + 1) have the degeneracy multiplicity K + 1, if

the energy E
S(A)
k,m − E

S(A)
1 = 12K + K ′, where K ′ =
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Table 3. The first few eigenvalues ES
j and the oscillator S eigenfunctions (19) at ES

j − ES
1 ≤ 10, ES

1 = A − 1 (We use
the notations |[i1, i2, . . . , iA−1]〉 ≡ Φs

[i1,i2,...,iA−1](ξ1, . . . , ξA−1) from Eqs. (15) and (17), i.e. [i1, i2, . . . , iA−1] assumes

the summation over permutations of [i1, i2, . . . , iA−1] in the layer 2
∑A−1

k=1 ik + A − 1 = E
s(a)
i )

A = 2 A = 3 A = 4 A = 5
ES

j − ES
1

j ΦS
j (ξ1) j ΦS

j (ξ1, ξ2) j ΦS
j (ξ1, ξ2, ξ3) j ΦS

j (ξ1, ξ2, ξ3, ξ4)

1 |[0]〉 1 |[0, 0]〉 1 |[0, 0, 0]〉 1 |[0, 0, 0, 0]〉 0

2 |[2]〉 2 |[0, 2]〉 2 |[0, 0, 2]〉 2 |[0, 0, 0, 2]〉 4

3 1
2 |[0, 3]〉 −

√
3

2 |[1, 2]〉 3 |[1, 1, 1]〉 3 ≈ −0.27|[0, 0, 0, 3]〉+ 0.27|[0, 0, 1, 2]〉 6

− 0.93|[0, 1, 1, 1]〉

3 |[4]〉 4
√

3
2 |[0, 4]〉 + 1

2 |[2, 2]〉 4 |[0, 0, 4]〉 4
√

2
2 |[0, 0, 0, 4]〉+

√
2

2 |[0, 0, 2, 2]〉

5 |[0, 2, 2]〉 5 ≈ −0.32|[0, 0, 0, 4]〉 − 0.39|[0, 0, 1, 3]〉 8

+ 0.32|[0, 0, 2, 2]〉+ 0.67|[0, 1, 1, 2]〉

− 0.44|[1, 1, 1, 1]〉

5
√

5
4 |[0, 5]〉 − 3

4 |[1, 4]〉 6 |[1, 1, 3]〉 6, 7 Two functions 10

−
√

2
4 |[2, 3]〉

Table 4. The first few eigenvalues EA
j and the oscillator A eigenfunctions (19) at EA

j − EA
1 ≤ 10, EA

1 = A2 − 1 (We
use the notations |[i1, i2, . . . , iA−1]〉 ≡ Φa

[i1,i2,...,iA−1](ξ1, . . . , ξA−1) from Eq. (18), i.e. [i1, i2, . . . , iA−1] assumes the

summation over the multiset permutations of [i1, i2, . . . , iA−1] in the layer 2
∑A−1

k=1 ik + A − 1 = E
s(a)
i )

A = 2, EA
1 = 3 A = 3, EA

1 = 8 A = 4, EA
1 = 15

EA
j − EA

1

j ΦA
j (ξ1) j ΦA

j (ξ1, ξ2) j ΦA
j (ξ1, ξ2, ξ3)

1 |[1]〉 1 1
2 |[0, 3]〉 +

√
3

2 |[1, 2]〉 1 |[0, 2, 4]〉 0

2 |[3]〉 2
√

5
4 |[0, 5]〉+ 3

4 |[1, 4]〉 −
√

2
4 |[2, 3]〉 2 |[0, 2, 6]〉 4

3 1
4 |[0, 6]〉 −

√
15
4 |[2, 4]〉 3 |[1, 3, 5]〉 6

3 |[5]〉 4
√

21
8 |[0, 7]〉+ 3

√
3

8 |[1, 6]〉 − 1
8 |[2, 5]〉 +

√
5

8 |[3, 4]〉 4 |[0, 4, 6]〉

5 |[0, 2, 8]〉 8

5
√

2
4 |[0, 8]〉 −

√
14
4 |[2, 6]〉 6 |[1, 3, 7]〉 10

0, 4, 6, 8, 10, 14. For example, in Figs. 5 and 6 we

show the wave functions ΦS
3,0(ρ, ϕ) and ΦS

0,2(ρ, ϕ)

(or ΦA
3,1(ρ, ϕ) and ΦA

0,3(ρ, ϕ)) labelled with 6 and 7,

corresponding to the energy levels E
S(A)
k,m − E

S(A)
1 =

12 with the degeneracy K = 2, while the functions
labelled with 1, 2, 3, 4, 5, 8 are nondegenerate (K =
1). From our calculation we conclude that the
eigenfunctions of the A identical particle system in
one dimension are degenerate like in [48], and this
result disagrees with [49]. The latter can be presented

as a linear combination of the above S (A)-type
functions.

The Parametric Symmetrized Coordinates
Representation

Now let us introduce the basis of orthonormal-
ized eigenfunctions Φ̃i(ξ; ξ0), ξ = {ξ1, . . . , ξA−1} of
a parametric (A − 1)-dimensional oscillator with the
energy eigenvalues ε̃i(ξ0):[

A−1∑
i=1

(
− ∂2

∂ξ2
i

+ (ξi)2
)

+ U(ξ0, ξ) (21)

PHYSICS OF ATOMIC NUCLEI Vol. 77 No. 3 2014



RESONANT TUNNELING OF A FEW-BODY CLUSTER 403

− ε̃i(ξ0)

]
Φ̃i(ξ; ξ0) = 0,

U(ξ0, ξ) =
A∑

i,j=1;i<j

Upair(xij(ξ)) +
A∑

i=1

V (xi(ξ0, ξ)).

We choose the parametric SCR (PSCR) basis func-
tions as linear combinations of the S and A eigen-

functions ΦS(A)
j′ (ξ) constructed above:

Φ̃i(ξ; ξ0) =
j′max∑
j′=1

α̃
(i)
j′ (ξ0)Φ

S(A)
j′ (ξ). (22)

Thus, the eigenvalue problem (21) is reduced to a
parametric linearized version of the Hartree–Fock
algebraic eigenvalue problem

j′max∑
j′=1

(δij′Ei + Uij′(ξ0) (23)

− δij′ ε̃i(ξ0))α̃
(i)
j′ (ξ0) = 0,

j′max∑
j′=1

α̃
(i′)
j′ (ξ0)α̃

(i)
j′ (ξ0) = δii′ ,

where the effective potentials Uij′(ξ0) = U
pair
ij′ +

Vij′(ξ0) are expressed in terms of the integrals

U
pair
ij′ =

∫
dA−1ξΦS(A)

i (ξ) (24)

×

⎛
⎝ A∑

k,k′=1;k<k′

Upair(xkk′(ξ))

⎞
⎠ΦS(A)

j′ (ξ),

Vij′(ξ0) =
∫

dA−1ξΦS(A)
i (ξ)

×
(

A∑
k=1

V (xk(ξ0, ξ))

)
ΦS(A)

j′ (ξ).

Taking Eqs. (15) and (19) into account, inte-
grals (24) are expressed via basis integrals

U
pair
ij (25)

=
∑

i′[i′′1 ,...,i′′A−1][j′′1 ,...,j′′A−1]j
′

α
S(A)
ii′ β

s(a)
i′[i′′1 ,...,i′′A−1]

× Ū
pair
[i′′1 ,..,i′′A−1][j

′′
1 ,..,j′′A−1]

β
s(a)
j′[i′′1 ,...,i′′A−1]

α
S(A)
jj′ ,

Vij(ξ0)

=
∑

i′[i′′1 ,...,i′′A−1][j
′′
1 ,..,j′′A−1]j

′

α
S(A)
ii′ β

s(a)
i′[i′′1 ,...,i′′A−1]

× V̄[i′′1 ,..,i′′A−1][j
′′
1 ,...,j′′A−1]

(ξ0)β
s(a)
j′[i′′1 ,...,i′′A−1]

α
S(A)
jj′ ,

Ū
pair
[i′′1 ,...,i′′A−1][j

′′
1 ,...,j′′A−1]

=
∫

dA−1ξΦ̄[i′′1 ,...,i′′A−1]
(ξ)

×

⎛
⎝ A∑

k,k′=1;k<k′

Upair(xkk′(ξ))

⎞
⎠ Φ̄[j′′1 ,...,j′′A−1]

(ξ),

V̄[i′′1 ,...,i′′A−1][j′′1 ,..,j′′A−1]
(ξ0)

=
∫

dA−1ξΦ̄[i′′1 ,...,i′′A−1]
(ξ)

×
(

A∑
k=1

V (xk(ξ0, ξ))

)
Φ̄[j′′1 ,...,j′′A−1]

(ξ).

If Uij′(ξ0) = U
pair
ij′ are independent of ξ0, then ε̃i(ξ0) =

ε̃i and α̃
(i)
j′ (ξ0) = α̃

(i)
j′ are also independent of ξ0, and

Eq. (22) reduces to

Φ̃i(ξ) =
j′max∑
j′=1

α̃
(i)
j′ ΦS(A)

j′ (ξ). (26)

Moreover, if U
pair
ij′ = 0, then ε̃i = E

S(A)
i and α̃

(i)
j′ =

δij′ , and Eq. (26) reduces to Eq. (19). The solutions
of the parametric eigenvalue problem (23) and their
derivatives with respect to parameter ξ0 are calculated
by means of algorithms [50, 51].

An example of such parametric basis of S type
at A = 2 was considered earlier [1, 18]. The case
A ≥ 3 will be considered elsewhere. The algebraic
problem in symmetrized coordinates can be rewritten
also in terms of the integrals that involve the eigen-
functions of (A − 1)-dimensional harmonic oscillator
in Jacobi coordinates, making use of the interbasis
coefficients, generated by the transformations with
(A − 1)-dimensional oscillator Wigner functions,
described in the previous subsection.

4. CLOSE-COUPLING EQUATIONS
IN THE SCR

Now we proceed to seeking the solution of the
problem (8) in the symmetrized coordinates in the
form of Galerkin expansion

Ψio(ξ0, ξ) =
jmax∑
j=1

Φ̃j(ξ)χjio(ξ0), (27)

where χi(ξ0) are unknown functions

χjio(ξ0) =
∫

dA−1ξΦ̃j(ξ)Ψio(ξ0, ξ),

and Φ̃j(ξ) are the orthonormalized basis eigenfunc-
tions (26) of the (A − 1)-dimensional oscillator with
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Fig. 8. (Left panel) Gaussian-type potential (30) at σ = 0.1 (in oscillator units). (Right panel) Corresponding 2D barrier
potential at α = 1/10, σ = 0.1.

the energy eigenvalues Ei, Eq. (14), constructed in
the SCR.

The set of close-coupling Galerkin equations in
the symmetrized coordinates has the form[

− d2

dξ2
0

+ ε̃i − E

]
χiio(ξ0) (28)

+
jmax∑
j=1

Ṽij(ξ0)χjio(ξ0) = 0,

where the effective potentials Ṽij(ξ0) are calculated by
means of Vij(ξ0) from (24)

Ṽij(ξ0) =
j′max∑
j′=1

j′max∑
j′′=1

α̃
(i)
j′ Vj′j′′(ξ0)α̃

(j)
(j′′), (29)

and a set of the eigenvectors α̃
(i)
j′ of the nonparamet-

ric algebraic problem (23) under the above condition
Uij′(ξ0) = U

pair
ij′ �= 0. In the examples considered

below we put Uij′(ξ0) = U
pair
ij′ = 0 in (23), then we

have ε̃i = E
S(A)
i , α̃

(i)
j′ = δij′ and Ṽij(ξ0) = Vij(ξ0).

The repulsive barrier is chosen to be Gaussian

V (xi) =
α√
2πσ

exp
(
−x2

i

σ2

)
. (30)

Figure 8 illustrates the Gaussian potential and the
corresponding barrier potentials in symmetrized co-
ordinates at A = 2. This potential has the oscillator-
type shape, and two barriers are crossing at the right
angle. In the case A ≥ 3 the hyperplanes of barriers
are crossing at the right angle, too. The effective po-
tentials Vij(ξ0) calculated using symbolic algorithm
SCR described in the previous section are shown in
Figs. 9 and 10. In comparison with the symmetric

basis, for antisymmetric one the increase of the num-
bers i and/or j results in stronger oscillation of the
effective potentials Vij and weaker decrease of them to
zero at ξ0 → ∞. At A = 2 all effective potentials are
even functions, and at A ≥ 3 some effective potentials
are odd functions.

We can also seek for the solution of the problem (8)
in symmetrized coordinates in the form of the Kan-
torovich expansion

Ψio(ξ0, ξ) =
jmax∑
j=1

Φ̃j(ξ; ξ0)χ̃jio(ξ0). (31)

Here χ̃iio(ξ0) are unknown functions

χ̃jio(ξ0) =
∫

dA−1ξΦ̃j(ξ; ξ0)Ψio(ξ0, ξ),

and Φ̃i(ξ; ξ0) are the orthonormalized basis eigen-
functions of the parametric (A − 1)-dimensional os-
cillator with eigenenergies Ẽi(ξ0) from Eq. (21) in
the PSCR. Taking Eqs. (15) and (13) into account,
the set of the close-coupling equations in the Kan-
torovich form reads as[

− d2

dξ2
0

+ ε̃i(ξ0) − E

]
χ̃iio(ξ0) (32)

+
jmax∑
j=1

[
Hij(ξ0) +

d

dξ0
Qij(ξ0) + Qij(ξ0)

d

dξ0

]

× χ̃jio(ξ0) = 0,

where the effective potentials Hij(ξ0) and Qij(ξ0) are
calculated

Hij(ξ0) =
j′max∑
j′=1

dα̃
(i)
j′ (ξ0)

dξ0

dα̃
(j)
j′ (ξ0)

dξ0
, (33)
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Table 5. The degeneracy multiplicities p from (16), ps = pa and pS = pA of s, a, S, and A eigenfunctions of the oscillator
energy levels ΔEj = E•

j − E•
1 (• = 0, s, a, S, A)

A = 3 A = 4 A = 5 A = 6
ΔEj

p ps, pa pS , pA p ps, pa pS , pA p ps, pa pS , pA p ps, pa pS , pA

1 1 1 1 1 1 1 1 1 1 1 1 0

2 1 0 3 1 0 4 1 0 5 1 0 2

3 2 1 6 2 1 10 2 1 15 2 1 4

4 2 1 10 3 1 20 3 1 35 3 1 6

5 3 1 15 4 2 35 5 2 70 5 2 8

6 3 1 21 5 1 56 6 2 126 7 2 10

7 4 2 28 7 3 84 9 3 210 10 4 12

Table 6. Resonance values of the energy ES (EA) (in oscillator units) for S (A) states for A = 2, 3, 4 (σ = 1/10, α = 20)
with approximate eigenvalues ED

i , for the first ten states i = 1, . . . , 10, calculated using the truncated oscillator basis
(D) till jmax = 136, 816, 1820 at A = 2, 3, 4

i 1 2 3 4 5 6 7 8 9 10

A = 2

ES 5.72 9.06 9.48 12.46 12.57 13.46 15.74 15.78 16.65 17.41

EA 5.71 9.06 9.48 12.45 12.57 13.45 15.76∗ 15.76∗ 16.66 17.40

ED
i 5.76 9.12 9.53 12.52 12.64 13.52 15.81 15.84 16.73 17.47

A = 3

ES 8.18 11.11 12.60 13.93 14.84 15.79 16.67

8.31 11.23 14.00 14.88 16.73

EA 11.55 14.46 16.18

11.61 14.56 16.25

ED
i 8.19 11.09 11.52 12.51 13.86 14.42 14.74 15.67 16.11 16.53

A = 4

ES 10.12 11.89 12.71 14.86 15.19 15.41 15.86 16.37 17.54 17.76

ED31
i 10.03 12.60 14.71 15.04 16.18 17.34 17.56

ED22
i 11.76 15.21 15.64

∗ Two overlapping peaks of transmission probability.

Qij(ξ0) = −
j′max∑
j′=1

α̃
(i)
j′ (ξ0)

dα̃
(j)
j′ (ξ0)

dξ0
,

using the solutions ε̃i(ξ0) and α̃
(i)
j′ (ξ0), and their first

derivatives of the parametric algebraic eigenvalue
problem (23). Note, that the PSCR constructed
in the above form with the long derivative Dij =
δijd/dξ0 − Qij(ξ0) can be treated as an alternative
version [52] of the method of generator coordinates

with velocity-dependent effective potential [53, 54].
Indeed, equations (32) can be rewritten in the terms
of long derivatives Dij , which apply in some adiabatic
calculations

jmax∑
j=1

[
−D2

ij + Fij(ξ0) + (ε̃i(ξ0) − E)δij

]
(34)

× ˜̃χjio(ξ0) = 0.
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Fig. 10. The same as in Fig. 9 but for A states. j is the number of state in Table 4.

However, the curvature matrix elements

Fij(ξ0) = Hij(ξ0) −
j′′max∑
j′′=1

Qij′′(ξ0)Qj′′j(ξ0)

tend to zero only at j′′max � j′max � jmax. This fact
explains the different rate of convergence of approx-
imate solutions to exact ones with increasing jmax
in different calculations. The asymptotic form of the
matrix solution χ̃jio(ξ0), compatible with (9), was
derived earlier in [18].

Thus, the scattering problem (8) with the asymp-
totic boundary conditions (9) is reduced to the
boundary-value problem for the set of close-coupling
equations in Galerkin or Kantorovich form, (28)
or (32), with the boundary conditions at d = 1, ξ0 =
ξmin and ξ0 = ξmax:

dF(ξ0)
dξ0

∣∣∣∣
ξ0=ξmin

= R(ξmin)F(ξmin), (35)

dF(ξ0)
dξ0

∣∣∣∣
ξ0=ξmax

= R(ξmax)F(ξmax),

where R(ξ) is an unknown jmax × jmax matrix func-
tion, F(ξ0) = {χio(ξ0)}No

io=1 = {{χjio(ξ0)}jmax
j=1}

No
io=1

is the required jmax × No matrix solution, and No

is the number of open channels, No = max
2E≥Ej

j ≤

jmax, calculated using the third version of KANTBP
program [55], described in [18, 41].

5. RESONANCE TRANSMISSION
OF A FEW COUPLED PARTICLES

In the case of V pair(xij) = V hosc(xij), the solution
of the scattering problem described above yields the
reflection and transmission amplitudes Rjio(E) and
Tjio(E) that enter the asymptotic boundary condi-
tions (9) as unknowns. |Rjio(E)|2 (|Tjio(E)|2) is the
probability of a transition to the state, described by
the reflected (transmitted) wave and, hence, will be
referred as the reflection (transmission) coefficient.
Note that |Rjio(E)|2 + |Tjio(E)|2 = 1.

In Figs. 11, 12, and 13 we show the energy de-
pendence of the total transmission probability |T |2ii =∑No

j=1 |Tji(E)|2. This is the probability of a transition
from a chosen state i into any of No states, found from
Eq. (27) by solving the boundary-value problem in the
Galerkin form, (28) and (35), with the KANTBP pro-
gram [55] on the finite-element grid Ωξ{−ξmax

0 , ξmax
0 }

with Nelem fourth-order Lagrange elements between
the nodes. For S solutions at N = 2, 3, 4 the follow-
ing parameters are used: jmax = 13, 21, 39, ξmax

0 =
9.3, 10.5, 12.8, Nelem = 664, 800, 976, while for A
solutions jmax = 13, 16, 15, ξmax

0 = 9.3, 10.5, 12.2,
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Fig. 12. The same as in Fig. 11 but for A states of the particles.

Nelem = 664, 800, 976. Figures 11 and 12 demon-
strate the nonmonotonic behavior of the probability
versus the energy, and the observed resonances are
manifestations of the quantum transparency effect.
With the barrier height increasing, the peaks become
narrower and their positions shift to higher energies.
The multiplet structure of the peaks in the symmetric
case is similar to that in the antisymmetric case. For
three particles the major peaks are double, while for
two and four particles they are single. For A = 2
and α = 10, 20 one can observe additional multiplets

of small peaks. Figure 13 illustrates the energy
dependence of transmission probabilities from the
exited states. As the energy of the initial excited state
increases, the transmission peaks demonstrate a shift
towards higher energies, the set of peak positions
keeping approximately the same as for the transitions
from the ground state and the peaks just changing
one position for another, like it was observed in the
model calculations [14]. For example, for A = 3
the position of the third peak for transitions from
the first two states (E = 10.4167 and E = 10.4156)

PHYSICS OF ATOMIC NUCLEI Vol. 77 No. 3 2014



408 GUSEV et al.

 

0.2

14

0.4

1862

 

A

 

 = 3, 

 

α

 

 = 10, 

 

σ

 

 = 1/10

 

10

 

E

 

0.2
0.4

0.8
0.6

0.2

0.4

0.6

0.2
0.4

0.8
0.6

 
T

 

ii

 
2

 

0.2

33

0.4

4191

 

A

 

 = 2,

 

 σ

 

 = 1/10, 

 

α

 

 = 10

 

17

 

E

 

[6]

 

0.6

0.2
0.4

0.8
0.6

0.2
0.4

0.8
0.6

0.2
0.4

0.8
0.6

 
T

 

ii

 
2

 

25

0.1

15

0.2

1973

 

A

 

 = 4

 

α

 

 = 10

 

11

 

E

 

[0, 0, 0]

 

0.2
0.4

0.2

0.4

0.2
0.4
0.6

 
T

 

ii

 
2

 

[4]

[2]

[0] [0, 0]

[0, 2]

–2

 

–1

 

[0, 3] + 2

 

–1

 

3

 

1/2

 

[1, 2]

2

 

–1

 

3

 

1/2

 

[0, 4] + 2

 

–1

 

[2, 2]

 

σ

 

 = 1/10

[0, 0, 2]

[1, 1, 1]

[0, 0, 4]

[0, 2, 2]

 

0.2
0.1

0.3

Fig. 13. The total penetration probabilities |T |2ii vs energy E (in oscillator units) from the ground and excited states of the
system of A = 2, 3, 4 of the S states of the particles, coupled by the oscillator potential, through the repulsive Gaussian-type
potential barriers (30) at σ = 0.1 and α = 10.

 

1

0

 

ξ

 

0

 

2

4–4
0

 

A

 

 = 4, 

 

σ

 

 = 1/10, 

 

α

 

 = 10

 

1

 

3

8–8

 

2
3
4
5
6, 7, ...

 

E

 

 = 9.5434

 

|

 

T

 

|

 

11
2

 

 = 0.5911

 

2

0

 

ξ

 

0

 

4

4–4
0

 

1

 

6

8–8

 

2
3
4
5
6, 7, ...

 

E

 

 = 11.1276

 

|

 

T

 

|

 

11
2

 

 = 0.3086

 

0.4

0

 

ξ

 

0

 

0.8

4–4
0

 

1

 

1.2

8–8

 

2
3, 4, ...

 

E

 

 = 10.5004

 

|

 

T

 

|

 

11
2

 

 = 0.0001

 

8

0.5

1.0

0

 

1

 

1.5

 

2
3
4
5
6, 7, ...

 

E

 

 = 10.4167

 

|

 

T

 

|

 

11
2

 

 = 0.5898

 

1

2

0

 

1

 

3

 

2
3
4
5
6, 7, ...

 

E

 

 = 10.8356

 

|

 

T

 

|

 

11
2

 

 = 0.4710

 

0.4

0.8

0

1.2

 

E

 

 = 11.3792

 

|

 

T

 

|

 

11
2

 

 = 0.0006

 

1

2

0

 

1

 

4

 

2
3
4
5
6, 7, ...

 

E

 

 = 7.5339

 

|

 

T

 

|

 

11
2

 

 = 0.8507

 

1

2

0

 

1

 

3

 

2
3
4
5
6, 7, ...

 

E

 

 = 8.0229

 

|

 

T

 

|

 

11
2

 

 = 0.6957

 

0.4

0.8

0

 

1

 

1.2

 

2
3, 4, ...

 

E

 

 = 9.0798

 

|

 

T

 

|

 

11
2

 

 = 0.0001

 

1
2
3
4
5
6, 7, ...

 

2.0

3

 

|χ

 

i

 

(

 

ξ

 

0

 

)

 

|

 

2

 

|χ

 

i

 

(

 

ξ

 

0

 

)

 

|

 

2

 
A

 
 = 3, 

 
σ

 
 = 1/10, 

 
α

 
 = 10

 

|χ

 

i

 

(

 

ξ

 

0

 

)

 

|

 

2

Fig. 14. The probability densities |χi(ξ0)|2 of coefficient functions of decomposition (27), representing the incident wave
function of the ground S state of the particles at the values of the collision energy E, corresponding to some maxima and
minima of the transmission coefficient in Fig. 11 for the parameters of the Gaussian barrier α = 10 and σ = 0.1.

PHYSICS OF ATOMIC NUCLEI Vol. 77 No. 3 2014



RESONANT TUNNELING OF A FEW-BODY CLUSTER 409
 

0.2

8

0.4

0.6

9
0

 

k1

cc1

 

0.8

1.0

 
T

 

11
2

 

E

 

cc2

k2k3

k4

cc3

cc4

Fig. 15. The epures of the first peak in Fig. 11 illustrating
the convergence of Galerkin (cc*) and Kantorovich (k*)
close-coupling expansions in calculations of transmis-
sion coefficient |T |211 for the S-states, A = 2 at α = 10,
σ = 0.1 (E in oscillator units).

coincides with the position of the first peak for the
transitions from the second two states (E = 10.4197
and E = 10.4298).

The effect of quantum transparency is caused by
the existence of barrier quasistationary states, em-
bedded in the continuum. Figure 14 shows that in the
case of resonance transmission the wave functions,
depending on the center-of-mass variable ξ0, are lo-
calized in the vicinity of the potential barrier center
(ξ0 = 0).

For the energy values, corresponding to some of
the transmission coefficient peaks in Fig. 11 at α =
10 within the effective range of barrier potential ac-
tion, the wave functions demonstrate considerable
increase (from two to ten times) of the probability
density in comparison with the incident unit flux. This
is a fingerprint of quasistationary states, which is not
a quantitative definition, but a clear evidence in favor
of their presence in the system [56, 57].

In the case of total reflection the wave functions
are localized at the barrier side, on which the wave
is incident, and decrease to zero within the effective
range of the barrier action.

Note that the explicit explanation of quantum
transparency effect is achieved in the frame of Kan-
torovich close-coupling equations (32) because of
the multi-barrier potential structure of the effective
potential (33), appearing explicitly even in the diag-
onal or adiabatic approximation, in particular, in the
S case for A = 2 [1, 18]. Nevertheless, in Galerkin
close-coupling equations the multi-barrier potential
structure of the effective potential is observed explic-
itly in the A case (see Fig. 10).

As an example, Fig. 15, which is an epure of
Fig. 11, shows the comparison of convergence rates
of Galerkin (27) and Kantorovich (31) close-coupling
expansions in calculations of transmission coefficient

|T |211 for S wave functions, A = 2 at α = 10, σ = 0.1.
One can see that the diagonal approximation of the
Kantorovich method provides better approximations
of the positions of the transmission coefficient |T |211
resonance peaks. With the increasing number of ba-
sis functions, i.e., the number jmax of close-coupling
equations with respect to the center-of-mass coor-
dinates in Galerkin (28) and Kantorovich (32) form,
respectively, the convergence rates are similar and
confirm the results obtained by solving the problem by
means of the Finite-Difference Numerov method in
2D domain [1]. This is true for the considered short-
range potentials (30), while for long-range potentials
of the Coulomb type the Kantorovich method can be
more efficient [18].

Figure 16 shows the profiles of |Ψ|2 ≡ |Ψ(−)
Em→|2

for the S and A total wave functions of the continuous
spectrum in the (ξ0, ξ1) plane with A = 2, α = 10,
σ = 1/10 at the resonance energies of the first and the
second maximum and the first minimum of the trans-
mission coefficient demonstrating resonance trans-
mission and total reflection, respectively. It is seen
that in the case of resonance transmission the redis-
tribution of energy from the center-of-mass degree of
freedom to the internal (transverse) ones takes place,
i.e., the transverse oscillator undergoes a transition
from the ground state to the excited state, while in
the total reflection the redistribution of energy is ex-
tremely small and the transverse oscillator returns to
infinity in the same state.

In Table 6 we present the resonance values of the
energy ES (EA) calculated by solving the boundary-
value problem (28) and (35), using the KANTBP 3.0
program, for S (A) states at A = 2, 3, 4, σ = 1/10,
α = 20 that correspond to the maxima of transmis-
sion coefficients |T |2ii in Fig. 11 up to the values of en-
ergy E < 18 and the corresponding resonance values
of the energy ED calculated by means of the Dirichlet
conditions (DC) algorithm. One can see, that the
accepted approximation of narrow barrier with im-
permeable walls using in the DC algorithm provides
an appropriate approximation ED

i of the above high
accuracy results ES (EA) with the error smaller than
2%. Below we give a comparison and qualitative
analysis of the obtained results.

In the considered case the potential barrier V (xi)
is narrow and V pair(xij) = V hosc(xij), so that we
solve Eq. (1) in the Cartesian coordinates x1, . . . , xA

in one of the 2A–2 subdomains, defined as pixi > 0,
pi = ±1, with the DC: Ψ(x1, . . . , xA)|∪A

i=1{xi=0} = 0

at the internal boundaries ∪A
i=1{xi = 0}. Here, the

value pi = ±1 indicates the location of the ith particle
at the right or left side of the barrier, respectively.
Thus, in the DC procedure we seek for the solution in
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the form of a Galerkin expansion over the orthogonal
truncated oscillator basis, ΨD

i (x) =
∑jmax

j=1 Φ̄j(x)ΨD
ji

composed of A-dimensional harmonic oscillator
functions Φ̄j(x), odd in each of the Cartesian coordi-

nates x1, . . . , xA in accordance with the above DCs,
with unknown coefficients ΨD

ji. As a result, we arrive

at the algebraic eigenvalue problem DΨD = ΨDED

with a dense real-symmetric jmax × jmax matrix. So,
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in the DC procedure we seek for an approximate
solution in one of the potential wells, i.e., we neglect
the tunnelling through the barriers between wells.
Therefore, we cannot observe the splitting, inherent in
exact eigenvalues, corresponding to S and A eigen-
states, differing in permutation symmetry. However,
we can explain the mechanism of their appearance
and give their classification, which is important, too.
The DC algorithm was implemented in CAS Maple
and Fortran environment and published in [58].

Remark. The DC procedure is similar to solving
Eq. (8) in the symmetrized coordinates ξ0, ξ related
to the Cartesian ones via Eq. (3), implemented by the
following two steps:

(i) we approximate the narrow barriers by impene-
trable walls xk(ξ0, ξ) = 0;

(ii) we superpose these mutually perpendicular
walls with the coordinate hyperplanes using rota-
tions.

Actually, the two approaches yield the same
boundary-value problem, formulated in different co-
ordinates (1), (8).

Below we give a comparison and qualitative anal-
ysis of the obtained results. For two particles, A = 2
(see Fig. 8), there are two symmetric potential wells.
In each of them both symmetric and asymmetric
wave functions are constructed. Since the poten-
tial barrier, separating the wells, is sufficiently high,
the appropriate energies are closely spaced, so that
each level describes the states of both S and A type.
The lower energy levels form a sequence “singlet–
doublet–triplet, etc.”, which is seen in Fig. 11. The
resonance transmission energies for a pair of particles
in S states is lower than that for a pair of those in A
states. This is due to the fact that in the vicinity of the
collision point the wave function is zero.

When A = 3, there are six similar wells, three of
them at each side of the plane ξ0 = 0. The symmetry
with respect to the plane ξ0 = 0 explains the presence
of doublets. The presence of states with definite
symmetry is associated with the fact that the axis
ξ0 is a third-order symmetry axis. However, in
contrast to the case A = 2, one can obtain either
S or A combinations of states. For example, the
first four solutions of the problem, in one of the
wells (e.g., the one restricted with the pair-collision
planes “13” and “23”) possess the dominant compo-
nents 2

√
2Φ̄1(x1)Φ̄1(x2)Φ̄1(x3), 2(Φ̄1(x1)Φ̄3(x2) +

Φ̄3(x1)Φ̄1(x2))Φ̄1(x3), 2(Φ̄1(x1)Φ̄3(x2) − Φ̄3(x1) ×
Φ1(x2))Φ̄1(x3), 2

√
2Φ̄1(x1)Φ̄1(x2)Φ̄3(x3). Note,

that the first, second, and fourth of these functions are
symmetric with respect to the permutation x1 ↔ x2,
while the third one is antisymmetric. Hence, in all six
wells using the first four solutions one can obtain six
S and two A states.

When A = 4 there are 14 wells. Six wells in the
center correspond to the case when two particles are
located at one side of the barrier and the rest two at the
other side. The corresponding eigenenergy is denoted
as ED22

i . The rest eight wells correspond to the case
when one particle is located at one side of the barrier
and the rest three at the other side. The corresponding
eigenenergy is denoted as ED31

i . For these states
doublets must be observed, similar to the case of
three particles. However, the separation between the
energy levels is much smaller, because the 4-well
groups are strongly separated by two barriers, instead
of only one barrier in the case A = 3.

The necessary condition for the quasi-stationary
state being symmetric (antisymmetric) is that the
wave functions must be symmetric (antisymmetric)
with respect to those coordinates xi and xj , for which
pi = pj .

6. CONCLUSION

We considered a model of A identical particles
bound by the oscillator-type potential that undergo
quantum tunnelling through the short-range repul-
sive barrier potentials. The model was formulated
in the new representation, which we referred as
symmetrized coordinate representation (SCR). The
constructive method of symmetrizing or antisym-
metrizing the harmonic oscillator basis functions
in the new symmetrized coordinates was described.
We had shown that the transformations of (A −
1)-dimensional oscillator basis functions from the
symmetrized coordinates to the Jacobi coordinates,
reducible to permutations of coordinates and (A −
1)-dimensional finite rotation, are implemented by
means of the (A− 1)-dimensional oscillator Wigner
functions [45], while the reduction of the SCR in the
Cartesian coordinates to the hyperspherical ones is
given by means of the Clebsch–Gordan coefficients
of the interbasis expansions [47]. One can use
the above transformations to recalculate the SCR,
(A − 1)-harmonic oscillator functions of symmetric
or antisymmetric type with respect to permutations
of Cartesian coordinates of A identical particles,
in desirable sets of Jacobi and/or hyperspherical
coordinates.

For clarity a system of several identical particles in
one-dimensional Euclidean space (d = 1) was con-
sidered with a discrete spectrum of relative motion in
the center-of-mass coordinate system, described by
the internal symmetrized variables, and a continuous
spectrum of the center-of-mass motion, described by
the external variable. We calculated only the spatial
part of the wave function, symmetric or antisym-
metric under permutation of A identical particles. If
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necessary, the spin part of the wave function can
be determined using the conventional procedure and
included in a more rigorous calculation.

The multichannel scattering problem for the
Schrödinger equation with several short-range re-
pulsive barriers was formulated. The problem was
reduced to the boundary-value problem for a set of the
close-coupling second-order differential equations
with respect to the longitudinal variable on the whole
axis. This was implemented by expanding the wave
function over the oscillator basis of several bound par-
ticles possessing symmetry or antisymmetry under
permutations of A initial Cartesian coordinates.

We analyzed the effect of quantum transparency,
i.e., the resonance tunnelling of several bound parti-
cles through repulsive potential barriers. We demon-
strated that this effect is due to the existence of the
sub-barrier quasi-stationary states, embedded in the
continuum. For the considered type of symmetric
Gaussian barrier potential the positions of the en-
ergies of the S and A quasi-stationary states have
a small difference, because of the similar multiplet
structure of oscillator energy levels at a fixed number
of particles. This fact explains the similar behavior of
transmission coefficients from S and A states shifted
by the threshold energies. However, the multiplet
structure of energy positions of these states is varied
with increasing number of particles such that for three
particles the major peaks are double, while for two
and four particles they are single. Our calculations
also show that with the increasing energy of the initial
excited state of few-body clusters, the transmission
peaks demonstrate a shift towards higher energies,
the set of peak positions keeping approximately the
same as for the transitions from the ground state and
the peaks just skipping from one position for another.

The proposed approach can be adapted and ap-
plied to the analysis of tetrahedral-symmetric nu-
clei, the study of quantum diffusion of molecules and
micro-clusters through surfaces and the fragmenta-
tion mechanism in producing very neutron-rich light
nuclei. In connection with the intense search for su-
perheavy nuclei, a particularly significant application
of the proposed approach is the mathematically cor-
rect analysis of mechanisms of sub-barrier fusion of
heavy nuclei and the study of fusion rate enhancement
by means of resonance tunnelling.
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Abstract—Channeling problem produced by confining environment that leads to resonance scattering
of charged particles via quasistationary states imbedded in the continuum is examined. Nonmonotonic
dependence of physical parameters on collision energy and/or confining environment due to resonance
transmission and total reflection effects is confirmed that can increase the rate of recombination processes.
The reduction of the model for two identical charged ions to a boundary problem is considered together with
the asymptotic behavior of the solution in the vicinity of pair-collision point and the results of R-matrix
calculations. Tentative estimations of the enhancement factor and the total reflection effect are discussed.
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1. INTRODUCTION

The interaction of channelled particles is consid-
ered as one of the possible ways to solve the problem
of synthesis of light elements and study the interac-
tions of nuclei at low energies [1–3]. It is supposed [3],
that the effect of superfocusing beam channelling can
essentially change the behavior of a nuclear reaction
cross section as a function of the energy of colliding
particles and the parameters of the crystal lattice. To
estimate the cross section it is necessary to calcu-
late the wave function of the continuous spectrum
describing the interaction of channelled particles in a
vicinity of the point of their pair impact, rather than
the reflection and transmission coefficients within the
framework of the model [4]. One of the known ap-
proaches to solve such type of problems has been
proposed in [5, 6]. It was also applied to calculate
the quasistationary states, providing the full reflection
and resonant transmission of electrons and protons
in a homogeneous magnetic field at resonant ener-
gies [7]. Here this approach is applied to the scat-
tering of similarly charged particles channelled in a
crystal in the framework of the model of [4]. We calcu-
late the wave function of the continuous spectrum and
estimate the dependence of the reaction enhancement
coefficient on the energy by calculating a ratio of the
probability density in the vicinity of the pair-collision

∗The text was submitted by the authors in English.
1)Joint Institute for Nuclear Research, Dubna, Russia.
2)Saratov State University, Russia.
3)Institute of Nuclear Physics, Almaty, Kazakhstan.

point in the presence of an additional confining poten-
tial and without it.

The paper is organized as follows. In Section 2 the
axis channelling model of two identical charged ions
is briefly described. In Section 3 the nonrelativistic
problem of an ion in the Coulomb field and the uniform
magnetic field is recalled. In Section 4 the details of
the R-matrix-calculation scheme of the continuous
spectrum problem on a finite interval with the third-
type boundary conditions are described together with
the brief analysis of an example of quasistationary
states. In Section 5 the asymptotic expansions of the
continuous spectrum solutions in open channels at
small values of the radial variable (i.e., in the vicinity
of the pair-collision point) are presented. In Section 6
preliminary estimations of the enhancement factor are
discussed. In Conclusion the prospects of further ap-
plication of the proposed approach and the expected
results are discussed.

2. THE CHANNELLING MODEL
OF TWO IDENTICAL CHARGED IONS

The nonrelativistic model of two positive ions la-
belled by i = 1, 2 with the effective masses mi and
charges qi under the axis channelling condition with
the energy Et in the laboratory frame is described by
the 6D equation

(Ht − Et)Ψt (r1, r2) = 0, (1)

Ht = − 1
2m1

∆(3)
r1 − 1

2m2
∆(3)

r2 + U1(r1) (2)

+ U2(r2) + U12(r1 − r2),

768
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where ri are the position vectors of ions in R3, ∆(3)
ri

are the Laplace operators in R3, Ui(ri) is the energy
of interaction between the particles and the crys-
tal and U12(r1 − r2) = q1q2/ |r1 − r2| is their mutual
Coulomb interaction energy in atomic units.

The potentials of interaction between the par-
ticles and the crystals are approximated by the
known continuous potentials [8] of the form Ui(ri) ≡∑

s Ui(|ri − Rs|), where Rs are position of crystal
atomic chains formed a channel, and their expansions
in powers of the distance from channelling axis
coincided with the axis Z of a laboratory frame. Their
leading approximation yield 2D harmonic oscillators
Ui(ri) = miω

2
i ρ

2
i /2 with frequencies ω1 �= ω2 with re-

spect to the transverse variables ρi: ri = (zi, ρi, ϕ̃i) ∈
R3, where ω2

i = 2αiqi/mi, and αi ≈ α are constants
of particle–crystal interaction.

The motion of a system of two particles with
total mass M = m1 + m2 and reduced mass µ =
m1m2/(m1 + m2) in Jacobi variables R = (m1r1 +
m2r2)/(m1 + m2) and r = r1 − r2 is averaged in the
plane-wave approximation with the momentum KZ

along the axis Z, which yields the 5D equation [4]

(H − E)Ψ (R⊥, r) = 0, (3)

Ψ (R⊥, r) = Ψt (R, r) exp(ıKZZ),

H = − 1
2M

∆(2)
R⊥

− 1
2µ

∆(3)
r (4)

+ U(R⊥, r⊥) + U12(r),

where E = Et − K2
Z/2M is the energy, R⊥ =

(X⊥, Y⊥) and r⊥ = (x⊥, y⊥) are transverse compo-
nents of radius-vectors of the center-of-mass and
relative motion of ions, ∆(2)

R⊥
is the Laplace operator

in the transversal space R2 and U(R⊥, r⊥) is the
effective potential of the system of two particles

U(R⊥, r⊥) =
m1ω

2
1 + m2ω

2
2

2
R2

⊥

+ µ(ω2
1 − ω2

2)r⊥R⊥ +
µ2

2

(
ω2

1

m1
+

ω2
2

m2

)
r2
⊥.

Under the condition ω2
1 − ω2

2 = 0, namely, q1m2 −
q2m1 = 0, the variables can be separated:
Ψ(R⊥, r) = Ψ⊥(R⊥)Ψint(r), so that the 5D problem
is split into the 2D equation describing the center-of-
mass motion with the energy Ea⊥ ,(

− 1
2µ

∆(2)
R⊥

+
m1ω

2
1 + m2ω

2
2

2
R2

⊥

)
(5)

× Ψ⊥ (R⊥) = Ea⊥Ψ⊥ (R⊥) ,

and the 3D equation that describes the relative mo-
tion,(

− 1
2µ

∆(3)
r +

µ2

2

(
ω2

1

m1
+

ω2
2

m2

)
r2
⊥ + U12(r)

)
(6)

× Ψint (r) = EintΨint (r) ,

where Eint = E − Ea⊥ is the energy in the center-of-
mass frame. Note, that in accordance with the Kohn
theorem [9], the generalization of the above model
onto a similar n-particle system is also possible. Such
setting of the problem can be also used if the frequen-
cies ωi are considered as phenomenological param-
eters induced by a certain environment like artificial
waveguides and if U12(r) is the screening Coulomb
potential for the scattering model of neutral atoms
with confining potentials [10, 11].

We can rewrite Eq. (6) in the explicit form with
respect to Coulomb interaction(

−∆(3)
r +

2Z
r

+
γ2

4
r2
⊥

)
Ψint (r) = εΨint (r) , (7)

where Z = µq1q2 is the reduced charge, γ2 = 8µαq̃,
q̃ = (q1m

2
2 + q2m

2
1)/ (m1 + m2)

2, is the interaction
constant, and ε = 2µEint is the reduced energy. Fur-
ther, we use the scale transformation r → √

γr, Z →
Z/

√
γ, Eint → Eint/γ:

(
−∆(3)

r +
2Ẑ
r

+
1
4
r2
⊥

)
Ψint (r) = ε̂Ψint (r) , (8)

where Ẑ = Z/
√

γ and ε̂ = ε/γ.

3. AN ION IN COULOMB AND UNIFORM
MAGNETIC FIELDS

Equation (8) is similar to the Schrödinger equa-
tion describing the motion of a particle with mass
m1 and charge q1 in Coulomb field of the particle
with the infinite mass m2 and charge q2, and in
an axially symmetric magnetic field B = (0, 0, B =
γB0), B0 = 2.35 × 105 T [6]. In spherical coor-
dinates (r, η = cos θ, ϕ) the later can be written
in atomic units for the wave function Ψ(r, η, φ) =
Ψm(r, η) exp (ımϕ)/(2π)1/2 as the 2D equation for
the fixed magnetic quantum number m in the region
Ω = {0 < r < ∞,−1 < η < 1}:(

− 1
r2

∂

∂r
r2 ∂

∂r
+

Â(0)(η; r)
r2

+
2Z
r

− ε

)
(9)

× Ψm(r, η) = 0.
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The operator Â(0)(η; r) = A(0)(η; r)− (signq1)γmr2,
where (signq1) = −(+), for example, for electron
(positron), and A(0)(r, η) is given by

A(0)(η; r) = − ∂

∂η
(1 − η2)

∂

∂η
+

m2

1 − η2
(10)

+
(

γr2

2

)2

(1 − η2).

Here, Z = m1q1q2 is the reduced charge and ε =
2m1E is the reduced energy. Thus, Eq. (8) with
proper definitions for Z, ε, and γ formally corresponds
to Eq. (9) if we put Â(0)(η; r) = A(0)(η; r), i.e., if we
omit γmr2. The wave function satisfies the following
boundary conditions in each mσ subspace (σ is
z parity Ψm(r,−η) = σΨm(r, η)) of the full Hilbert
space:

lim
η→±1

(1 − η2)
∂Ψm(r, η)

∂η
= 0, if m = 0,

Ψm(r,±1) = 0, if m �= 0,
∂Ψm(r, η)

∂η

∣∣∣∣
η=0

= 0, if σ = +1,

Ψm(r, 0) = 0, if σ = −1.

We consider the Kantorovich expansion of the
partial solution Ψmσ

i (r, η) using the set of one-
dimensional parametric basis functions φj(η; r) ≡
φmσ

j (η; r):

Ψmσ
i (r, η) =

jmax∑
j=1

φmσ
j (η; r)χ(i)

j (r). (11)

The matrix-valued functions χ(r) ≡ {χ(i)(r)}jmax
i=1

composed from vector functions (χ(i))T =
(χ(i)

1 (r), . . . , χ(i)
jmax

(r)) are unknown. The vector an-

gular functions (φ(η; r))T = (φ1(η; r), . . . ,
φjmax(η; r)) form an orthonormal basis for each value
of the radius r which is treated here as a parameter.
The angular oblate spheroidal functions φi(η; r) ∈
Fr ∼ L2([−1, 1]) and the corresponding potential
curves Ei(r) (in Ry = 1/2 a.u.) are determined as
the solutions of the following one-dimensional para-
metric eigenvalue problem:

Â(0)(η; r)φj(η; r) = Ej(r)φj(η; r),

1∫
−1

φi(η; r)φj(η; r)dη = δij .

By substituting expansion (11) into the above
boundary-value problem (9)–(11), we arrive at an
eigenvalue problem for a system of jmax ordinary
second-order differential equations that determines
the coefficients (radial wave functions) at the fixed

energy ε (χ(i)(r))T = (χ(i)
1 (r), χ(i)

2 (r), . . ., χ
(i)
jmax

(r))
in the expansion (11):(

−I
1
r2

d

dr
r2 d

dr
+

U(r)
r2

+ Q(r)
d

dr
(12)

+
1
r2

dr2Q(r)
dr

)
χ(i)(r) = εiIχ(i)(r),

Here, I,U(r), and Q(r) are finite jmax × jmax matrices
whose elements are given by the relations

Uij(r) =
Ei(r) + Ej(r) + 4Zr

2
δij + r2Hij(r), (13)

Hij(r) =

1∫
−1

∂φi(η; r)
∂r

∂φj(η; r)
∂r

dη,

Qij(r) = −
1∫

−1

φi(η; r)
∂φj(η; r)

∂r
dη.

The continuum wave function Ψ(r, θ) satisfies the
boundary condition of the third type:

dΦ(r)
dr

= R(r)Φ(r), (14)

R(r) ≡ dΦ(r)
dr

Φ−1(r),

at fixed values of the energy ε and the radial vari-
able r = rmin > 0 and r = rmax 	 1, where Φ(r) =
{χ(i)(r)}No

i=1 is an unknown jmax × No matrix and
No = max2E≥εth

j
j < jmax is the number of open

channels with Landau threshold εth
mj(γ) =

lim
r→∞

r−2Ej(r) = γ(2j − 1 + |m| − (signq1)m).

4. THE CONTINUOUS SPECTRUM
PROBLEM

The continuous spectrum solutions χ(i)(r) obey
the third-type boundary condition at fixed energy ε =
2E above the first Landau threshold εth

mj(γ) with j =
1:

dχ(r)
dr

= Rχ(r), r = rmax, (15)
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where R is a nonsymmetric jmax × jmax matrix which
was calculated using the program KANTBP [5]. The
orthogonality/normalization condition for Ψ̂Emσ

i (Ω)
at m = m′ is 〈

Ψ̂Emσ
i (Ω)

∣∣Ψ̂E′m′σ′
i′ (Ω)

〉
(16)

= δ(E − E′)δmm′δσσ′δii′ .

We express the corresponding eigenfunction
ΨEmσ

i (r, η) of the continuous spectrum with the
energy ε = 2E in open channels i = 1, No in the form
of Eq. (11), where χ̂(mσ)(E, r) ≡ {χ(io)(r)}No

io=1 is
now the radial part of the eigenchannel or “incoming”
and “outgoing” wave function. The eigenchannel
wave function χ̂(mσ)(E, r) is expressed as

χ̂(mσ)(E, r) = (2/π)1/2χ(p)(r)Ccoscoscosδ. (17)

The function χ(p)(r) is a numerical solution of
Eq. (12) that satisfies the “standing-wave” boundary
conditions (15) and has the standard asymptotic
form [5]

χ(p)(r) = χs(r) + χc(r)K, (18)

KC = Ctantantanδ.

Here, K ≡ Kσ is the symmetric numerical short-
range reaction matrix with the diagonal eigen-
value matrix tantantanδ ≡ {δij tan δj}No

ij=1 depending on

the short-range even/odd phase shift vector δ ≡
δσ = {δσ

j }No
j=1, and the orthogonal matrix CTC = Ioo

of the corresponding eigenvectors C, where Ioo is
the unit No × No matrix. Note, that in Eq. (17),
coscoscosδ is a diagonal matrix defined in the same terms.
The regular χs(r) = 2
(χ(r)) and irregular χc(r) =
2�(χ(r)) asymptotic functions are expressed via
the fundamental asymptotic solution χ(r) with the
leading terms at r → ∞:

χjio(r) =
exp(ıpior + ıζ ln(2pior) + ıδc

io
)

2r√pio

δjio, (19)

where pio is the relative momentum in the channel
io, ζ ≡ ζio = Z/pio is a Sommerfeld-type parame-
ter, δc

io
= arg Γ(1 − ıζ) is the known Coulomb phase

shift [12]. Using the R-matrix calculus [5], we obtain
the equation expressing the reaction matrix K via the
matrix R at r = rmax

K = −X−1(rmax)Y(rmax), (20)

where X(r) and Y(r) are square No × No matrices
depending on the open–open matrix (channels)

X(r) =
(

dχc(r)
dr

− Rχc(r)
)

oo

, (21)

Y(r) =
(

dχs(r)
dr

− Rχs(r)
)

oo

.

The radial part of the “incoming” and “outgoing”
wave functions χ̂(mσ)(E, r) = (2/π)1/2χ∓(r) is ex-
pressed via the numerical “standing” wave function
and the short-range reaction matrix K by the relation

χ−(r) = ıχ(p)(r)(Ioo + ıK)−1, (22)

χ+(r) = −ıχ(p)(r)(Ioo − ıK)−1,

and have the asymptotic forms

χ̂(mσ)(E, r) = (2/π)1/2(χ(r) − χ∗(r)S†), (23)

χ̂(mσ)(E, r) = (2/π)1/2(χ∗(r) − χ(r)S).

Here, S ≡ Sσ is the symmetric unitary short-range
scattering matrix, S†S = SS† = Ioo, which can be
expressed via the calculated K matrix as

S = (Ioo + ıK)(Ioo − ıK)−1. (24)

The ionization wave function Ψ(−)
Emv̂(r, η) ≡

Ψ(−)

Em
→←

(r, η) has the asymptotic form reverse to the
common scattering problem, namely, “incident wave
+ ingoing wave”

Ψ(−)
Emv̂(r, η) = 2−1/2(ΨEm,+1(r, η) (25)

± ΨEm,−1(r, η)) exp(−ıδc).

The function Ψ(−)
Emv̂(r, η) corresponds to the func-

tion |Ev̂mNρ〉 defined in the cylindrical coordinates
(ρ, z, ϕ)

|Ev̂mNρ〉 =
exp(ımϕ)

2π

jmax∑
n′=1

Φn′(ρ)χ(−)
Emv̂n′n(z).

(26)

Here, Nρ = n − 1, v̂ denotes the initial direction
of the particle motion along the z axis, Φn′(ρ)
is the eigenfunction of a two-dimensional oscilla-
tor that corresponds to Φmv̂

j (r, η) = (Φm,+1
j (r, η) ±

Φm,−1
j (r, η))/

√
2 at r → ∞. At z → ±∞ the function

χ
(−)
Emv̂n′n(z) has the following asymptotic form:

χ
(−)
Ev̂ (z) (27)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
X(+)(z) + X(−)(z)R̂†, z > 0,
X(+)(z)T̂†, z < 0,

v̂ = →,

{
X(−)(z)T̂†, z > 0,
X(−)(z) + X(+)(z)R̂†, z < 0,

v̂ = ←,
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Fig. 1. Profiles of total wave functions (25) of the continuous spectrum in the z, x plane with Z = −1, m = 0, and γ = 0.1.
The states with the energy E = 0.05885 a.u. (left) correspond to the resonance transmission, while those with the energy
E = 0.11692 a.u. (right) correspond to the total reflection.
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Fig. 2. Transmission |T̂|2 (dash-dotted curve) and reflec-
tion |R̂|2 (solid curve) coefficients (29), even δe (dashed
curve) and odd δo (dotted curve) short-range phase
shifts (18) versus (Ẽ2 − 2E)−1/2 for Z = −1, m = 0,
γ = 0.1. Here, the position of the first threshold 2E =

E1 = γ = 0.1 corresponds to (E2 − 2E)−1/2 ≈ 2.23.

where the matrix elements of X(±)(z) are

X
(±)
n′n (z) (28)

= exp
(
±ıpn′z ± ıζn′

z

|z| ln(2pn′ |z|)
)

δn′n√
pn′

,

T̂ and R̂ are the transmission and reflection ampli-
tude matrices, T̂†T̂ + R̂†R̂ = Ioo. It is easy to show
that T̂ and R̂ may be expressed in terms of the long-
range scattering matrices Šσ = exp(ıδc)Sσ exp(ıδc)
as

T̂ = 2−1(−Š+1 + Š−1), (29)

R̂ = 2−1(−Š+1 − Š−1).

Note, that the scattering wave function Ψ(+)
Emv̂(r, η)

is defined by the formula Ψ(+)

Em
→←

(r, η) =(
Ψ(−)

Em
←→

(r, η)
)∗

having the asymptotic form “inci-

dent wave + outgoing wave”. For recombination the
above wave function should be renormalized to one
particle per unit length in the incident wave by factor√

pio in each partial wave functions.

The continuous spectrum solution χ(p)(r) having
the asymptotic form of a “standing” wave and the
reaction matrix K from (18) were calculated using
the program KANTBP [5]. As an example, the profiles
of the wave function (25) using Eq. (22) for Z = −1,
m = 0, γ = 0.1, jmax = 10, and No = 1 are shown in
Fig. 1 at two fixed values of energy E, correspond-
ing to resonance transmission |T̂|2 = sin2(δe − δo) =
1 and total reflection |R̂|2 = cos2(δe − δo) = 1. One
can see that the probability density of the wave func-
tion around a point of pair impact in the case of reflec-
tion is greater than in the case of transmission. Here,
δe ≡ δ+1

1 and δo ≡ δ−1
1 are the short-range phase

shifts for even and odd states from Eq. (18), respec-
tively. The transmission and reflection coefficients are
explicitly shown in Fig. 2 together with the even δe

and odd δo phase shifts versus the inverse square
root of energy (Ẽ2 − 2E)−1/2 relative to the second
threshold shift Ẽ2 = εth

m2(γ). The countable series of
quasistationary states imbedded in the continuum
corresponds to the short-range phase shifts δo(e) =
no(e)π + π/2 at (Ẽ2 − 2E)−1/2 = no(e) + ∆no(e)

(the
first no(e) = 1−6 of them are presented in Fig. 2).

Nonmonotonic behavior of |T̂| and |R̂| is seen to
include the cases of resonance transmission and total
reflection, related to the existence of these quasi-
stationary states.

One can fit the obtained numerical results for a
finite number of quasistationary states using the ap-
propriate analytic parametrization [13] to extrapolate
them from above the ioth threshold to below the (io +
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1)th threshold and, as a result, to estimate the count-
able set of quasistationary states between the thresh-
olds. Such a procedure provides a considerable reduc-
tion of the computer facilities required and allows one
to select the appropriate energy subregions for further
numerical calculations aimed at the determination of
the resonance frequencies of photoionization and the
induced or spontaneous recombination [14].

5. ASYMPTOTIC SOLUTION AT SMALL
VALUES OF THE RADIAL VARIABLE

Let us suppose that the set of linearly independent

solutions Φ̃reg(r) = {χ̃(i)
reg(r)}jmax

i=1 , where χ̃
(i)
reg(r) =

(χ̃reg
1i (r), . . ., χ̃

reg
jmaxi

(r))T , is constructed. Using a

linear combination of these regular solutions, χ̃(i)
reg(r),

we can find the required matrix solution Φ(r) at
r = rmin > 0:

Φ(r) = Φ̃reg(r)C, (30)

χjio(r) =
jmax∑
i=1

χ̃
reg
ji (r)Ciio ,

where C is an unknown nonzero constant jmax × No

matrix. Using the identity CC−1 = I, the R(r) ma-
trix at r = rmin can be easily found via the known set
of linear independent regular solutions Φ̃reg(r):

R(r) ≡ dΦ̃reg(r)
dr

Φ̃−1
reg(r), (31)

Rji(r) =
jmax∑
i′=1

dχ̃
reg
ji′ (r)

dr
(χ̃reg(r))−1

i
′
i
.

After the numerical calculation of the solution Φ(r) =
Φh(r) in the nodes of the finite-element grid Ωh

r with-
in the interval [rmin, rmax], taking Eqs. (14)–(31) into
account, the matrix C can be evaluated using the
formula at j = 1, . . . , jmax and io = 1, . . . , No:

C = Φ̃−1
reg(rmin)Φ(rmin), (32)

Cjio =
jmax∑
i=1

(χ̃−1
reg)ji(rmin)χiio(rmin).

The matrix C is applied to the analysis of the matrix
solution Φ(r) in the vicinity of r = 0. For example, a
constant matrix C keeps the ratio Φ̃−1

reg(0)Φ(0) finite
and nonzero even if Φ(0) ≡ 0 or is very close to zero.
To extract the required matrix C in this case, one
can use the known asymptotic form of the regular
solutions at rmin. The value rmin is defined in the
asymptotic domain of the Φ̃reg(r). As a result, we

obtain the total wave function in each open channel
r ≤ rmin:

ψio(η, r) =
jmax∑
j=1

jmax∑
i=1

φmσ
j (η; r)χreg

ji (r)Ciio .

At small r we find the asymptotic solutions of the
problem (12)–(14) as an expansion in powers of r and

Legendre polynomials P
|m|
l+s(η; r) with l = 2(j − 1) +

|m| + (1 − σ)/2:

Ej(r) = E
(0)
j + E

(2)
j r2 +

kmax/4∑
k=1

r4kE
(4k)
j , (33)

φj(η; r) = φ
(0)
j (η; r) +

kmax∑
k=1

r4kφ
(k)
j (η; r),

φ
(k)
j (η; r) =

2k∑
s=−2k

P
|m|
l+s(η; r)b(k)

sj .

The substitution of Eq. (33) into Eq. (12) leads to the

recursive relations for the unknowns b
(k)
sj for s �= 0 and

E
(4k)
j :

(s2 + (2l + 1)s)b(k)
sj (34)

= −
2∑

s′=−2

v
(1)
s;s′b

(k−1)
s−s′j +

k−1∑
p=0

E
(4k−4p)
j b

(p)
sj ,

where the matrix elements are defined by the relations
with the notation t = l + s:

v
(k)
−2;t = δ1k

1
4(2|m| + 2t − 1)

×

√
(t − 1)t(2|m| + t − 1)(2|m| + t)
(2|m| + 2t − 3)(2|m| + 2t + 1)

,

v
(k)
0;t = δ1k

2(t2 + t + 2|m|t + 2|m|2 + |m| − 1)
(2|m| + 2t − 1)(2|m| + 2t + 3)

,

v
(k)
2;t = δ1k

1
4(2|m| + 2t + 3)

×

√
(t + 1)(t + 2)(2|m| + t + 1)(2|m| + t + 2)

(2|m| + 2t + 1)(2|m| + 2t + 5)
.

These equations were solved at given initial data

E
(0)
j = l(l + 1) and b

(0)
sj = δs0. The coefficients b

(k)
0j at

s = 0 were calculated from the normalization condi-
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tion (12):

b
(k)
0j = −

k∑
p=0

2k∑
s′=−2k

2k∑
s=−2k

b
(k−p)
sj 〈s|s′〉b(p)

s′j . (35)

Thus, the asymptotic expansions of the matrix ele-
ments take the form

Hjj′(r) =
kmax/4∑
k=1

r4k−2H̄
(4k−2)
jj′ ,

Qjj′(r) =
kmax/4∑
k=1

r4k−1Q̄
(4k−1)
jj′ ,

H̄
(4k−2)
jj′ =

k∑
p=0

2k∑
s′=−2k

2k∑
s=−2k

b
(k−p)
sj

× 16p(k − p)δs+js′+j′b
(p)
s′j′ ,

Q̄
(4k−1)
jj′ =

k∑
p=0

2k∑
s′=−2k

2k∑
s=−2k

b
(k−p)
sj

× 4(k − p)δs+js′+j′b
(p)
s′j′ .

The calculation was performed using the algorithm
implemented in MAPLE up to kmax = 16. Below we
display the first few coefficients of the matrix elements
with l = 2(j − 1) + |m| + (1 − σ)/2:

Ē
(0)
j = l(l + 1), Ē

(2)
j = γm,

Ē
(4)
j =

γ2(l2 + l − 1 + |m|2)
2(2l − 1)(2l + 3)

,

Q̄
(3)
jj−2 = −γ2(l + |m|)1/2(l − |m|)1/2(l − 1 − |m|)1/2(l − 1 + |m|)1/2

2(2l − 3)1/2(2l + 1)1/2(2l − 1)2
.

At small r we find the asymptotic solutions of the
problem (12)–(14) in the form of an expansion in
powers of r:

χ̃ji(r) =
kmax∑
k=0

χ̃
(k)
ji rµi+k, χ̃

(0)
ji = δji, (36)

where µ0 is the unknown characteristic parameter.
The substitution of Eq. (36) into Eq. (12) leads to

the recursive relations for the unknowns χ̃
(k)
ji with

l′ = 2(j − 1) + |m|+ (1− σ)/2, l = 2(i− 1) + |m|+
(1 − σ)/2:

−(l′ + 1 + µi + k)(µi − l′ + k)χ̃(k)
ji (37)

= 2Zχ̃
(k−1)
ji − (mγ − ε)χ̃(k−2)

ji −
k∑

s=4

Ē
(s)
j χ̃

(k−s)
ji

−
k−2∑
s=4

H̄
(s)
jj χ̃

(k−s−2)
ji

−
k−1∑
s=3

min(jmax,i+[s/4])∑
j′=max(1,i−[s/4]),j′ 	= j

(2l + 2k − s)Q̄(s)
jj′χ̃

(k−s−1)
j′i

−
k−2∑
s=4

min(jmax,i+[s/4])∑
j′=max(1,i−[s/4]),j′ 	= j

H̄
(s)
jj′ χ̃

(k−s−2)
j′i .

As follows from Eq. (37) at k = 0, the conventional
characteristic equation yields two roots for the un-
known µi: µi = −l′ − 1 and µi = l′. The value µi =
−l′ − 1 corresponds to irregular unbound solutions
and is not considered here. The value µi = l′ corre-
sponds to the required regular and bound solutions
and is the one we have used in our calculations. In this
case (37) the coefficients of the asymptotic expansion
of the regular solution (36) are

χ̃
(0)
ii = 1, χ̃

(1)
ii =

Z

l + 1
, (38)

χ̃
(2)
ii = −−2Z2 + (ε − mγ)(l + 1)

2(l + 1)(2l + 3)
,

χ̃
(3)
ii = −Z(−2Z2 + (ε − mγ)(3l + 4))

6(l + 1)(l + 2)(2l + 3)
,

χ̃
(4)
i−1i =

Q̄
(3)
i−1i(2l + 5)
6(2l + 3)

,
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χ̃
(4)
ii =

Ē
(4)
i

4(2l + 5)
+

(ε − mγ)2

8(2l + 3)(2l + 5)

+
Z4 − Z2(ε − mγ)(3l + 5)

6(l + 1)(l + 2)(2l + 3)(2l + 5)
,

χ̃
(4)
i+1i =

Q̄
(3)
i+1i(2l + 5)
2(2l + 7)

.

As a result, we get the required expansion of
2D-solution in the Kantorovich form:

ψ
(as)
io

(η, r)

=
jmax∑
i=1

kmax∑
k=0

kmax−k∑
p=0

jmax∑
j=1

rµi+kφ
(k−p)
j (η)χ̃(p)reg

ji Ciio ,

φ
(k−p)
j (η) =

2k−2p∑
s=max(−l,−2k+2p)

P
|m|
l+s(η)b(k−p)

sj ,

where l = 2(i − 1) + |m| + (1 − σ)/2, µi = l. The
above asymptotic form of the Kantorovich expansion
is equivalent to the Galerkin one over the basis of
Legendre polynomials:

ψ
(as)
io

(η, r)

=
jmax∑
i=1

kmax∑
k=0

2k−2p∑
s=max(−l,−2k+2p)

f (k)
s (r, η)g(kmax−k)

si Ciio ,

f (k)
s (r, η) = rµi+kP

|m|
l+s(η),

g
(kmax−k)
si =

kmax−k∑
p=0

jmax∑
j=1

b
(k−p)
sj χ̃

(p)reg
ji .

Moreover, using the substitution r = (ρ2 + z2)1/2

and η = z(ρ2 + z2)−1/2, one gets the asymptotic
series for the regular solution in the Galerkin form in
cylindrical coordinates (ρ, z) over the homogeneous
polynomials of the degree (µi + k) with respect to the
variables (ρ, z):

f (k)
s (ρ, z) = (ρ2 + z2)(µi+k)/2P

|m|
l+s(z(ρ2 + z2)−1/2).

Note, that one can also derive the above asymptotic
expansion in Galerkin form with the help of the direct
calculation scheme [15]. The above asymptotic ex-
pansions can be applied to set the third-type bound-
ary condition around the point of pair impact in differ-
ent calculation schemes.

6. PRELIMINARY ESTIMATIONS
OF THE ENHANCEMENT COEFFICIENT

The solution of the channelling problem (8) with
the help of calculation schemes described in Sections
4 and 5 was found using the programs KANTBP 2.0
and POTHMF at various values of the scaled energy
E and the effective charge Z. As a result, the values
of the enhancement coefficient have been calcu-
lated by means of the formula |C (2E) /C0 (2E)|2 =∑No

i=1 |Ci (2E) /C0 (2E)|2, where Ci (2E) =
= χ1i(r = 0) are the numerical values of the solu-
tion at the point of pair impact from Eq. (12) and
C0 (2E) = χ11(r = 0) is the Coulomb function with
the effective charge Z at the energy 2E − 1.

Figure 3 illustrates the estimations of the total
enhancement coefficient and the enhancement coeffi-
cients in each open channel (1–5) as functions of the
energy 2E, related to the zero energy of free threshold,
at the effective charge Z = 6 for even components of
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the solution at m = 0. The maximum of the total en-
hancement coefficient is achieved at the value 2E =
6.9, between the third and the fourth channel at pass-

ing the minimum of the barrier 2U0 = 6.24, where

2U0 = 2U(ρ, z) = 2Z/(ρ2 + z2)1/2 + (1/4)ρ2 at the
saddle point with coordinates z = 0 and ρ = ρ0 under
the condition ∂U(ρ, z)/∂ρ|ρ = 0 (see Fig. 3b). The
reflection is practically total, indeed, at 2E = 6.552
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the matrix of reflections coefficients is

|R̂|2 =

⎛
⎜⎜⎜⎝

0.967329 0.004785 −0.000094

0.004785 0.990368 0.000074

−0.000094 0.000074 0.999999

⎞
⎟⎟⎟⎠ .

Similar to the case of attraction (see Fig. 1), the

first local minimum of the total enhancement coeffi-
cient appears with increasing energy above the forth

threshold energy to 2E = 7.70, where the diagonal

elements of the transition coefficient matrix increases
to approximately ∼ 0.5 in the first and the second

channels:

|R̂|2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.473201 0.235919 0.043577 −4 × 10−7

0.235919 0.555215 −0.003336 1 × 10−7

0.043577 −0.003336 0.995355 4 × 10−8

−4 × 10−7 1 × 10−7 4 × 10−8 1.00000

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Such a behavior is a consequence of the effects of
superstrong focusing, corresponding to astrophysical
magnetic fields. At interaction of particles in the
channel the competition of two processes occur:
the defocusing due to Coulomb interactions and
the focusing due to the oscillator interaction [3],
effectively lowering the dimension of the problem.
Hence, there exists a region of energy, where the
probability density at the point of pair impact has a

maximum for quasistationary states of the contin-
uous spectrum. For example, the first component
of the short-range even phase-shift vector δ ≡
δe = {δe

j}No=3
j=1 = (−1.5707, 0.7717, 0.5343)T of the

even state equals −π/2 at 2E = 6.552 (see Fig. 3).
Figures 4–6 present the partial ionization wave

functions |Ψ(−)
io;E0←| and their asymptotic behavior

versus the coordinates (x, z) in the plane y = 0.
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To study the interaction of channelled particles
at real values of an effective charge, Z, for example,
for identical particles with masses and charges of
a deuterium nucleus, it is necessary to set an ef-
fective charge, Z ∼ 100, and to solve the problem
with a large number of open channels, No ∼ U0 ∼
3(Z/2)2/3/2, that requires significant computer re-
source.

7. CONCLUSIONS

In the present paper the optimal conditions have
been determined under which it is possible to solve the
problem of interaction of channelled particles. Tenta-
tive estimations of the enhancement factor were ob-
tained without additional short-range nuclear poten-
tials. The dependence of the enhancement factor upon
the energy is nonmonotonic, which is a manifestation
of two potentials, the defocucing Coulomb potential
of interaction between identical charged particles and
the focusing oscillator potential, responsible for the
interaction of particles with the crystal, supporting
the quasistationary states in the continuous spectrum
and providing the practically total reflection. In the
framework of the proposed approach one can ob-
tain improved estimations of the enchancement factor
taking into account the known parametrizations of
the R matrix of nuclear reactions at an appropriate
point rmin = r0 in the vicinity of the pair impact point.

The presented approach and the programs that
allow one to study the threshold peculiarities of pho-
toionization and recombination of particles with the
opposite-sign charges (positrons, antiprotons) in a
magneto-optical trap [16], the optical absorption in
quantum wells [17], and the channelling of similarly
charged particles in thin doped films [3] or neutral
atoms and molecules in artificial waveguides or sur-
faces [10, 11].

The application of the total reflection effect to op-
positely charged particles in a homogeneous mag-
netic field can give a new mechanism of jumps in a
magneto-optical trap [16, 18] after each pair colli-
sion without any additional external confinement in
the longitudinal direction under the resonance con-
ditions (the temperature and the axial magnetic field
parameter γ or the frequency and the polarization of
the additional laser field [14, 19]), provided that the
collision integral in the Boltzmann equation will be
properly taken into account [20, 21].
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Adiabatic Representation for a Hydrogen Atom Photoionization
in a Uniform Magnetic Field*
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Abstract—A new effective method of calculating wave functions of discrete and continuous spectra of a
hydrogen atom in a strong magnetic field is developed on the basis of the adiabatic approach to parametric
eigenvalue problems in spherical coordinates. The two-dimensional spectral problem for the Schrödinger
equation at a fixed magnetic quantum number and parity is reduced to a spectral parametric problem for
a one-dimensional angular equation and a finite set of ordinary second-order radial differential equations.
The results are in good agreement with the photoionization calculations by other authors and have a true
threshold behavior.
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1. INTRODUCTION

Recent Monte Carlo estimations of the influence
of a strong magnetic field on the spontaneous recom-
bination of the anti-hydrogen in the cold positron–
antiproton plasma conditions of the ATHENA [1, 2]
and ALPHA [3] experiments (CERN) have shown
that further quantum mechanical analysis is
needed [4]. We can draw attention to a new en-
hancement mechanism of a laser-stimulated re-
combination of anti-hydrogen in cold antiproton–
positron plasma in a laboratory magnetic field via
quasistationary states embedded in the continuum
that has been revealed recently [5]. At the first stage
of such an analysis, the adiabatic representation
known in mathematics as a Kantorovich method is
developed for solving the problem of low-lying excited
states of the hydrogen atom in a magnetic field in
spherical coordinates [6] and the benchmark three-
body scattering problem on a line [7].

Indeed, the adiabatic representation in cylindri-
cal coordinates was applied recently to revive the

∗The text was submitted by the authors in English.
†Deceased.

1)Joint Institute for Nuclear Research, Dubna, Russia.
2)Saratov State University, Saratov, Russia.
3)Institute of Mathematics and Informatics, BAS, Sofia, Bul-

garia.
4)Yerevan State University, Yerevan, Armenia.
**E-mail: chuka@jinr.ru

***E-mail: gooseff@jinr.ru
****E-mail: vinitsky@theor.jinr.ru

basic decay mechanisms of Rydberg states with
high magnetic quantum numbers in the magnetic
traps [8]. It has been shown that the exhaustive
analysis of the complex dynamics of the electron with
decreasing module of magnetic number is impossible
without taking the nonadiabatic coupling into con-
sideration [9]. However, high-accuracy calculations
in cylindrical coordinates is a rather cumbersome
problem except the cases of high magnetic num-
bers or a dominating magnetic field [10]. So, using
spherical coordinates is preferable when Coulomb
and magnetic fields have comparable contributions
in the average potential energy [11] but leads to
nontrue threshold behavior of the photoionization
cross section calculated by the complex rotation–
variational method [12].

In this paper, we develop the Kantorovich ap-
proach with a boundary condition of the third type
in a form appropriate for the R-matrix calculations
of atomic hydrogen photoionization in a strong mag-
netic field using a uniform orthogonal parametric ba-
sis of the angular oblate spheroidal functions [13] in
spherical coordinates only, instead of the combined
nonorthogonal basis of Landau and Sturmian func-
tions in both cylindrical and spherical coordinates [14,
15]. The efficiency of the elaborated approach which
provides true threshold behavior of photoionization
cross sections of a hydrogen atom from the ground
state to the different continuous-spectrum states is
demonstrated.

The paper is organized as follows. The 2D eigen-
value problem for the Schrödinger equation for the
hydrogen atom in an axially symmetric magnetic field,
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written in spherical coordinates, is considered in Sec-
tion 2 together with the appropriate classification of
states. The reduction of the 2D eigenvalue problem
to a 1D eigenvalue problem for a set of closed radial
equations via four steps of the Kantorovich method
is described briefly in Section 3. All the asymptotic
expressions needed to find the solutions and the re-
action matrix using the R-matrix method, are pre-
sented in Section 4. The method is applied to the
calculation of ionization from the ground state to the
different continuous-spectrum states in Section 5. In
the Conclusions, we outline the prospects for further
applications of this approach.

2. STATEMENT OF THE PROBLEM

The Schrödinger equation for the wave function
Ψ̂(r, θ, ϕ) = Ψ(θ, r) exp(imϕ)/

√
2π in the spherical

coordinates (r, θ, φ) of the hydrogen atom in an ax-
ially symmetric magnetic field �B = (0, 0, B) can be
written as the 2D equation(

− 1
r2

∂

∂r
r2 ∂

∂r
− 1

r2 sin θ

∂

∂θ
sin θ

∂

∂θ
(1)

+ U(r, θ)
)

Ψ(r, θ) = εΨ(r, θ),

in the region Ω: 0 < r < ∞ and 0 < θ < π. The po-
tential function U(r, θ) is given by

U(r, θ) = −2Z
r

+ V (r, θ), (2)

V (r, θ) =
m2

r2 sin2 θ
+ γm +

γ2r2

4
sin2 θ,

where m = 0,±1, . . . is the magnetic quantum num-
ber, γ = B/B0, B0

∼= 2.35 × 105 T is a dimensionless
parameter which determines the field strength B, and
the atomic units (a.u.) � = me = e = 1 are used un-
der the assumption of infinite mass of the nucleus.
In these expressions, ε = 2E is the doubled energy
(in units of rydbergs, 1Ry = (1/2) a.u.) of the bound
state |mσ〉 at fixed values of m and z parity; σ = ±1;
Ψ ≡ Ψmσ(r, θ) = (Ψm(r, θ) + σΨm(r, π − θ))/

√
2 is

the corresponding wave function. Here, the sign of
z parity σ = (−1)Nθ is defined by the (even or odd)
number of nodes Nθ in the solution Ψ with respect
to the angular variable θ in the interval 0 < θ < π.
The wave function satisfies the following boundary
conditions in each Hmσ subspace of the full Hilbert
space:

lim
θ→0

sin θ
∂Ψ(r, θ)

∂θ
= 0, for m = 0, (3)

and Ψ(r, 0) = 0, for m �= 0,

∂Ψ
∂θ

(
r,

π

2

)
= 0, for σ = +1, (4)

and Ψ
(
r,

π

2

)
= 0, for σ = −1,

lim
r→0

r2 ∂Ψ(r, θ)
∂r

= 0. (5)

The discrete-spectrum wave function obeys the
asymptotic boundary condition approximated at large
r = rmax by a boundary condition of the first type,

lim
r→∞

r2Ψ(r, θ) = 0 → Ψ(rmax, θ) = 0. (6)

Here, the energy ε ≡ ε(rmax) plays the role of eigen-
values of the boundary problem (1)–(6) determined
by a variational principle with an additional normal-
ization condition in a finite interval 0 ≤ r ≤ rmax,

Π(Ψ, ε) = 0, (7)

2

rmax∫
0

π/2∫
0

r2 sin θ|Ψ(r, θ)|2dθdr = 1,

where Π(Ψ, ε) is a symmetric functional defined by

Π(Ψ, ε) = 2

rmax∫
0

π/2∫
0

sin θ

(
r2

∣∣∣∣∂Ψ(r, θ)
∂r

∣∣∣∣
2

+
∣∣∣∣∂Ψ(r, θ)

∂θ

∣∣∣∣
2

+ r2(U(r, θ) − ε)|Ψ(r, θ)|2
)

dθdr.

In the Fano–Lee R-matrix theory [16, 17], a
continuum-spectrum wave function Ψ(r, θ) obeys the
boundary condition of the third type at fixed values of
energy ε and radial variable r = rmax

∂Ψ(r, θ)
∂r

− µΨ(r, θ) = 0. (8)

Here, the parameters, µ ≡ µ(rmax, ε), determined by
a variational principle, play the role of eigenvalues of
a logarithmic normal derivative matrix of the solution
of the boundary problem (1)–(5) and (8)

Π(Ψ, ε) = 2µr2
max

π/2∫
0

sin θ|Ψ(rmax, θ)|2dθ. (9)

Standard theorems [18] ensure the existence of a
function µ(rmax, ε) such that Eq. (8) is satisfied (at
any finite r = rmax < ∞) [19].

3. REDUCTION OF THE 2D PROBLEM
BY THE KANTOROVICH METHOD

Consider a formal expansion of the partial wave
function ΨEmσ

i (r, θ) of (1)–(5) with (6)/(8) corre-
sponding to the eigenstate |mσi〉 using the finite set
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of one-dimensional basis functions {Φmσ
j (θ; r)}jmax

j=1

ΨEmσ
i (r, θ) =

jmax∑
j=1

Φmσ
j (θ; r)χ(mσi)

j (E, r). (10)

In Eq. (10), the functions χ(i)(r) ≡ χ(mσi)(E, r),

(χ(i)(r))T = (χ(i)
1 (r), . . . , χ(i)

jmax
(r)) are unknown,

and the surface functions Φ(θ; r) ≡ Φmσ(θ; r),
(Φ(θ; r))T = (Φ1(θ; r), . . . ,Φjmax(θ; r)) form an or-
thonormal basis for each value of the radius r, which
is treated here as a parameter.

In the Kantorovich approach, the wave functions
Φj(θ; r) and potential curves Ej(r) are determined as
the solutions of the following one-dimensional para-
metric eigenvalue problem:(

− ∂

∂θ
sin θ

∂

∂θ
+ r2 sin θV (r, θ)

)
Φj(θ; r) (11)

= Ej(r) sin θΦj(θ; r),

with the boundary conditions

lim
θ→0

sin θ
∂Φj(θ; r)

∂θ
= 0, for m = 0, (12)

and Φj(0; r) = 0, for m �= 0,
∂Φj

∂θ

(π

2
; r

)
= 0, for σ = +1, (13)

and Φj

(π

2
; r

)
= 0, for σ = −1.

Here, the sign of z parity, σ = (−1)Nθ , is defined by
the (even or odd) number of nodes Nθ in the solution
Φ(θ; r) with respect to the angular variable θ in the
interval 0 < θ < π. Since the operator on the left-
hand side of (11) is self-adjoint, its eigenfunctions are
orthonormal 〈

Φi(θ; r)
∣∣∣∣Φj(θ; r)

〉
θ

(14)

= 2

π/2∫
0

sin θΦi(θ; r)Φj(θ; r)dθ = δij ,

where δij is the Kronecker symbol.
Note that the solutions of this problem with shifted

eigenvalues, Ẽj(r, γ) = Ej(r, γ) − γmr2, correspond
to the solutions of the eigenvalue problem for oblate
angular spheroidal functions [13] with respect to the
variable η = cos θ:(

− ∂

∂η
(1 − η2)

∂

∂η
+

m2

1 − η2
(15)

+
(

γr2

2

)2

(1 − η2)

)
Φj(η; r) = Ẽj(r)Φj(η; r).

It means that, for small r, the asymptotics of the
eigenvalues Ej(r), j = 1, 2, . . ., at fixed values m and
σ is defined by the values of the orbital quantum num-
ber, l = s, p, d, f, . . .: Ej(0) = l(l + 1), l = 0, 1, . . .,
where j runs j = (l − |m|)/2 + 1 for even z-parity
states, σ = +1 = (−1)l−|m|, and j = (l − |m| + 1)/2
for odd z-parity states, σ = −1 = (−1)l−|m|. Taking
into account that the number of nodes Nθ of the
eigenfunction Φ(θ; r) at fixed |m| and σ = (−1)Nθ as
a function of the parameter r is preserved, we get a
one-to-one correspondence between these sets, i.e.,
Nθ = l − |m|.

For large r, the asymptotics of eigenvalues Ej(r),
j = 1, 2, . . ., at fixed values of m and σ is defined by
the values of the transversal quantum number, Nρ:

lim
r→∞

r−2Ej(r, γ) = εth
mσj(γ) (16)

= γ(2Nρ + |m| + m + 1),

where Nρ = 0, 1, . . . , and j runs j = Nρ + 1. The
values of the transversal quantum number Nρ, i.e., the
number of nodes of the eigenfunction Φ(θ; r) in the
subinterval 0 < η < 1 or −1 < η < 0, corresponding
to the transversal variable ρ = r sin θ on a semiaxis,
are expressed via the number of nodes Nθ of the
solution Φ(θ; r): Nρ = 1/2 · Nθ for the even z-parity
states, σ = +1 = (−1)Nθ , and Nρ = 1/2 · (Nθ − 1)
for the odd z-parity states, σ = −1 = (−1)Nθ .

Such a transversal classification also reveals a
violation of degeneracy of the states with azimuthal
quantum numbers, ±m, having the same module |m|
that holds for the angular oblate spheroidal functions,
i.e.,

lim
r→∞

r−2Ẽj(r, γ) = γ(2Nρ + |m| + 1). (17)

Taking into account the above-mentioned correspon-
dence rules between the quantum numbers l − |m|,
Nθ, Nρ and the number j at fixed values of m and
σ, we use the unified number j without pointing
out explicitly a concrete type of quantum numbers.
These rules are similar to the conventional correlation
diagrams for potential curves of a hydrogen atom in a
uniform magnetic field or a helium atom.

After substituting the expansion (10) into the vari-
ational problem (7)/(9) and using Eqs. (11)–(14),
the solution of the above problem is transformed into
the solution of an eigenvalue problem for a system of
jmax ordinary second-order differential equations for
determining the energy ε and the coefficients (radial
wave functions) χ(i)(r) of expansion (10),(

− I
1
r2

d

dr
r2 d

dr
+

U(r)
r2

+ Q(r)
d

dr
(18)
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+
1
r2

dr2Q(r)
dr

)
χ(i)(r) = εiIχ(i)(r),

lim
r→0

r2

(
∂χ(i)(r)

∂r
− Q(r)χ(i)(r)

)
= 0.

Here, I,U(r), and Q(r) are matrices of dimension
jmax × jmax whose elements are given by the relations

Uij(r) =
Ei(r) + Ej(r)

2
δij + 2Zrδij (19)

+ r2Hij(r), Iij = δij ,

Hij(r) = 2

π/2∫
0

sin θ
∂Φi(θ; r)

∂r

∂Φj(θ; r)
∂r

dθ,

Qij(r) = −2

π/2∫
0

sin θΦi(θ; r)
∂Φj(θ; r)

∂r
dθ.

The above matrix elements were calculated by means
of the authors’ combined symbolic–numerical code
MATRM implemented in both MAPLE 8 and FOR-
TRAN [20].

The discrete spectrum solutions obey the asymp-
totic boundary condition and orthonormal conditions

lim
r→∞

r2χ(i)(r) = 0 → χ(i)(rmax) = 0, (20)

rmax∫
0

r2(χ(i)(r))T χ(j)(r)dr = δij .

For the continuum-spectrum solution χ(i)(r), we
can alternatively require that projections of (8) onto
all adiabatic functions hold,〈

Φj(θ; r)
∣∣∣∣∂ΨEmσ

i (r, θ)
∂r

− µiΨEmσ
i (r, θ)

〉
θ

= 0,

(21)

r = rmax,

which leads to the third-type boundary conditions at
fixed values of energy ε > εth

mσ1(γ) and radial variable
r = rmax (

R −Q(r) − µi

)
χ(i)(r) (22)

=

(
∂χ(i)(r)

∂r
(χ(i))−1(r) − Q(r) − µi

)
χ(i)(r) = 0.

From here, µi and χ(i)(rmax) should be a set of
eigenvalues Λ = {δijµi}No

ij=1 corresponding to a set

of eigenvectors χ(r) ≡ {χ(i)(r)}No
i=1 of the following

eigenvalue problem at r = rmax

dχ(r)
dr

− Q(r)χ(r) = χ(r)Λ, (23)

which is reformulated by averaging variational prob-
lem (9) to the following one:

Π(χ, ε) − r2
maxχ

T (rmax)χ(rmax)Λ = 0. (24)

Here No is the number of the open channels (i.e., the
energy ε should belong to the interval εth

mσNo
(γ) <

ε < εth
mσNo+1(γ)), and jmax > No.

After discretization, Eq. (24) becomes the follow-
ing algebraic eigenvalue problem

Πχ̃ = r2
maxχ̃(rmax)Λ̃, (25)

r2
maxχ̃

T (rmax)χ̃(rmax) = I.

The nonsymmetric R matrix obtained by the total
set of eigenvalues Λ̃ = {δij µ̃i}jmax

ij=1 and eigenvectors

χ̃ ≡ {χ̃(i)}jmax
i=1 of the eigenvalue problem (25) reads

R = r2
maxχ̃(rmax)Λ̃χ̃T (rmax) + Q(rmax) (26)

and gives the relation between χ(r) and its derivative
at r = rmax

dχ(r)
dr

= Rχ(r). (27)

Note that, in the diagonal approximation i = j of
the problem (18)–(20), the so-called adiabatic ap-
proximation, the number of nodes Nr of the solution
χ(r) with respect to the slow radial variable r on a
semiaxis for small values of the parameter γ corre-
sponds to the radial quantum number Nr = N − l− 1
of a free hydrogen atom in the bound state charac-
terized by a conventional set of quantum numbers
(N, l,m, λ = (−1)l) and the binding energy −εj(γ =
0) = −ε

(0)
j = Z/N2 (in Ry).

Recalling that the number of nodes Nθ of the solu-
tion Φ(θ; r) with respect to the fast angular variable,
θ, at fixed |m| and σ = (−1)Nθ as a function of the
slow parameter, r, is conserved, i.e., Nθ = l − |m|,
we have a one-to-one correspondence between the
quantum numbers (N, l) of the free atom at γ = 0 and
the adiabatic ones {Nr, Nθ} of the perturbed atom at
γ �= 0.

For large values of the parameter γ, the adiabatic
radial number Nr corresponds to the longitudinal
quantum number N|z| of a hydrogen atom in the
strong magnetic field at fixed m and the sign of σ =
±1, i.e., the number of nodes of the solution χ(|z|)
with respect to the longitudinal variable z = r cos θ
on a semiaxis. It means that the solution χ(z) on
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an axis is defined as follows: χmσ(z) = (χm(ρ, z) +
σχm(ρ,−z))/

√
2 or reduced to the solution χ(|z|)

of a conventional eigenvalue problem on a semiaxis,
using the Neumann and Dirichlet boundary condi-
tions at z = 0 for the even σ = +1 and odd σ = −1
solutions, respectively.

Taking into account the above correspondence
rules with such an adiabatic set [N|z|Nρ] and the
asymptotic form of eigenvalues Ej(r) at large r, we
can express the binding energy E via the eigen-
values ε of the problem (18)–(20) as follows: E =
(εth

mσj(γ) − ε)/2 (in a.u.), where εth
mσj(γ) is the true

threshold shift (16) or the reduced one εth
mσ(γ) =

γ(|m| + m + 1), respectively.

4. ASYMPTOTIC FORM OF SOLUTION

We write system of differential equations (18)
at fixed values m, σ and energy ε = 2E in the

explicit form for χjio(r) ≡ χ
(io)
j (r), j = 1, . . . , jmax,

io = 1, . . . , No,(
− 1

r2

d

dr
r2 d

dr
− 2Z

r
− ε +

Ej(r)
r2

(28)

+ Hjj(r)
)

χjio(r) =
jmax∑

j′=1,j′ �= j

(
− Hjj′(r)

− Qjj′(r)
d

dr
− 1

r2

dr2Qjj′(r)
dr

)
χj′io(r).

At large r, the asymptotic form of matrix elements
expanded in inverse powers of r (i.e., without expo-
nential terms) has the form (for details, see [20])

r−2Ej(r) = E
(0)
j +

∑
k=1

r−2kE
(2k)
j , (29)

Hjj′(r) =
∑
k=1

r−2kH
(2k)
jj′ ,

Qjj′(r) =
∑
k=1

r−2k+1Q
(2k−1)
jj′ ,

r 	 max(nl, nr)/(2
√

γ).

Here,

E
(0)
j = γ(2n + |m| + m + 1), (30)

E
(2)
j = −2n2 − 2n − 1 − 2|m|n − |m|,

H
(2)
jj′ = (2n2 + 2n + 2|m|n + |m| + 1)δ|nl−nr|,0

−
√

n + 1
√

n + |m| + 1
√

n + 2

×
√

n + |m| + 2 δ|nl−nr|,2,

Q
(1)
jj′ = (nr − nl)

√
n + 1

√
n + |m| + 1 δ|nl−nr|,1.

In these formulas, the asymptotic quantum numbers
nl, nr denote transversal quantum numbers Nρ and
N ′

ρ, related to the unified numbers j, j′ by the above-
mentioned formulas nl = j − 1, nr = j′ − 1, and n =
min(nl, nr).

Note that E
(2)
j + H

(2)
jj = 0; i.e., at large r, centrifu-

gal terms are eliminated in Eq. (28). It means that
the leading terms of radial solutions, χjio(r), have
the asymptotic form of Coulomb functions with zero
angular momentum.

Let us consider the asymptotic solution follow-
ing [21]

χjio(r) = R(pio , r)φjio(r) +
dR(pio , r)

dr
ψjio(r),

(31)

where R(pio , r) = iF (pio , r) + G(pio , r), [F (pio , r)
and G(pio , r) are the Coulomb regular and irregular
functions] and satisfies the differential equation

d2R(pio , r)
dr2

+
2
r

dR(pio , r)
dr

(32)

+
(

p2
io +

2Z
r

)
R(pio, r) = 0.

Then we can expand the functions φjio(r) and
ψjio(r) in series in inverse powers of r

φjio(r) =
kmax∑
k=0

φ
(k)
jio

r−k, ψjio(r) =
kmax∑
k=0

ψ
(k)
jio

r−k.

(33)

As a result of substitution of expansions (33) into (31)
and (28), using (32), and equating coefficients of ex-
pansion for the same powers of r, we arrive at the
set of recurrence relations with respect to unknown

coefficients φ
(k)
jio

and ψ
(k)
jio

:
(
p2

io − 2E + E
(0)
j

)
φ

(k)
jio

− 2p2
io(k − 1)ψ(k−1)

jio
(34)

− (k − 2)(k − 3)φ(k−2)
jio

− 2Z(2k − 3)ψ(k−2)
jio

+
k∑

k′=1

(
E

(k′)
j + H

(k′)
jj

)
φ

(k−k′)
jio
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=
jmax∑

j′=1,j′ �= j

k∑
k′=1

[(
(2k − k′ − 3)Q(k′−1)

jj′

− H
(k′)
jj′

)
φ

(k−k′)
j′io

+
(
2p2

ioQ
(k′)
jj′ + 4ZQ

(k′−1)
jj′

)
ψ

(k−k′)
j′io

]
,

(p2
io − 2E + E

(0)
j )ψ(k)

jio
+ 2(k − 1)φ(k−1)

jio
(35)

− k(k − 1)ψ(k−2)
jio

+
k∑

k′=1

(
E

(k′)
j + H

(k′)
jj

)
ψ

(k−k′)
jio

=
jmax∑

j′=1,j′ �= j

k∑
k′=1

[(
(2k − k′ + 1)Q(k′−1)

jj′

− H
(k′)
jj′

)
ψ

(k−k′)
j′io

− 2Q(k′)
jj′ φ

(k−k′)
j′io

]
.

From the first four equations of the set in (34) and (35)

for φ
(0)
ioio

, φ
(0)
j0io

, ψ
(0)
ioio

, and ψ
(0)
j0io

, we get the leading
terms of the eigenfunction, the eigenvalue, and the
characteristic parameter, i.e., initial data for solving
the recurrent sequence (34) and (35),

φ
(0)
j0io

= δj0io, ψ
(0)
j0io

= 0, p2
io = 2E − E

(0)
io

, (36)

which corresponds to the leading term of χjio(r) sat-
isfying the asymptotic expansion series (33) at large
r. Substituting these initial data to the next equa-
tions of the set in (34) and (35), we get a step-by-
step procedure for determining the series coefficients

φ
(k)
jio

and ψ
(k)
jio

. Using the explicit asymptotic matrix
elements (29), we get an explicit expression of these

coefficients φ
(k)
jio

and ψ
(k)
jio

via the values of the number
of a state (or channel) io = no + 1 and the number
of current equation j = 1, . . . , jmax. For example, at
k = 0, 1, such elements take the form

φ
(0)
ioio

= 1, ψ
(0)
ioio

= 0,

φ
(1)
io−1io

= 0, ψ
(1)
io−1io

=
√

no

√
no + |m|
γ

,

φ
(1)
ioio

= 0, ψ
(1)
ioio

= −2no + |m| + 1
γ

,

φ
(1)
io+1io

= 0, ψ
(1)
io+1io

=
√

no + 1
√

no + |m| + 1
γ

.

Taking into account the region of convergence of the
matrix elements, we find that the region of conver-
gence of expansion (31), as follows from asymptotic
form of matrix elements which do not depend on

pio , is rmax 	 nio/(2
√

γ) and rmax 	 Z(2nio + |m|+
1)/(pio

√
γ).

5. THE SCATTERING STATES
AND PHOTOIONIZATION CROSS

SECTIONS

The solution of the scattering problem,

χ(p)(r) = iχ(ph)(r)(I − iK) (37)

= χs(r) + χc(r)K,

with No open channels for p2
io ≥ 0 at io = 1, . . . , No,

is defined by means of the two independent funda-
mental asymptotic solutions χs(r) = 2�(χ(r)) and
χc(r) = 2�(χ(r)) (corresponding to “regular” and
“irregular” type) of Eqs. (28) and a reaction ma-
trix K = i(I + S)−1(I − S), where S = (I + iK)(I −
iK)−1 is the scattering matrix.

In this case, the regular and irregular functions
satisfy the generalized Wronskian relation at large r

Wr(Q(r);χc(r),χs(r)) =
2
π
Ioo, (38)

where Wr(•;χc(r),χs(r)) is a generalized Wron-
skian with a long derivative defined by

Wr(•;χc(r),χs(r)) (39)

= r2

[
(χc(r))T

(
dχs(r)

dr
− •χs(r)

)

−
(

dχc(r)
dr

− •χc(r)
)T

χs(r)

]
,

which will be used to control a desirable accuracy of
the above expansion. Here, Ioo is the unit matrix of
dimension No × No.

Using Eq. (27), we obtain the equation for the
reaction matrix K via R matrix at r = rmax(

Rχc(r) − dχc(r)
dr

)
K =

(
dχs(r)

dr
− Rχs(r)

)
,

(40)

and Eq. (38) is equivalent to

Wr(Q(rmax);χs(rmax),χc(rmax)) (41)

= Wr(R;χs(rmax),χc(rmax)).

Note that, when some channels are closed, the left
and right matrices of (40) are rectangular matrices.
Therefore, multiplying (40) on the left by the matrix
(χc(ρ))T , we obtain the following formula for the
reaction matrix K:

K = −X−1(rmax)Y(rmax), (42)
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where

X(r) = (χc(r))T
(

dχc(r)
dr

− Rχc(r)
)

,

Y(r) = (χc(r))T
(

dχs(r)
dr

− Rχs(r)
)

are square matrices of dimension No × No and
X(rmax) should be a symmetric matrix, which follows
from the condition Wr(R;χc(rmax),χc(rmax)) = 0.

Let the matrices S and K have eigenvalues
exp(2iδi) and tan δi, respectively. Then

SB = Bexp(2iδ), KB = Btan δ, (43)

where exp(2iδ) and tan δ are diagonal matrices and
B can be taken to be real and normalized to

BT B = Ioo. (44)

We denote the eigenstate wave function of contin-
uum ΨEmσ

i (r, θ) with energy 2E (of ejected elec-
tron) above the first threshold εth

mσ1(γ) = εth
mσ(γ) =

γ(|m| + m + 1) by the following:

ΨEmσ
i (r, θ) =

jmax∑
j=1

Φmσ
j (θ; r)χ̂(mσ)

ji (E, r), (45)

where

χ̂(mσ)(E, r) = χ(ph)(r)B (46)

or χ̂(mσ)(E, r) = χ(p)(r)Bcos δ.

In this case, the eigenstate wave function ΨEmσ
i (r, θ)

is normalized to〈
ΨEmσ

i (r, θ)
∣∣∣∣ΨE′m′σ′

i′ (r, θ)
〉

(47)

=
jmax∑
j=1

rmax∫
0

r2dr
(
χ̂

(mσ)
ji (E, r)

)∗
χ̂

(m′σ′)
ji′ (E′, r)

= δ(E − E′)δmm′δσσ′δii′ .

In terms of the above definitions, the photoionization
cross sections σd(ω) and σp(ω) (for light polarized
along the z axis and in the XOY plane, respectively)
are expressed as

σd(ω) = 4π2αω

No∑
i=1

∣∣∣∣D̂m′mσ
i,N|z|,Nρ

(E)
∣∣∣∣
2

a2
0, (48)

σp(ω) = 4π2αω
No∑
i=1

∣∣∣∣P̂m′mσ
i,N|z|,Nρ

(E)
∣∣∣∣
2

a2
0,

where D̂mσ
i,N|z|,Nρ

(E) and P̂m′mσ
i,N|z|,Nρ

(E) are the matrix

elements of the longitudinal and transverse moments,
respectively,

D̂m′mσ
i,N|z|,Nρ

(E) (49)

= δ|m−m′|0

〈
ΨEm′−σ

i (r, θ)
∣∣∣∣r cos θ

∣∣∣∣Ψmσ
N|z|,Nρ

(r, θ)
〉

=
N∑

j=1

N∑
j′=1

rmax∫
0

r2dr
(
χ̂

(m′−σ)
ji (E, r)

)∗

× D
(m′mσ)
jj′ (r)χ(mσ)

j′ (r),

P̂m′mσ
i,N|z|,Nρ

(E) (50)

= δ|m−m′|1

〈
ΨEm′σ

i (r, θ)
∣∣∣∣r sin θ√

2

∣∣∣∣Ψmσ
N|z|,Nρ

(r, θ)
〉

=
N∑

j=1

N∑
j′=1

rmax∫
0

r2dr
(
χ̂

(m′σ)
ji (E, r)

)∗

× P
(m′mσ)
jj′ (r)χ(mσ)

j′ (r).

The longitudinal D(mσ)(r) and transversal
P (mm′σ)(r) matrix elements are expressed as

D
(m′mσ)
jj′ (r)

= δ|m−m′|0

〈
Φm′−σ

j (θ; r)
∣∣∣∣r cos θ

∣∣∣∣Φmσ
j′ (θ; r)

〉
θ

,

P
(m′mσ)
jj′ (r)

= δ|m−m′|1

〈
Φm′σ

j (θ; r)
∣∣∣∣r sin θ√

2

∣∣∣∣Φmσ
j′ (θ; r)

〉
θ

.

In the above expressions, ω = E − E(N|z|, Nρ,

σ,m) is the frequency of radiation, E(N|z|, Nρ, σ,m)
is the energy of the initial bound state Ψmσ

N|z|,Nρ
(r, η),

E is the energy of the final continuum state
ΨEmσ

i (r, η) such that No is the number of the open
channels, α is the fine-structure constant, a0 is the
Bohr radius.

In our calculations, we used the following phys-
ical constants: inverse centimeter–Hartree relation-
ship cm−1 = 4.55633 × 10−6 a.u., Bohr radius a0 =
5.29177 × 10−11 m, and fine-structure constant α =
7.29735 × 10−3 [22]. Figure 1 displays the calculated
photoionization cross sections σd(ω) and σp(ω) from
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Fig. 1. Photoionization cross sections σd(ω) (a) and σp(ω) (b) from the ground state with γ = 0.1 to the final state with
σ = −1 and m = 0 at γ = 0.05 to the final state with σ = +1 and m = 1, respectively.

the ground state to the different continuous spectrum
states. In Fig. 1a, we use the energy interval from
E = 0.05 to 0.25 a.u. for the final state with σ = −1
and m = 0. The number of open channels is equal to 1
to 2. In Fig. 1b, we used the energy interval from E =
0.075 to 0.525 a.u. for the final state with σ = +1 and
m = 1. The final-state energy E is measured relative
to the zero-field ionization threshold. The number
of open channels varies from 1 to 9. The calculated
photoionization cross section is in good agreement
with [12] between the thresholds, but not near them.
Here, we show one of the goals of the elaborated ap-
proach to provide stable and economical calculations
of the photoionization cross section having the true
threshold behavior coinciding with [15].

6. CONCLUSIONS

A new efficient method for calculating wave func-
tions of a hydrogen atom in a strong magnetic field is
developed on the basis of the Kantorovich approach to
parametric eigenvalue problems in spherical coordi-
nates. The two-dimensional spectral problem for the
Schrödinger equation at a fixed magnetic quantum
number and parity is reduced to a spectral paramet-
ric problem for a one-dimensional equation by the
angular variable and a finite set of ordinary second-
order differential equations by the radial variable. The
results are in good agreement with calculations by
other authors. The developed approach is a good tool
for calculating threshold phenomena in formation and
ionization of (anti)hydrogen-like atoms and ions in
magnetic traps. In the future, we will also calculate a
manifold of the excited states in a layer with the prin-
ciple quantum number N = 3 of a hydrogen atom in

the magnetic field 2.35 × 104 T and 6.1 T that may be
interesting from our viewpoint for a laser-stimulated
recombination in actually existing traps [23].
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Abstract—In the effective mass approximation for electronic (hole) states of a spheroidal quantum dot
with and without external fields the perturbation theory schemes are constructed in the framework of
the Kantorovich and adiabatic methods. The eigenvalues and eigenfunctions of the problem, obtained in
both analytical and numerical forms, were applied for the analysis of spectral and optical characteristics of
spheroidal quantum dots in homogeneous electric fields.
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1. INTRODUCTION

Quantum dots (QDs) are considered to be promis-
ing as the elementary basis for the new generation of
semiconductor devices [1, 2]. The unique opportunity
to perform the energy level control and flexible manip-
ulation in QDs is due to the full quantization of charge
carrier energy spectra in these systems. This allows
design and manufacturing of artificial structures with
prescribed quantum physical characteristics [3]. That
is why the scope of QDs potential applications is very
wide, from heterostructure lasers to nanomedicine
and nanobiology. An impressive example of such
application is represented by QD lasers possessing
low threshold current and high efficiency [3].

The peculiarities of physical processes in QDs
are caused by both their composition and geometry.
Electronic, kinetic, optical, and other properties of
QDs have been investigated experimentally and the-
oretically in many papers [4–13]. Particularly, the
optical absorption characteristics of QDs have been
shown to be strongly correlated with their geometry,
on the one hand, and with their physical–chemical
properties, on the other hand. In one of the first publi-
cations on optical transitions in QD [14] the interband
absorption of light was considered in the ensemble
of weakly interacting spherical QDs implanted in a
dielectric matrix. The dispersion of QD sizes was
characterized in the framework of Lifshitz–Slezov

∗The text was submitted by the authors in English.
1)Joint Institute for Nuclear Research, Dubna, Russia.
2)Saratov State University, Saratov, Russia.
3)Russian–Armenian (Slavonic) University, Yerevan, Arme-

nia.
**E-mail: gooseff@jinr.ru

theory [15]. It was shown that in the absence of
size dispersion, due to the full quantization of charge
carriers energy spectra in QD, the absorption coeffi-
cient behaves like a delta function, and the absorption
threshold frequencies depend on the peculiarities of
electron and hole energy spectra. When the QD
size dispersion is taken into account, the averaging
procedure yields the absorption profile having finite
width and height.

Recently several reports concerning the experi-
mental implementation of narrow-band InSb QDs
have appeared [16, 17], in which the dispersion law
for electrons and light holes is non-parabolic and
described according to the double-band mirror Kane
model [18, 19]. For non-interacting band of heavy
holes the dispersion law is considered as quadratic.
The investigation of optical absorption peculiarities in
InSb QDs with the transitions from light and heavy
hole bands to the conduction band taken into account
is an interesting problem. Interband transitions in an
ensemble of cylindrical or spherical InSb QDs were
considered theoretically in the dipole approximation
with and without magnetic field, including exciton
effects, by means of the perturbation theory and
the adiabatic methods [20–22]. In our earlier work
we elaborated the calculation schemes, symbolic-
numerical algorithms (SNAs) and programs, based
on the generalized Kantorovich method (KM) for nu-
merical solving with required accuracy the boundary-
value problems (BVPs) of discrete and continuous
spectra describing the axial-symmetric models of
quantum wells (QWs), quantum wires (QWrs), and
quantum dots (QDs) in external fields within the
framework of the effective mass approximation [23–
35]. Meanwhile, for the analysis and estimations of
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the appropriate range of material parameters, spectral
and optical characteristics of QDs at the first stage
of investigation the approximate eigenvalues and
eigenfunctions evaluated in the analytical form were
applied [6–8, 14, 22]. It is a real challenge to specify
the range of applicability of such approximations in
the problems, depending on a few parameters [2], e.g.,
for impurity states of quantum wires in a homoge-
neous magnetic field [25].

With this aim in the present paper we report the
formulation and MAPLE-environment implementa-
tion of algebraic schemes of the Lennard-Jones (LJ)
and Rayleigh–Schrödinger (RS) perturbation theory
(PT) [36], permissive in the nondiagonal and diagonal
adiabatic approximations, respectively, to evaluate
in numerical and in analytic forms the eigenvalues
and eigenfunctions of models of spheroidal QDs in
homogeneous magnetic and electric fields. To con-
struct the required perturbation schemes, we choose
such models of spheroidal QDs, in which the basis
functions depending upon fast variables can be ex-
pressed in the analytic form. The region of the model
parameters, for which the PT asymptotic series are
applied, is estimated using the results of numerical
calculations carried out with required accuracy. The
efficiency of the schemes is demonstrated by the anal-
ysis of spectral characteristics of oblate and prolate
spheroidal QDs and also spherical QDs with cor-
responding shape of confinement well with walls of
infinite height under the influence of homogeneous
electric fields (HEFs). We apply the developed ap-
proach to the analysis of spectral characteristics of
oblate and prolate spheroidal QDs with parabolic and
non-parabolic dispersion laws under the influence of
HEFs, i.e., the quantum-confined Stark effect.

The paper is organized as follows. In Section 2 the
calculation scheme for solving elliptic BVP describ-
ing spheroidal QDs in homogeneous electric fields
using the Kantorovich method is presented. Section 3
is devoted to the description of the slow-variable PT
schemes in nondiagonal adiabatic approximation and
the comparison of the results with those of numerical
calculation with given accuracy. In Section 4 the
explicit PT scheme for evaluation of the basis func-
tions of the fast variable for oblate spheroidal QDs in a
homogeneous electric field is derived. Section 5 is de-
voted to the description of slow-variable PT schemes
in the diagonal adiabatic approximation for spheroidal
QDs in electric fields. The results evaluated here
in the analytic form are compared with numerical
ones to establish the range of their applicability. In
Section 6 the absorption coefficient for an ensemble
of spheroidal QDs with random dimensions of minor
semiaxis and with parabolic and non-parabolic dis-
persion laws for holes and electrons under the influ-
ence of HEFs is found using the calculated eigenval-

ues and eigenfunctions. In Conclusion we summarize
the results and discuss further applications.

2. STATEMENT OF THE PROBLEM

Let us consider an impurity localized in the center
of a QD and take the electron–hole interaction into
account. Then in the effective mass approximation
of the k · p theory the Schrödinger equation for the
slow-varying envelope wave function Ψ̃(r̃e, r̃h) of an
electron (e) and a hole (h) in a uniform magnetic field
H with the vector-potential A = 1

2H × r̃ and electric
field F in oblate and prolate QDs has the form [8]:{

H̃(r̃e, r̃h) − Ẽ
}

Ψ̃(r̃e, r̃h) = 0, (1)

H̃(r̃e, r̃h) =
∑
i=e,h

{
1

2μi

(
˜̂
ip − qi

c
A
)2

− qi(F · r̃i) + Ũconf(r̃i) −
qiqc

κ|r̃i|

}
+

qeqh

κ|r̃e − r̃h|
.

Here, r̃i is the radius-vector, |r̃i| =
√

x̃i
2 + ỹi

2 + z̃i
2,

˜̂
ip = −ı�∇r̃i is the momentum, Ẽ is the energy of the

particles, qe = −e, qh = +e, and qc are the Coulomb
charges of the electron, the hole, and the impurity
center, κ is the dc permittivity, μi = βe(h)m0 is the
effective mass of electron or hole, m0 is the mass of
electron. For the model under consideration, Ũ(r̃) is
the potential of a spherical or axially-symmetric well

Ũ(r̃i) = {0, S(r̃i) < 0; Ũ0, S(r̃i) ≥ 0}, (2)

bounded by the surface S(r̃i) = 0 with walls of infi-
nite height (infinite potential barrier model, IPBM)
or finite height 1 � Ũ0 < ∞ (finite potential barrier
model, FPBM). In Eq. (2) S(r̃i) depends on the pa-
rameters ã, c̃, which are semiaxes of a spheroidal QD,

S(r̃i) ≡ (x̃2
i + ỹ2

i )/ã
2 + z̃2

i /c̃2 − 1. (3)

Below we restrict ourselves to IPBMs of spheroidal
QDs with possible influence of the uniform electric
field F = (0, 0, F ), the magnetic field being switched
off, H = 0, and the Coulomb interaction of the
electron and the hole with the impurity center being
absent, qc = 0. In this case the wave function
Ψ̃(r̃e, r̃h) = Ψ̃e(r̃e)Ψ̃h(r̃h) is factorized. So, we arrive
at the 3D BVPs for unknowns Ψ̃e(r̃e) and Ẽe or
Ψ̃h(r̃h) and Ẽh. The eigenvalues and eigenfunctions
needed to evaluate the absorption coefficients (ACs)
were calculated with prescribed accuracy by means
of the program packages ODPEVP and KANTBP
[28–30]. The models with nonzero values of these pa-
rameters were announced in [8, 25]. Throughout the
paper we make use of the reduced atomic units [2, 5]:
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a∗B = κ�
2/(μpe

2) is the reduced Bohr radius, ẼR ≡
Ry∗ = �

2/(2μpa
∗2
B ) is the reduced Rydberg unit of

energy, and the following dimensionless quantities are

introduced: Ψ̃(r̃) = a∗B
−3/2Ψ(r), 2Ĥ = ˜̂

H/Ry∗, E ≡
2E = Ẽ/Ry∗, 2U(r) = Ũ(r̃)/Ry∗, r = r̃/a∗B, a =
ã/a∗B, c = c̃/a∗B, 2γF = F/F ∗

0 , F ∗
0 = Ry∗/(ea∗B) =

e/(2κ(a∗B)2).

2.1. The BVP for SQDs in the Effective Mass
Approximation

In cylindrical coordinates z, ρ, ϕ the solution of
Eq. (1), periodical with respect to the azimuthal angle
ϕ, is sought in the form of a product Ψ(ρ, z, ϕ) =
Ψm(ρ, z)exp (imϕ)/

√
2π, where m = 0,±1,±2, ... is

the magnetic quantum number. The 3D BVP for
spherical QDs (SQDs) at fixed values of m is reduced
to 2D BVP with respect to fast xf and slow xs

variables: oblate xf = z (minor axis), xs = ρ (major
axis) and prolate xf = ρ (minor axis), xs = z (major
axis) [27]:(

Ĥf (xf ;xs) + Ĥs(xs) + V̌fs(xf , xs) − Em
t

)
(4)

× Ψm
t (xf , xs) = 0.

Here, Ĥs(xs) is the operator of slow subsystem

Ĥs(xs) = − 1
g1s(xs)

∂

∂xs
g2s(xs)

∂

∂xs
+ V̌s(xs), (5)

and Ĥf(xf ;xs) is the operator of fast subsystem

Ĥf (xf ;xs) = − 1
g1f (xf )

∂

∂xf
g2f (xf )

∂

∂xf
(6)

+ V̌f (xf ;xs).

For oblate spheroidal QD (OSQD) g1s(xs) =
g2s(xs) = 1, g1f (xs) = g2f (xs) = ρ, V̌f (xf ;xs) = 0,
V̌s(xs) = m2/ρ2, V̌fs(xf , xs) = 2γF z, while for pro-
late spheroidal QD (PSQD) g1s(xs) = g2s(xs) = ρ,
g1f (xs) = g2f (xs) = 1, V̌f (xf ;xs) = m2/ρ2, V̌s(xs) =
2γF z, V̌fs(xf , xs) = 0. From (2) it follows that the
boundary conditions for the eigenfunctions Ψm

t (xf , xs)
of SQDs, corresponding to a well with walls of infinite
height, have the form

lim
ρ→0

(
ρ
∂Ψm

t (ρ, z)
∂ρ

δ0m + Ψm
t (ρ, z)(1 − δ0m)

)
= 0,

Ψm
t (ρ, z)

∣∣∣∣
∂Ω2

= 0,

Ω2 =
(
{ρ, z}

∣∣∣∣ρ
2

a2
+

z2

c2
< 1

)
,

∂Ω2 =
(
{ρ, z}

∣∣∣∣ρ
2

a2
+

z2

c2
= 1

)
.

The eigenfunctions Ψm
t (xf , xs) corresponding to the

eigenvalues Em
t = Em

1 < Em
2 , ... are subject to the

normalization and orthogonality conditions∫
Ω2

ρdρdzΨm
t (ρ, z)Ψm

t′ (ρ, z) = δtt′ .

Note, that at γF = 0 the solutions are separated by
the z-parity σ = ±1 into two invariant subspaces
Ψmσ

t corresponding to the eigenvalues Emσ
t = Emσ

1 <
Emσ

2 , ..., while at γF 	= 0 the z-parity is violated.

2.2. Kantorovich or Adiabatic Reduction of the BVP

The solution Ψt(xf , xs) ≡ Ψm
t (xf , xs) of the above

problem at fixed m is sought in the form of Kan-
torovich expansion

Ψt(xf , xs) =
jmax∑
j=1

Bj(xf ;xs)χjt(xs). (7)

The set of appropriate trial functions is chosen as the
set of eigenfunctions Bj(xf ;xs) corresponding to the
eigenvalues Êj(xs) of the Hamiltonian Ĥf (xf ;xs),
Eq. (6), depending parametrically on xs ∈ Ω(xs):

Ĥf (xf ;xs)Bj(xf ;xs) = Êj(xs)Bj(xf ;xs).

The eigenfunctions Bj(xf ;xs) corresponding to the
eigenvalues Êj(xs) = Ê1(xs) < Ê2(xs), ... are sub-
ject to the normalization and orthogonality conditions
with the weighting function g1f (xf ) in the same in-
terval xf ∈ Ωxf

(xs):

xmax
f (xs)∫

xmin
f (xs)

Bi(xf ;xs)Bj(xf ;xs)g1f (xf )dxf = δij . (8)

The BVP for a set of second-order differential equa-
tions (ODEs) of the slow subsystem with respect to
the unknown vector functions χt(xs) = (χ1;t(xs), ...,
χjmax;t(xs))T corresponding to the unknown eigenval-
ues 2Et ≡ Et,(

D + E(xs) + W(xs) − IEt

)
χt(xs) = 0, (9)

D = − 1
g1s(xs)

I
d

dxs
g2s(xs)

d

dxs
+ IV̌s(xs),

W(xs) = U(xs) +
g2s(xs)
g1s(xs)

H(xs)

+
1

g1s(xs)
dg2s(xs)Q(xs)

dxs
+

g2s(xs)
g1s(xs)

Q(xs)
d

dxs

PHYSICS OF ATOMIC NUCLEI Vol. 76 No. 8 2013



1036 GUSEV et al.

satisfy the orthogonality and normalization condi-
tions

xmax
s∫

xmin
s

(χt(xs))T χt′(xs)g1s(xs)dxs = δtt′ . (10)

Here the effective potentials Hij(xs) and Qij(xs) are
defined by the formula

Uij(xs) = Uji(xs) =

xmax
f (xs)∫

xmin
f (xs)

(11)

× Bi(xf ;xs)V̌fs(xf , xs)Bj(xf ;xs)g1f (xf )dxf ,

Hij(xs) = Hji(xs)

=

xmax
f (xs)∫

xmin
f (xs)

∂Bi(xf ;xs)
∂xs

∂Bj(xf ;xs)
∂xs

g1f (xf )dxf ,

Qij(xs) = −Qji(xs)

= −

xmax
f (xs)∫

xmin
f (xs)

Bi(xf ;xs)
∂Bj(xf ;xs)

∂xs
g1f (xf )dxf .

The basis functions of the fast subsystem and the ma-
trix elements are calculated analytically. For OSQDs
(xf = z, xs = ρ)

Bi (xf ;xs) = Bσ
i (xf ;xs) (12)

=

√
a

c
√

a2 − x2
s

sin

(
πno

2

(
xf

c
√

1 − x2
s/a

2
− 1

))
,

Ei(xs) = Eσ
i (xs) = Ei;0

a2

(a2 − x2
s)

,

Ei;0 =
π2i2

4c2
, Uii(xs) = 0,

Uij(xs) = Uij;0

√
a2 − x2

s

a
,

Uij;0 =
8γF cij(−1 + (−1)i+j)

(i2 − j2)2π2
,

Hii(xs) = Hii;0
a2x2

s

(a2 − x2
s)2

,

Hii;0 =
3 + π2i2

12a2
,

Hij(xs) = Hij;0
a2x2

s

(a2 − x2
s)2

,

Hij;0 =
2ij(i2 + j2)(1 + (−1)i+j)

a2(i2 − j2)2
,

Qij(xs) = Qij;0
axs

a2 − x2
s

,

Qij;0 =
ij(1 + (−1)i+j)

a(i2 − j2)
, j 	= i.

For PSQDs (xf = ρ, xs = z) (at m = 0 for nondiag-
onal potentials i 	= j)

Bm
nρp

(xs) =
√

2c

a
√

c2 − x2
s

(13)

×
J|m|

(√
2Enρp+1,|m| (xs)xf

)

|J|m|+1(αnρp+1,|m|)|
,

Ei (xs) = Ei;0
c2

(c2 − x2
s)

, Ei;0 =
(J̄ i

|m|)
2

a2
,

Uii(xs) = 0, Uij(xs) = 0,

Hii(xs) = Hii;0
c2x2

s

(c2 − x2
s)2

,

Hii;0 =
(1 + (J̄ i

|m|)
2)

3c2
,

Hij(xs) = Hij;0
c2x2

s

(c2 − x2
s)2

,

Hij;0 =
2
c2

⎛
⎝J̄ i

0J̄
j
0

1∫
0

J1(J̄ i
0x)

J1(J̄ i
0)

J1(J̄
j
0x)

J1(J̄
j
0 )

x3dx

− J̄ i
0

1∫
0

J1(J̄ i
0x)

J1(J̄ i
0)

J0(J̄
j
0x)

J1(J̄
j
0 )

x2dx

− J̄j
0

1∫
0

J0(J̄ i
0x)

J1(J̄ i
0)

J1(J̄
j
0x)

J1(J̄
j
0 )

x2dx

⎞
⎠ ,

Qij(xs) = Qij;0
cxs

c2 − x2
s

,

Qij;0 =
2
c
J̄j

0

1∫
0

J0(J̄ i
0x)

J1(J̄ i
0)

J1(J̄
j
0x)

J1(J̄
j
0 )

x2dx, j 	= i,

where αnρp+1,|m| = J̄
nρp+1
|m| are positive zeros of the

Bessel function of the first kind [37].
For the interesting lower part of the spectrum

Et: E1 < E2 < ..., the number jmax of the equations
solved should be at least not less than the number
of the energy levels of the problem (9) at a = c =
r0. To ensure the prescribed accuracy of calcula-
tion of the lower part of the spectrum discussed be-
low with eight significant digits we used jmax = 16
basis functions in the expansion (8) and the dis-
crete approximation of the desired solution by La-
grange finite elements of the fourth order with respect
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Table 1. The convergence of eigenenergy Et vs number jmax of basis functions at γF = 0 (Fast and slow variables xf = z
and xs = ρ (oblate spheroidal QD and spherical QD), number of nodes i = (nzo = no − 1, nρo))

jmax a = 2.5, c = 0.5 a = 2.5, c = 2.5

(nzo, nρo) (0, 0) (0, 1) (2, 0) (0, 0) (0, 1) (2, 0)

C 12.73741 19.93621 96.69683∗ 1.468496 5.445665∗ 5.589461

1 12.76548 20.04602 96.75317∗ 1.590238 5.766612∗ 6.004794

2 12.76490 20.04133 96.75427 1.580243 5.340214 6.329334

4 12.76482 20.04074 96.75215 1.579273 5.316872 6.317204

16 12.76481 20.04065 96.75201 1.579140 5.314832 6.316562

Exact 1.579136 5.314793 6.316546
∗ Diagonal approximation at j = 2.

Table 2. The convergence of eigenenergy Et vs number jmax of basis functions at γF = 0 (Fast and slow variables xf = ρ
and xs = z (prolate spheroidal QD and spherical QD), number of nodes i = (nρp, nzp))

jmax c = 2.5, a = 0.5 c = 2.5, a = 2.5

(nρp, nzp) (0, 0) (0, 2) (1, 0) (0, 0) (0, 2) (1, 0)

C 25.18473 34.42885 126.4245∗ 1.493612 5.131784 5.898668∗

1 25.20174 34.53030 126.4565∗ 1.584433 5.680831 6.071435∗

2 25.20129 34.52578 126.4573 1.579860 5.331101 6.324717

4 25.20121 34.52512 126.4561 1.579239 5.316732 6.317058

16 25.20120 34.52502 126.4561 1.579138 5.314828 6.316554

Exact 1.579136 5.314793 6.316546
∗ Diagonal approximation at j = 2.

to the grid pitch Ωp
hs

(xs) = [xs;min;xs;k = xs;k−1 +
hs;xs;max]. The details of the corresponding compu-
tational scheme are given in [24].

The convergence of eigenenergies Et vs num-
ber jmax of basis functions for oblate and prolate
spheroidal QDs, and for spherical QD is shown on
Tables 1 and 2 at γF = 0 and m = 0. The considered
QDs having the size comparable with de Broglie
wavelength of composed particles with small effective
masses are referred as quantum-size systems. In the
spheroidal QDs having different length of minor and
major axes the quantization procedure leads to differ-
ent transversal and longitudinal spectra. Moreover,
for PSQD (c = 2.5, a = 0.5) the confinement in two
variables (xy) with the minor semiaxis a = 0.5 leads
to greater eigenvalues, than the confinement in one
variable (z) with the size-for-size minor semiaxis a =
0.5 for PSQD (c = 2.5, a = 0.5). Tables 1, 2 and 3–
7 (see below) show that the expansions in basis
functions (12) and (13) in cylindrical coordinates have
better rate of convergence in the adiabatic limit of

strongly oblate and prolate QDs than for the bench-
mark spherical QDs with the known spectrum, which
is not surprising. For lower states the crude adiabatic
approximation (without Hjj(xs)) (CAA) provides a
lower estimate, while the adiabatic approximation
(AA) (with Hjj(xs)) (1) gives an upper estimate, such
that at the ratio of minor to major semiaxis equal to
1/5 the bracket is approximated with the accuracy of
∼0.1%.

Below we present the analysis of the spectrum
under the variation of parameters, which opens the
questions about the additional symmetry of the prob-
lem, associated with the existence of exact and ap-
proximate integrals of motion [27, 38].

In Fig. 1 we show the eigenenergies of the lower
part of the spectrum Et, t = 1, ..., 40, at m = 0 for
OSQD (c = 0.5, 1, 1.5, 2, a = 2.5), SQD (c = 2.5,
a = 2.5), and PSQD (c = 2.5, a = 0.5, 1, 1.5, 2) as
functions of the dimensionless strength γF of the
electric field. In spite of the fact that at γF = 0 the
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Fig. 1. Dependence of eigenenergiesE (in units of Ee) of lower part of spectrum of electronic states of QDs at m = 0 on electric
field strength γF (in units of F ∗

0 ): for spherical quantum dot (SQD) with radius a = c = 2.5, oblate and prolate spheroidal
quantum dots (OSQD and PSQD) at different minor semiaxis (for OSQD c = 0.5, 1, 1.5, 2, a = 2.5, for PSQD c = 2.5,
a = 0.5, 1, 1.5, 2).

eigenfunctions of SQD, OSQD, and PSQD have
definite z-parity, and, therefore, exhibit additional
integrals of motion and separation of variables in
spherical and spheroidal coordinates systems, the
spectrum of eigenvalues at fixed m is simple, i.e.,
nondegenerate, similar to the case γF 	= 0, when the
eigenfunctions have no definite z-parity. At γF = 0 a
one-to-one correspondence rule nρp + 1 = np = i =
n = nr + 1, i = 1, 2, ..., and nzp = l − |m| holds be-
tween the quantum numbers (n, l,m, σ̂ = (−1)|m|σ)
of SQD with the radius r0 = a = c, the spheroidal
quantum numbers {nξ = nr, nη = l − |m|,m, σ} of
PSQD with the major c and the minor a semiaxes,
and the adiabatic set of quantum numbers [np =
nρp + 1, nzp,m, σ] under the continuous variation
of the parameter ζac = a/c. At γF = 0 there is
a one-to-one correspondence rule no = nzo + 1 =
2n − (1 + σ)/2, n = 1, 2, 3, ..., and nρo = (l − |m| −
(1 − σ)/2)/2, between the sets of spherical quantum
numbers (n, l,m, σ̂ = (−1)|m|σ) of SQD with the ra-
dius r0 = a = c and spheroidal ones {nξ = nr, nη =
l − |m|,m, σ} of OSQD with the major a and the

minor c semiaxes, and the adiabatic set of cylindrical
quantum numbers [no = nzo + 1, nρo,m, σ] under the
continuous variation of the parameter ζca = c/a.

One can see that when the parameter γF in-
creases, the eigenvalues Et decrease faster for SQD,
slower for PSQD and even more slower for OSQD,
because the influence of the electric field for OSQD
at c = 0.5 is essentially weaker than for PSQD at c =
2.5. With increasing γF a series of exact crossings
of eigenenergies with different values of quantum
numbers for PSQD and OSQD occur at γF � 20
and a series of avoided crossings for SQD occur at
γF � 10. With further growth of the parameter they
first increase and then begin to decrease. Indeed,
with the growth of γF the eigenfunctions with smaller
number of nodes in the longitudinal variable z are
localized (see Fig. 2) in the vicinity of the equilibrium
point, and the corresponding eigenenergies decrease.
Increasing the number of nodes is accompanied with
delocalization of the wave functions, and the corre-
sponding eigenenergies increase and then decrease
again. For PSQD the density of states per unit
energy for the eigenfunction with the same number
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Fig. 2. (a) Eigenfunctions of sixth order of PT of 2D BVP for OSQD a = 5, c = 0.5 (t = nzo = 0, n = no = 1, 2, 3, 4, m = 0)
in electric field γF = −10 (weak asymmetry by z-axis i.e. by minor ellipsoid axis). (b) Eigenfunctions of sixth order of PT of 2D
BVP for PSQD c = 2.5, a = 0.5 (t = nρp = 0, n = np = 0, 1, 2, 3, 4, m = 0) in electric field γF = −1 (asymmetry by z-axis
i.e. by major ellipsoid axis).

of nodes nρp in the transverse variable ρ is greater
(i.e., the separation between the adjacent energy
levels is smaller) than the density of states for the
function having the same number of nodes nzp in the
longitudinal variable z. For this reason in Fig. 1 one
can see three crossing series of curves with different
number of ρ nodes nρp = 0, 1, 2, the lower of them
(e.g., with a = 0.5, nρp = 0, and nzp from 0 to 12)
are decreasing at all γF ≥ 0, while the upper ones
(e.g., with a = 0.5, nρp = 0, and nzp starting from
13) with the energies, exceeding that of the state
(nρp = 1) without z nodes (nzp = 0), increase from
the beginning and then start to decrease. Thus, at
small γF the energy levels for the groups of states with
even nρp = 0, 2, ... and odd nρp = 1, 3, ... number of
nodes are repulsing and crossing.

For OSQD, on the contrary, the number of energy
levels per unit energy for the eigenfunctions having
the same number nρo of ρ nodes is smaller (i.e., the
separation between the adjacent levels is larger) than
that for the eigenfunctions having the same number
nzo of z nodes. Therefore, in Fig. 1 one can see
four crossing series of almost “parallel” curves with
different number nzo = 0, 1, 2, 3 of z nodes.

For OSQD and PSQD the crossings of the energy
levels that occur with increasing γF are similar to the
exact crossings of the energy levels with decreasing c
semiaxis in OSQD and PSQD without electric field
(γF = 0), i.e., we observe the accidental degeneracy,
which is known to be generally associated with the

existence of an additional integral of motion [27] and
with the separability of variables in oblate and pro-
late spheroidal coordinate systems. Thus, from our
observations it follows that an additional approximate
integral of motion should exist.

For SQD eigenfunction with different numbers of
ρ and z nodes, nρ and nz , and with increasing γF

the series of crossings become mixed. Note, that the
eigenenergies of the states with the same z-parity at
γF = 0 are repulsed with increasing γF (e.g., [t = 9,
n = 1, l = 5, E9(γF = 0) = 14.01] and [t = 10, n =
3, l = 0, E10(γF = 0) = 14.21]), but the states with
different z-parity are attracted (e.g., [t = 7, n = 1,
l = 4, E7(γF = 0) = 10.71] and [t = 8, n = 2, l = 2,
E8(γF = 0) = 13.24]). This fact should be also asso-
ciated with the existence of approximate integrals of
motion. Indeed, from Fig. 1 one can see that for SQD
at a = c = 2.5 with increasing γF the series of exact
crossings appear.

3. THE PTLJ IN NONDIAGONAL ADIABATIC
APPROXIMATION

We expand the potentials (12) and (13) of the
BVP (9) and (10) in Taylor series in the vicinity of
xs = 0:

Ei(xs) = Ei;0 +
kmax∑
k=1

Ei;0

τ2k
x2k

s , (14)
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Uij(xs) = Uij;0 +
kmax∑
k=1

Ũij;k

τ2k
x2k

s ,

Hij(xs) =
kmax∑
k=1

k
Hij;0

τ2k
x2k

s ,

Qij(xs) =
kmax∑
k=1

Qij;0

τ2k−1
x2k−1

s ,

where Ũij;k = (2k−3)!!
(2k)!! Uij;0 and the parameter τ equals

τ = a for OSQD, and τ = c for PSQD. Substitution
of expansions (14) into Eq. (9) leads to the BVP
for a set of ODEs of the slow subsystem with
respect to the unknown vector functions χt(xs) =
(χ1;t(xs), ..., χjmax;t(xs))T corresponding to the un-
known eigenvalues 2Et ≡ Et:(

D(0) + (Ei;0 − Et) + V̌s(xs) (15)

+
kmax∑
k=1

Ei;0 + kHii;0

τ2k
x2k

s

)
χi;t(xs)

+
jmax∑
j �=i

kmax∑
k=1

(
Ũij;k

τ2k
x2k

s + k
Hij;0

τ2k
x2k

s

+ (2k − 1)
Qij;0

τ2k−1
x2k−2

s

+ 2
Qij;0

τ2k−1
x2k−1

s

d

dxs

)
χj;t(xs) = 0,

where Ũij;k is given by the expansion (14) and
V̌s(xs) = 0 for OSDQ; Uij(xs) = 0 and V̌s(xs) =
γF z for PSDQ. We choose the unperturbed operator
to have the eigenvalues and basis functions of 2D and
1D oscillators. For the OSQD (2D oscillator) with
respect to the scaled slow variable x we have xs =

ρ =
√

x/
√

Ef , where Ef = (Ei′;0 + Hi′i′;0)/(4a2) =

ω2
i′/4, i.e., the adiabatic frequency, at given i′ = no

L (n) = D(0) − E(0), (16)

D(0) = −
(

d

dx
x

d

dx
− x

4
− m2

4x

)
,

E(0) ≡ E(0)
n,m = n + (|m| + 1)/2,

Φ
(0)

q (x) =
√

q!x|m|/2 exp(−x/2)L|m|
q (x)√

(q + |m|)!
,

∞∫
0

Φ
(0)

q (x)Φ
(0)

q′ (x)dx = δqq′ .

Therefore, the action of the operators L(n) and x on

the function Φ(0)
q (x) ≡ Φ(0)

q,m(x) is determined by the
recurrence relations [37]

L(n)Φ(0)
q,m(x) = (q − n)Φ(0)

q,m(x), (17)

xΦ(0)
q,m(x) = −

√
q + |m|√qΦ(0)

q−1,m(x)

+ (2q + |m| + 1)Φ(0)
q,m(x)

−
√

q + |m| + 1
√

q + 1Φ(0)
q+1,m(x),

x
dΦ(0)

q,m(x)
dx

= −
√

q + |m|√qΦ(0)
q−1,m(x)/2

− Φ(0)
q,m(x)/2 +

√
q + |m| + 1

√
q + 1Φ(0)

q+1,m(x)/2.

For PSQD (1D oscillator) with respect to the
scaled slow variable x xs = x/ 4

√
Ef , where Ef =

(Ei′;0 + Hi′i′;0)/c2 = ω2
i′ , i.e., the adiabatic frequency,

at given i′ = np, we have

L (n) = D(0) − E(0), D(0) = − d2

dx2
+ x2, (18)

E(0) ≡ E(0)
n = 2n + 1, n = 0, 1, ....,

Φ
(0)

q (x) =
exp(−x2/2)Hq(x)

4
√

π
√

2q
√

q!
,

∞∫
−∞

Φ
(0)

q (x)Φ
(0)

q′ (x)dx = δqq′ .

Correspondingly, the action of operators L(n), x

and d/dx on function Φ(0)
q (x) is determined by the

recurrence relations [37]

L(n)Φ(0)
q (x) = 2(q − n)Φ(0)

q (x), (19)

xΦ(0)
q (x) =

√
q√
2
Φ(0)

q−1(x) +
√

q + 1√
2

Φ(0)
q+1(x),

d

dx
Φ(0)

q (x) =
√

q√
2
Φ(0)

q−1(x) −
√

q + 1√
2

Φ(0)
q+1(x).

The eigenfunctions (15) as functions of the new
scaled variable x are sought in the form of expansion

over the basis of the normalized functions Φ(0)
q (x),

q = 0, 1, ..., of the 2D or 1D oscillators with unknown
coefficients bj,s:

χj;t(x) =
qmax∑
q=0

bj,q;tΦ(0)
q (x), (20)

bj,q<0;t = bj,q>qmax;t = 0.

Below we demonstrate that such expansions are
appropriate for getting approximate solutions in the
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Table 3. The convergence of eigenenergies Et of Eq. (23) vs order kmax of approximation of effective potentials from (14)
for jmax = 4 and qmax = 60 basis functions at γF = 0 (Fast and slow variables xf = z and xs = ρ (oblate spheroidal QD
and spherical QD), number of nodes i = (nzo = no − 1, nρo))

kmax a = 2.5, c = 0.5 a = 2.5, c = 2.5

(nzo, nρo) (0, 0) (0, 1) (2, 0) (0, 0) (0, 1) (2, 0)

8 12.66820 19.06745 96.71486 1.192415 2.998982 5.325360

12 12.74967 19.81383 96.75070 1.377572 4.088539 5.868629

20 12.78407 19.83842 96.75172 1.132323 5.084082 6.735687

N(jmax = 4) 12.76482 20.04074 96.75215 1.579273 5.316872 6.317204

lower part of the BVP spectrum (9) and (10). Substi-
tution of the expansion (20) into (15) yields the set of
equations

qmax∑
q=0

Âiibi,q;tΦ(0)
q (x) (21)

+
jmax∑

j �= i=1

qmax∑
q=0

Âijbj,q;tΦ(0)
q (x)

=
qmax∑
q=0

κ−2EtE
−1/2
f bi,q;tΦ(0)

q (x),

Âii =

(
D(0) + V̌s(x)E−3/4

f

+ κ−2Ei;0E
−1/2
f + κ−2

kmax∑
k=1

Ei;0 + kHii;0

τ2kE
(k+1)/2
f

x2k

)
,

Âij = κ−2
kmax∑
k=1

(
Ũij;k + kHij;0

τ2kE
(k+1)/2
f

x2k
s

+
Qij;0

τ2k−1E
k/2
f

(
(2k − 1)x2k−2 + 2x2k−1 d

dx

))
,

where κ = 2 and V̌s(xs) = 0 for OSQD; κ = 1 and
V̌s(x) = γF x for PSQD. Applying the relations (17)
or (19) to get first the derivatives of the basis func-
tions, we get the expressions for the action of opera-
tors Âij :

ÂijΦ(0)
q (x) =

qmax∑
q′=0

αij;qq′Φ
(0)
q′ (x) (22)

and, hence, the algebraic eigenvalue problem with

respect to the unknown Et and bj,q;t

qmax∑
q=0

αii;q′qbi,q;t +
jmax∑

j �= i=1

qmax∑
q=0

αij;q′qbj,q;t (23)

= κ−2EtE
−1/2
f bi,q;t.

In the matrix form it reads as

ABt = κ−2EtE
−1/2
f Bt, BT

t′Bt = δtt′ ,

where Bt = (b1,0;t, b1,1;t, ..., b1,qmax;t, b2,0;t, ...,

bjmax,qmax;t)T is a vector with dimension of
jmax(qmax + 1), and A is a positive defined symmetric
matrix having the dimensions (jmax(qmax + 1)) ×
(jmax(qmax + 1)) with the elements
A(qmax+1)(i−1)+q+1,(qmax+1)(j−1)+q′+1 = αij;qq′.

Note, that the approximation with nonzero
elements on the diagonal of the matrix

A = {αii;q′q}(qmax)
q′,q=0δi=i0,j=i0, obtained by the action

of the diagonal operator Âii, Eq. (21), on the basis

function Φ(0)
q (x), Eq. (22), gives the diagonal adia-

batic approximation (AA) of PTLJ solution (23), i.e.,
Et ≈ Ei;n, n = 0, 1, ..., at each fixed i. Such adiabatic
classification of the eigenenergies is used in tables
discussed below.

The convergence of eigenenergies of Eq. (23) vs
the order kmax of approximation of the effective po-
tentials (14) for jmax = 4 and qmax = 60 is shown
in Tables 3 and 4 for OSQD, PSQD, and SQD at
γF = 0 and in Table 5 at γF = −10 for PSQD and
SQD. Table 4 shows that for PSQD we have upper
estimate and monotonic convergence with increasing
kmax to the numerical results at jmax = 4. Similar be-
havior is observed for OSQD, however, the accuracy
of approximation of the effective potentials is worse,
especially for the lowest effective potential i′ = 1, cor-
responding to the ground state of the fast subsys-
tem, because the upper estimates are violated. These
tables show also that such expansions have faster

PHYSICS OF ATOMIC NUCLEI Vol. 76 No. 8 2013



1042 GUSEV et al.

Table 4. The convergence of eigenenergies Et of Eq. (23) vs order kmax of approximation of effective potentials from (14)
for jmax = 4 and qmax = 60 basis functions at γF = 0 (Fast and slow variables xf = ρ and xs = z (prolate spheroidal QD
and spherical QD), number of nodes i = (nρp, nzp))

kmax c = 2.5, a = 0.5 c = 2.5, a = 2.5

(nρp, nzp) (0, 0) (0, 2) (1, 0) (0, 0) (0, 2) (1, 0)

8 25.17914 34.07677 126.4459 1.471911 4.270174 5.614892

12 25.19962 34.46884 126.4560 1.536121 4.716984 6.188144

20 25.20116 34.52202 126.4561 1.563492 5.182198 6.266533

N(jmax = 4) 25.20121 34.52512 126.4561 1.579239 5.316732 6.317058

Table 5. The convergence of eigenenergies Et of Eq. (23) vs order kmax of approximation of effective potentials from (14)
for jmax = 4 and qmax = 60 basis functions at γF = −10 (Fast and slow variables xf = ρ and xs = z (prolate spheroidal
QD and spherical QD), number of nodes i = (nρp, nzp))

kmax c = 2.5, a = 0.5 c = 2.5, a = 2.5

(nρp, nzp) (0, 0) (0, 2) (1, 0) (0, 0) (0, 2) (1, 0)

8 20.22165 30.91336 125.3062 –19.67398 –5.378707 –1.784110

12 20.60733 32.37540 125.3316 –15.34850 –6.881266 –2.605091

20 20.65846 32.67445 125.3322 –12.19445 –2.204160 –1.336853

N(jmax = 4) 20.66203 32.70877 125.3322 –10.84402 –1.511063 1.129039

convergence for strongly oblate or prolate spheroidal
QDs than for spherical ones.

4. PTRS FOR BVP FOR OSQD IN ELECTRIC
FIELD BY FAST VARIABLES

To have an analytic representation of the matrix
elements (11) for small γF , one can use V̌f (xf ;xs) =
2γF z, V̌fs(xf , xs) = 0 as potentials for OSQD in-
stead of the potentials (12) introduced in Section 2.1.
Then we arrive at the Sturm–Lioville problem for the
OSQD in fast variable expressed in the form(

− d2

dz2
− εz − Ej(ρ)

)
Bj(z; ρ) = 0, (24)

〈Bi(ρ)|Bj(ρ)〉 =

L(ρ)/2∫
−L(ρ)/2

Bi(z; ρ)Bj(z; ρ)dz = δij ,

where ε = γF is the electric field strength considered
here as a formal parameter of the PT, implying a small
interval ρ ∈ (0, L(ρ) = 2c

√
1 − ρ2/a2) of the scalar

product 〈Bi(ρ)|Bj(ρ)〉. The solutions B
(0)
j (z; ρ) and

E
(0)
j (ρ) of the unperturbed equation (at ε = 0) have

the form

{B(0)
j (z; ρ), E(0)

j (ρ)} (25)

=

{
{Bs

j (z; ρ), Es
j (ρ)}, for even j = 2, 4, ...,

{Bc
j (z; ρ), Ec

j (ρ)}, for odd j = 1, 3, ...,

where

Bs
j (z; ρ) =

√
2/L(ρ) sin(πjz/L(ρ)),

Bc
j(z; ρ) =

√
2/L(ρ) cos(πjz/L(ρ)),

Es
j (ρ) = (πj/L(ρ))2, Ec

j (ρ) = (πj/L(ρ))2.

We seek for the eigenfunctions Bj(z; ρ) and the
eigenvalues Ej(ρ) in the form of power expansions

Bj(z; ρ) =
kmax∑
k=0

εkB
(k)
j (z; ρ), (26)
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Ej(ρ) =
kmax∑
k=0

εkE
(k)
j (ρ).

Substituting Eq. (26) into Eqs. (24) and equating the
coefficients at the same powers of ε, we arrive at the
system of inhomogeneous differential equations with

respect to corrections E
(k)
j and B

(k)
j (z; ρ):(

− d2

dz2
− E

(0)
j (ρ)

)
B

(k)
j (z; ρ) (27)

=
(
z + E

(1)
j (ρ)

)
B

(k−1)
j (z; ρ)

+
k∑

p=2

E
(p)
j (ρ)B(k−p)

j (z; ρ),

k∑
p=0

〈B(p)
j (ρ)|B(k−p)

j (ρ)〉 = 0.

In each kth order of the PT the solutions becom-
ing zero at the boundary points (z = ±L(ρ)/2) are

sought in the form

B
(k)
j (z; ρ) =

⎧⎪⎪⎨
⎪⎪⎩

νmax∑
ν=0

Bs
j (z; ρ)S(k)

ν zν + (z2 − (L(ρ)/2)2)
νmax−2∑

ν=0
Bc

j(z; ρ)C(k)
ν+2z

ν , j = 2, 4, ...,

νmax∑
ν=0

Bs
j (z; ρ)C(k)

ν zν + (z2 − (L(ρ)/2)2)
νmax−2∑

ν=0
Bc

j(z; ρ)S(k)
ν+2z

ν , j = 1, 3, ...
(28)

Substituting Eq. (28) into the corresponding equa-
tion (27) of the kth order of the PT, and extracting
the coefficients at Bs

j (z; ρ)zν and Bc
j (z; ρ)zν , ν =

0, ..., νmax, we arrive at the set of algebraic equations

with respect to unknowns E
(k)
j (ρ), S

(k)
ν , and C

(k)
ν , for

even j:

−(−1)j(ν + 1)(L(ρ)/2)πjC
(k)
ν+3

− (ν + 2)(ν + 1)S(k)
ν+2 + (−1)j · 2(ν + 1)πjC

(k)
ν+1

− E
(1)
j (ρ)S(k−1)

ν − S
(k−1)
ν−1 −

k−1∑
p=2

E
(p)
j (ρ)S(k−p)

ν

− E
(k)
j (ρ)δν,0 = 0,

(ν + 1)(ν + 2)(L(ρ)/2)2C(k)
ν+4

− (ν + 2)(ν + 1)C(k)
ν+2 − (−1)j · 2(ν + 1)πjS

(k)
ν+1

− E
(1)
j (ρ)(C(k−1)

ν − (L(ρ)/2)2C(k−1)
ν+2 )

− C
(k−1)
ν−1 + (L(ρ)/2)2C(k−1)

ν+1 )

−
k−1∑
p=2

E
(p)
j (ρ)(C(k−p)

ν − (L(ρ)/2)2C(k−p)
ν+2 ) = 0.

For odd j the same unknowns are calculated using
these equations with the replacement C(p) � S(p).

The unknowns C
(k)
0 for odd j are determined from the

respective conditions:
k∑

p=0

∑
ν,ν′

(
S(p)

ν S
(k−p)
ν′ 〈Bs

j (ρ)|zν+ν′ |Bs
j (ρ)〉 (29)

+ [(C(p)
ν S

(k−p)
ν′ + S(p)

ν C
(k−p)
ν′ )

+ (L(ρ)/2)2(C(p)
ν+1S

(k−p)
ν′+1

+ S
(p)
ν+1C

(k−p)
ν′+1 )]〈Bs

j (ρ)|zν+ν′ |Bc
j (ρ)〉

+ [(C(p)
ν C

(k−p)
ν′ ) − 2(L(ρ)/2)2C(p)

ν+1C
(k−p)
ν′+1

+ (L(ρ)/2)4C(p)
ν+2C

(k−p)
ν′+2 ]〈Bc

j (ρ)|zν+ν′ |Bc
j(ρ)〉

)
= 0,

and S
(k)
0 for even j is calculated from the Eq. (29)

with the replacement C(p) � S(p). This algorithm
was implemented using the Maple environment. The
run was performed until the maximal order of the PT
kmax = 8. Below we present the first few coefficients
of the eigenvalue expansion, truncated by the terms
proportional to ε6 = γ6

F

Ej(ρ) =
π2j2

(L(ρ))2
(30)

+
(L(ρ))4(π2j2 − 15)

48π4j4
ε2

+
(L(ρ))10(1980 − 210π2j2 + π4j4)

2304π10j10
ε4,

the eigenfunctions truncated by the terms propor-
tional to ε2 = γ2

F
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Bj(z; ρ) =

⎧⎪⎪⎨
⎪⎪⎩

Bs
j (z; ρ) +

(
− (L(ρ))2zBs

j (z;ρ)

4π2j2 +
L(ρ)(z2−(L(ρ)/2)2)Bc

j (z;ρ)

4πj

)
ε, j = 2, 4, ...,

Bc
j(z; ρ) +

(
− (L(ρ))2zBc

j (z;ρ)

4π2j2 − L(ρ)(z2−(L(ρ)/2)2)Bs
j (z;ρ)

4πj

)
ε, j = 1, 3, ...,

and the diagonal effective potentials, truncated by the terms proportional to ε6 = γ6
F

Hjj(z) =
(

dL(ρ)
dρ

)2 ( π2j2 + 3
12(L(ρ))2

+
(L(ρ))4(−2880 + 258π2j2 + 7π4j4)

576π6j6
ε2 (31)

+
L(ρ)10(3510000 − 389880π2j2 + 3321π4j4 + 13π6j6)

27648π12j12
ε4

)
.

5. THE PTRS IN THE DIAGONAL ADIABATIC
APPROXIMATION

The desired solutions of the original 2D BVP (4)
are determined by the diagonal approximation of the
Kantorovich expansion (7) at fixed m

Ψm
i;n(xf , xs) ≈ Bi(xf ;xs)χi;n(xs).

The diagonal approximation of the BVP (9) and (10)
in the slow variable has the form(

− 1
xd

s

d

dxs
xd

s

d

dxs
+

m̃

x2
s

+ Vi(xs) − Ei;n

)
(32)

× χi;n(xs) = 0.

and the eigenfunctions satisfy the orthonormaliza-
tion conditions on the semiaxis [xmin

s = 0, xmax
s = ∞)

at d = 1 for the OSQD and on the axis (xmin
s =

−∞, xmax
s = ∞) at d = 0 for the OSQD
xmax

s∫
xmin

s

χi;n(xs)χi,n′(xs)(xs)ddxs = δnn′ . (33)

Here Vi(xs) = V̌s(xs) + Ei(xs) + DHii(xs), where
the parameter D is D = 0 for the crude adiabatic ap-

proximation and D = 1 for the adiabatic approxima-
tion; V̌s(xs) = 0, Ei(xs) and Hii(xs), Eqs. (30), (31),
for OSQD and V̌s(xs) = 2γF z, Ei(xs) and Hii(xs),
Eq. (13), for PSQD; Ei;n are the eigenenergies of
a lower part of the spectrum Ei;0 < Ei;1 < ... < Ei;n

enumerated in the ascending order by the number of
nodes n = 0, 1, 2, ... of the eigenfunctions χi;n(xs) at
fixed adiabatic quantum numbers i = no for OSQD
and i = np for PSQD. The potential function Vi(xs)
is expanded in powers of the small parameter ε

V
[jmax]
i (xs) = V

(0)
i + κ−2ω2

i x
2
s (34)

+ κ−2
jmax∑
j=1

V
(j)
i (xs)εj .

For OSQD at the values of the parameters d = 1,

ε = c−2, κ = 2, m̃ = m the coefficients V
(j)
i are

determined by Taylor expansion of the effective poten-
tials (30), (31) in the vicinity of the equilibrium point
xs = 0. With the accuracy up to order of O(γ6

F ) the

coefficients V
(j)
i and ω2

i are expressed as:

V
(0)
i =

π2n2
o

4c2
+ γ2

F

c4(π2n2
o − 15)

3π4n4
o

+ γ4
F

4c10(π4n4
o − 210π2n2

o + 1980)
9π10n10

o

, (35)

ω2
i =

π2n2
o

(ac)2
+ D

3 + π2n2
o

a4
+ γ2

F

(
− 8c4(π2n2

o − 15)
3a2π4n4

o

+ D
4c6(7π4n4

o + 258π2n2
o − 2880)

9a4π6n6
o

)

+ γ4
F

(
− 80c10(π4n4

o − 210π2n2
o + 1980)

9a2π10n10
o

+ D
16c12(13π6n6

o + 3321π4n4
o − 389880π2n2

o − 3510000)
27a4π12n12

o

)
,

V
(j)
i =

(
π2n2

o

(ac)2
+ jD

3 + π2n2
o

a4
+ γ2

F

(
− 4c4(π2n2

o − 15)
3a4π4n4

o

δi2 − D
4c6(7π4n4

o + 258π2n2
o − 2880)

9a6π6n6
o

δi2

)

PHYSICS OF ATOMIC NUCLEI Vol. 76 No. 8 2013



ANALYTICAL AND NUMERICAL CALCULATIONS 1045
 

50

0 1

 

ρ

 

100

150

2 3 4 5

 

t

 

 = 3

 

t

 

 = 2

 

t

 

 = 1

 
(

 
a

 
)

200

0 1

 

z

 

300

500

2–2 –1

 

t

 

 = 3

 

t

 

 = 2

 

t

 

 = 1

 
(

 
b

 
)

100

400

Fig. 3. Three potential functions Vi(xs) for (a) oblate xs = ρ and (b) prolate xs = z spheroids and their power expansions till

sixth order with account of adiabatic frequencies ωi and lower bound shifts V
(0)

i .

+ γ4
F

(
16c10(π4n4

o − 210π2n2
o + 1980)

9a4π10n10
o

(
10δi2 − 10

δi3

a2
+ 5

δi4

a4
− δi5

a6

)

+ D
16c12(13π6n6

o + 3321π4n4
o − 389880π2n2

o − 3510000)
27a6π12n12

o

(
− 4δi2 + 6

δi3

a2
− 4

δi4

a4
+

δi5

a6

)))
x2j+2

s .

For PSQD at the values of the parameters d = 0, ε =
1, κ = 1, m̃ = 0 the coefficients V

(j)
i are sought in the

form of a Taylor expansion in powers of x̄s = (xs −
x0) and γF of the effective potentials Vi(xs, γF ) =
Ej(xs) + DHjj(xs) + γF xs, Eq. (13). The expansion
coefficients x0 =

∑
k τ2k+1γ

2k+1
F are sought from the

equilibrium condition

∂Vi(xs, γF )
∂xs

∣∣∣∣
xs=x0

= 0

at fixed γF . With the accuracy up to O(γ5
F ) the

coefficients V
(j)
i and ω2

i are expressed as:

V
(0)
i = −2τ1γ

2
F − 2τ3γ

4
F + α2

np,|m|/(a
2) (36)

+ D(1 + α2
np,|m|)/(3c

4) + γ2
F τ2

1 (α2
np,|m|/(a

2c2)

+ D(1 + α2
np,|m|)2/(3c

4))

+ γ4
F τ1(α2

np,|m|(τ
3
1 + 2c2τ3)/(a2c4)

+ 2D(1 + α2
np,|m|)(τ

3
1 + τ3c

2)/(3c6)),

ω2
i =

(
α2

np,|m|/(a
2c2) + D(1 + α2

np,|m|)/(3c
4)

+ γ2
F τ2

1 · 6(α2
np,|m|/(a

2c4)

+ D(1 + α2
np,|m|)2/(3c

6))

+ γ4
F τ1(α2

np,|m|(15τ
3
1 + 12c2τ3)/(a2c6)

+ D(1 + α2
np,|m|)(15τ

3
1 + 8τ3c

2)/(c8))
)
,

V
(j)
i =

(
+ 2γF τ1((i + 1)α2

np,|m|/(a
2c2i+2)

+ D(i + 1)2(1 + α2
np,|m|)/(3c

2i+4))

+ 2γ3
F (i + 1)

(
α2

np,|m|((2i
2 + 7i + 6)τ3

1

+ 3τ3c
2)/(3a2c2i+4)

)
+ D(1 + α2

np,|m|)

× ((2i3τ3
1 + 11i2 + 20i + 12)τ3

1

+ 3(i + 1)τ3c
2)/(9c2i+6)

)
x̄2i+1

s

+
(
α2

np,|m|/(a
2c2i+2) + D(1 + α2

np,|m|)

× (i + 1)/(3c2i+4) + γ2
F τ2

1 (i + 2)(2i + 3)

× (α2
np,|m|(a

2c2i+4) + D(1 + α2
np,|m|)

× (i + 2)/(3c2i+6)) + γ4
F τ1(i + 2)

× (2i + 3)
(
α2

np,|m|((2i
2 + 11i

+ 15)τ3
1 + 12c2τ3)/(6a2c2i+6)

)

+ D(1 + α2
np,|m|)((2i

3 + 17i2 + 48i

+ 45)τ3
1 + 12(i + 2)τ3c

2)/(18c2i+8)
)
x̄2i+2

s ,

where τ2k+1 is determined from the condition that the
coefficient at x̄s is zero:
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τ1 =
3a2c4

3c2α2
np,|m| + Da2(1 + α2

np,|m|)
, τ3 = −

54a6c10(3c2α2
np,|m| + 2Da2(1 + α2

np,|m|))

(3c2α2
np,|m| + Da2(1 + α2

np,|m|))
4

.

In Fig. 3 we show three potential functions Vi(xs) for
oblate xs = ρ and prolate xs = z spheroids and the
convergence of the corresponding power expansions
till the sixth order with account of adiabatic frequen-

cies ωi and lower bound shifts V
(0)
i .

We choose the unperturbed operators of Eq. (32)
at ε = 0 in the expansion (34) in the form (16)–(19)
with the eigenvalues and the basis functions of 2D
and 1D oscillators given in Section 3 with respect
to the scaled coordinate x, xs =

√
2x/ωi and x̄s =

x/
√

ωi, where the adiabatic frequencies ωi are defined
by Eqs. (35) and (36) (at fixed i′ = n + 1), respec-
tively. According to (34), we seek for the eigenfunc-
tions χi;n(xs) and the eigenvalues Ei;n in the form of

expansions in powers of ε with unknowns Φ(k)
n and

E
(k)
n , omitting the notation m for brevity:

χi;n(xs) = Φ(0)
n +

kmax∑
k=1

Φ(k)
n (xs)εk, (37)

Ei;n = V
(0)
i +

kmax∑
k=0

E(k)
i;n = V

(0)
i (38)

+ κωi

(
E

(0)
i +

kmax∑
k=1

E(k)
n εk

)
.

Substituting the expansions (34), (37), and (38) into
Eq. (32) and equating the terms with the same power
of the parameter ε, we arrive at the recurrence set of
inhomogeneous equations of the PT with respect to

the unknowns E
(k)
n and Φ(p)

n (x):

L(n)Φ(0)
n (x) = 0 ≡ f (0)(x), (39)

L(n)Φ(k)
n (x) =

k−1∑
p=0

(E(k−p)
n − V

(k−p)
i )Φ(p)

n (x)

≡ f (k)(x), k ≥ 1,

with the initial conditions (16) and (18) for OSQD and
PSQD, respectively. The solution of this problem is
implemented in four steps.

Applying the relations (17) and (19), we expand
the right-hand side f (k)(x) and the solutions Φ(k)(x)
of Eqs. (39) over the basis of normalized states

Φ(0)
n+s(x), Eqs. (16) and (18):

Φ(k)
n (x) =

smax∑
s=−smax

b(k)
s Φ(0)

n+s(x), f (k)(x) =
smax∑

s=−smax

f (k)
s Φ(0)

n+s(x). (40)

Then a recurrent set of linear algebraic equations for unknown coefficients b
(k)
s and corrections E(k) is obtained

(41)s′b(k)
s − f (k)

s = 0, s = −smax, . . . , smax,

where s′ = s for OSQD and s′ = 2s for PSQD. These equations are solved sequentially for k = 1, 2, . . . , kmax:

(42)f
(k)
0 = 0 → E(k); b(k)

s = f (k)
s /s′, s = −smax, . . . , smax, s 	= 0.

The initial conditions for this procedure are

b(0)
s = δs0, E(0) = (n + (|m̃| + 1)/2) or E(0) = (n + 1)/2.

To obtain the normalized wave function Φj(x) up to the kth order, the coefficients b
(k)
0 are determined by

the following relation:

b
(k)
0 = − 1

2〈0|0〉

k−1∑
p=1

smax∑
s′=−smax

smax∑
s=−smax

b(k−p)
s 〈s|s′〉b(p)

s′ . (43)
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The above scheme implemented in Maple was ap-
plied to the evaluations of solutions in the analytical
form up to the order kmax = 6 of the PTRS. The first
four nonzero coefficients for the energy (38) in the
analytic form, truncated by the terms proportional

to the sixth power of the electric field strength, γ6
F , in

the CAA take the form:
1) For OSQD in terms of minor c and major

a semiaxes; the set of adiabatic quantum numbers
[m,no = nzo + 1, nρo]

V (0)
no

=
π2n2

o

4c2
+ γ2

F

c4(π2n2
o − 15)

3π4n4
o

+ γ4
F

4c10(π4n4
o − 210π2n2

o + 1980)
9π10n10

o

, (44)

E(0)
no;nρo

=
[
πno

ac
− γ2

F

4c5(π2n2
o − 15)

3aπ5n5
o

− γ4
F

8c11(2π4n4
o − 360π2n2

o + 3375)
3aπ11n11

o

]
(2nρo + |m| + 1),

E(1)
no;nρo

=
[

1
a2

+ γ2
F

4c6(π2n2
o − 15)

π6n6
oa

2
+ γ4

F

16c12(7π4n4
o − 1110π2n2

o + 10350)
3π12n12

o a2

]

×(2 + 6nρo + 3|m| + 6n2
ρo + |m|2 + 6nρo|m|),

E(2)
no;nρo

= (2nρo + |m| + 1)
[

3c
2πa3no

(2 + 2nρo + |m| + 2n2
ρo + 2nρo|m|)

− γ2
F

2c7(π2n2
o − 15)

3π7n7
oa

3
(54 + 118nρo + 16|m|2 + 59|m| + 118n2

ρo + 118nρo|m|)

− γ4
F

(
4c13(1874π4n4

o − 273120π2n2
o + 2536425)

9π13n13
o a3

(2nρo + |m| + 2n2
ρo + 2nρo|m|)

+
224c13(8π4n4

o − 1140π2n2
o + 10575)

9π13n13
o a3

|m|2 +
8c13(326π4n4

o − 48480π2n2
o + 450675)

3π13n13
o a3

)]
,

2) For PSQD in terms of minor a and major c semiaxes, the set of adiabatic quantum numbers [m,np =
nρp + 1, nzp] and positive zeros αnp,|m| of the Bessel functions of the first kind [37]

V (0)
np;nzp

=
α2

np,|m|
a2

− γ2
F

a2c2

4α2
np,|m|

+ γ4
F

a6c4

16α6
np,|m|

, (45)

E(0)
np;nzp

=

[
αnp,|m|

ac
+ γ2

F

3a3c

4α3
np,|m|

− γ4
F

9a7c3

16α7
np,|m|

]
(2nzp + 1),

E(1)
np;nzp

=

[
3

4c2
+ γ2

F
27a4

16α4
np,|m|

− γ4
F

105a8c2

64α8
np,|m|

]
(2n2

zp + 2nzp + 1),

E(2)
np;nzp

=
3a

16c3αnp,|m|
(2nzp + 1)(n2

zp + nzp + 3)

+ γ2
F

(
5a5

64cα5
np ,|m|

(2nzp + 1)(25n2
zp + 25nzp + 51) − a4

4α4
np,|m|

(30n2
zp + 30nzp + 11)

)

− γ4
F

(
45a9c

256α9
np,|m|

(2nzp + 1)(23n2
zp + 23nzp + 37) − 3a8c2

8α8
np,|m|

(30n2
zp + 30nzp + 11)

)
.

In Tables 6 and 7 we demonstrate how the approx-
imate eigenvalues in the lower part of spectrum for
OSQD and PSQD at m = 0 and γF = 0 converge
to the values calculated numerically with required

accuracy in the crude adiabatic approximation with
increasing of the PT order k. The accuracy was
from 8 to 5 digits at nzo = 0, from 10 to 8 digits at
nzo = 2, from 6 to 4 digits at nρp = 0, and from 8
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Table 6. Convergence of eigenvalues E(kmax)
nzo,nρo = V

(0)
nzo +

∑kmax
k=0 E

(k)
nzo,nρo for oblate spheroid c = 0.5, a = 5 vs PT order

kmax at γF = 0 (First line ∗ notes adiabatic shift V
(0)
nzo,nρo . Last lines are results of numerical calculations (Num))

kmax nzo = 0, nρo = 0 nzo = 0, nρo = 1 nzo = 0, nρo = 2 nzo = 0, nρo = 3 nzo = 0, nρo = 4

* 11.12624146 13.63951558 16.15278970 18.66606383 21.17933795

0 11.20624146 14.19951558 17.67278970 21.62606383 26.05933795

1 11.21006118 14.23389305 17.80647986 21.97365822 26.78126477

2 11.21026382 14.23433886 17.80254859 21.95100281 26.71094787

3 11.21028027 14.23441723 17.80242765 21.94908610 26.70256215

4 11.21028227 14.23443790 17.80265195 21.95065251 26.70959163

5 11.21028259 14.23444049 17.80264785 21.95052291 26.70875037

Num 11.21028268 14.23444147 17.80265065 21.95050805 26.70857727

kmax nzo = 2, nρo = 0 nzo = 2, nρo = 1 nzo = 2, nρo = 2 nzo = 2, nρo = 3 nzo = 2, nρo = 4

* 92.59635079 100.1361731 107.6759955 115.2158178 122.7556402

0 92.67635079 100.6961731 109.1959955 118.1758178 127.6356402

1 92.67762403 100.7076323 109.2405589 118.2916826 127.8762825

2 92.67764654 100.7076818 109.2401221 118.2891654 127.8684695

3 92.67764715 100.7076847 109.2401176 118.2890944 127.8681589

4 92.67764718 100.7076850 109.2401203 118.2891137 127.8682457

5 92.67764718 100.7076850 109.2401203 118.2891132 127.8682422

Num 92.67764718 100.7076850 109.2401204 118.2891132 127.8682419

to 7 digits at nρp = 1, respectively. Note, that the

difference between the adiabatic shift V
(0)
i and the

eigenvalues Ei;n = V
(0)
i + E(0)

i;n in the zero order k = 0
of the PT is small, but increases with growing nρo

and nzp for OSQD and PSQD, respectively. The

shifts V
(0)
i give the main contribution and provide the

lower adiabatic estimate of each set of eigenvalues,
generated by the perturbed harmonic oscillator terms
with adiabatic frequency ωi. From Tables 6 and 7
one can see that with increasing quantum numbers
nzo (or nρp), related to the fast variable, the accuracy
of approximation of the lower part of the spectrum is
increasing. This is because the accuracy of the Taylor
approximations of potential function (34) in Eq. (32)
is improved with increasing the number i = nzo +
1 > 2 (or i = nρp + 1 > 2), which is demonstrated in
Fig. 3.

In Figs. 4 and 5 we show the eigenvalues E of
the lower part of the spectrum of oblate and pro-
late QDs versus the electric field strength within
small (left panels) and large (right panels) intervals of
γF , calculated in the crude adiabatic approximation
(solid and dashed lines) to compare them with the

numerical results (dotted lines). One can see that
the eigenvalues calculated using the PT (solid and
dashed lines), corresponding to the eigenfunctions
with smaller number of nodes along the electric field
(i.e., with smaller nzo for OSQD and nzp for PSQD)
and with greater number of nodes across the electric
field (i.e., with greater nρo for OSQD and nρp for
PSQD), provide better approximation of the eigen-
values, calculated numerically with required accuracy
(dotted lines). This property follows from the fact
that such functions have better localization in the
vicinity of the plane, passing through the QD center
transverse to the electric field, i.e., in the region with
minimal contribution of the electric field potential to
the Hamiltonian of the system. As shown in the
right panels of Figs. 4 and 5, the differences between
the egienvalues, calculated using the PT and the
numerical method, increase faster in a smaller interval
of γF for larger PSQD than for smaller OSQD, the
size being measured along the direction of the electric
field.

The range of the parameter values, for which the
PT algorithms are valid, was estimated by means of
numerical calculations using the KANTBP program
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Table 7. Convergence of eigenvalues E(kmax)
nρp,nzp = V

(0)
nρp +

∑kmax
k=0 E

(k)
nρp,nzp for prolate spheroid c = 2.5, a = 0.5 vs PT order

kmax at γF = 0 (First lines ∗ notes adiabatic shift V
(0)
nρp,nzp . Last lines are results of numerical calculations (Num))

kmax nρp = 0, nzp = 0 nρp = 0, nzp = 2 nρp = 0, nzp = 4 nρp = 0, nzp = 6 nρp = 0, nzp = 8

* 25.05660430 32.75204608 40.44748787 48.14292965 55.83837144

0 25.17660430 34.31204608 45.36748787 58.34292965 73.23837144

1 25.18408925 34.42432034 45.88394944 59.80249498 76.41947535

2 25.18465987 34.42810718 45.87103269 59.69485535 76.04779441

3 25.18472054 34.42867746 45.87114189 59.68460238 75.99436976

4 25.18472960 34.42880826 45.87257549 59.69618640 76.05191800

5 25.18473139 34.42883580 45.87259458 59.69511288 76.04351256

Num 25.18472985 34.42884694 45.87265876 59.69512314 76.04210082

kmax nρp = 1, nzp = 0 nρp = 1, nzp = 2 nρp = 1, nzp = 4 nρp = 1, nzp = 6 nρp = 1, nzp = 8

* 126.3011119 143.9653618 161.6296118 179.2938617 196.9581117

0 126.4211119 145.5253618 166.5496118 189.4938617 214.3581117

1 126.4243727 145.5742742 166.7746086 190.1297223 215.7439616

2 126.4244810 145.5749929 166.7721571 190.1092932 215.6734198

3 126.4244860 145.5750400 166.7721661 190.1084455 215.6690025

4 126.4244863 145.5750447 166.7722178 190.1088627 215.6710754

5 126.4244864 145.5750452 166.7722181 190.1088459 215.6709435

Num 126.4244896 145.5750487 166.7722220 190.1088484 215.6709278

[30], as well as the condition that the mean value
of the slow variable is smaller than the size of the
major axis of OSQD or PSQD, i.e., ρ ≤ a or z ≤ c,
or known estimates of the distribution of nodes of La-
guerre or Hermite polynomials [37]. To calculate also
the approximate eigenfunctions of the lower part of
the spectrum n = 0, ..., nmax with required numbers
n of nodes in the interval ρ ∈ (0, a) (or z ∈ (−c, c))
for OSQD (or PSQD), one should choose such value
of parameter a =

√
2x0/ωi (or c = x0/

√
ωi), that

outside this interval x ∈ (x0 = 4n + 2|m| + 2,∞)
(or |x| ∈ (x0 = (2n + 1)1/2,∞)) the Laguerre (or
Hermite) polynomials have no nodes. As an example,
in Fig. 2 we show contour plots in (z, x) and (x, z)
plane of the first four eigenfunctions of OSQD and
PSQD, respectively, that have a required number
of nodes (crossings of the function plot with zero
plane) in the interval ρ ∈ (0, a) and z ∈ (−c, c) at
the values c = 0.5, a = 5, c = 2.5, a = 0.5. One
can see that the asymmetry with respect to z-axis
of the eigenfunctions of PSQD is greater than that of
OSQD, because the variation of well depth of PSQD
is greater than of OSQD.

6. ABSORPTION COEFFICIENT
FOR AN ENSEMBLE OF QDs

One can use the differences in the energy spectra
to verify the considered models of QDs by calculating
the absorption coefficient K(ω̃ph, ã, c̃, ) of an ensem-
ble of identical semiconductor QDs [14]. Since we
do not discuss exciton effects in the present paper,
the absorption coefficient may be approximately ex-
pressed as

K̃(ω̃ph, ã, c̃, u) =
∑
ν,ν′

K̃ν,ν′(ω̃ph, ã, c̃, u) (46)

= Ã
∑
ν,ν′

Ĩν,ν′(u)δ(�ω̃ph − W̃νν′),

Ĩν,ν′(u) =
∣∣∣∣
∫

Ψ̃e
ν(r̃; ã, c̃, F, μe)Ψ̃h

ν′(r̃; ã, c̃, F, μh)d3r̃
∣∣∣∣
2

,

where Ã is proportional to the square of the matrix
element in the Bloch decomposition, Ψ̃e

ν(u) and Ψ̃h
ν′

are the eigenfunctions of the electron (e) and the
heavy hole (h), Ẽe

ν and Ẽh
ν′ are the energy eigen-

values for the electron (e) and the heavy hole (h),
depending on the semiaxis size c̃, ã for OSQD (or
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Fig. 4. Dependence of eigenenergies E (in units of Ee) of lower part of spectrum of electronic states of OSQDs (a = 2.5,
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0 ). Solid and dashed lines are eigenenergies calculated by PTRS
till 5 order in crude adiabatic approximation: seven solid lines (nzo = 0, nρo = 0, 1, ..., 6) and four dashed lines (nzo = 1,
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two of dashed lines (nzo = 1 , nρo = 0, 1) are shown on lower-right and upper-right panel, respectively, in bigger intervals
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ã, c̃ for PSQD) and the adiabatic set of quantum
numbers ν = [nzo, nρo,m] and ν ′ = [n′

zo, nρo′ ,m
′]

(ν = [nρp, nzp,m] and ν ′ = [n′
ρp, n

′
zp,m

′]), where

m′ = −m, Ẽg is the band gap width in the bulk semi-
conductor, ω̃ph is the incident light frequency, W̃νν′ =
Ẽg + Ẽe

ν(ã, c̃) + Ẽh
ν′(ã, c̃) is the inter-band transition

energy for which K̃(ω̃ph) has the maximal value. We
rewrite the expression (46) in the terms of frequency
shift of the incident light Δωph/(2π) = (�ω̃ph −
Ẽg)/(2π�) corresponding to the inter-band transi-
tion energy shift ΔW̃νν′ = W̃νν′ − Ẽg = Ẽe

ν(ã, c̃) +
Ẽh

ν′(ã, c̃) for which K̃(Δω̃ph) has the maximal value,
using dimensionless variables in the reduced atomic
units

K̃(Δω̃ph, ã, c̃) = ÃẼ−1
g

∑
ν,ν′

Ĩν,ν′(u)δ[fν,ν′(u)],

(47)

fν,ν′(u) = λ1 −
2Ee

ν(a, c) + 2Eh
ν′(a, c)(μh/μe)

2Eg
,

where the parameter u will be defined below, λ1 =
(�ω̃ph − Ẽg)/Ẽg is the energy of the optical interband
transitions scaled to Ẽg, 2Eg = Ẽg/Ẽ

e
R is the dimen-

sionless band gap width.
For GaAs the functions fh→e

ν,ν′ (u) describing the
(h → e) inter-band transitions have the form

fh→e
ν,ν′ (u) = λ1 − (2Eg)−1(2Ee

ν(a, c, γF ) (48)

+ 2Ee
ν′(a, c,−(μh/μe)γF )(μe/μh)),

where μe = 0.067m0 and μh ≡ μhh = 0.558m0 are
the masses of electron and hole, respectively, Ẽg =
1430 meV is the band gap width and κ = 13.18 is the
dc permittivity and Ee

R = e2/(2κae
B) = 5.275 meV,

ae
B = �

2κ/(μee
2) = 104 Å, Eh

R = e2/(2κah
B) =

49 meV, ah
B = �

2κ/(μhe2) = 15 Å, 2γF = F/F ∗
0 ,

F ∗
0 = Ee

R/(eae
B) = e/(2κ(ae

B)2) = 5.04 kV/cm.

For InSb the dispersion law for heavy holes (hh)
is parabolic while for electrons (e) and light holes (lh)
it is non-parabolic and may be described by the Kane
model [18, 19, 22] at γF = 0. The energy values in our
notation are:

2Ẽhh
ν (InSb) = 2Ẽh

ν′(ã, c̃), (49)

2Ẽe
ν(InSb) = 2Ẽlh

ν (InSb) (50)

= −Ẽg/2 +
√

Ẽ2
g/4 + Ẽg(2Ẽe

ν(ã, c̃)).

As follows from Eqs. (49) and (50), to determine
the energy spectrum and the wave function of the light
hole and the electron one should solve the Klein–
Gordon equation [39, 40], while for heavy hole the
Schrödinger equation is applicable. The functions
fhh→e

ν,ν′ (u) and fhh→e
ν,ν′ (u) describing the (hh → e) and

the (lh → e) inter-band transitions have the forms

fhh→e
ν,ν′ (u)=λ1−

(
1/2+

√
1/4+(2Ee

ν (a, c)/(2Eg))

(51)
+(2Eg)−1 · 2Ee

ν′(a, c)(μe/μh)
)

,

(52)
f lh→e

ν,ν′ (u) = λ1 − 2
√

1/4 + (2Ee
ν(a, c)/(2Eg)),

where μe = μlh = 0.15m0 and μh ≡ μhh = 0.5m0 are
the masses of electron, light, and heavy holes, respec-
tively, Ẽg = 180 meV is the band gap width, κ = 16
is the dc permittivity, and Ee

R = Elh
R = e2/(2κae

B) =
7.972 meV, ae

B = alh
B = �

2κ/(μee
2) = 56.44 Å, Eh

R =
Ehh

R = e2/(2κahh
B ) = 26.57 meV, ah

B = ahh
B =

�
2κ/(μhe2) = 16.93 Å.

For both electron and hole carriers the dimen-
sionless energies 2Ee

ν = Ẽe
ν/Ẽe

R and 2Eh
ν (μh/μe) =

Ẽh
ν /Ẽe

R are expressed in the same reduced atomic
units Ẽe

R, and the overlap integral (46) between
the eigenfunctions, corresponding to Ee

ν(γF ) and
Eh

ν (γF ) = (μe/μh)Ee
ν(−(μh/μe)γF ), takes the form

Ĩν,ν′(u) =
∣∣∣∣
∫

(ae
B)3Ψe

ν(r; a, c, γF , μe)Ψe
ν′(r; a, c,−(μh/μe)γF , μe)d3r

∣∣∣∣
2

. (53)

Now consider an ensemble of OSQDs (or PSQDs),
differing in the minor semiaxis values c = uoc̄ (or a =
upā), determined by the random parameter u = uo (or
u = up). The corresponding minor semiaxis mean
value is c̄ at fixed major semiaxis a (or ā at fixed major

semiaxis c), and the appropriate distribution function
is P (uo) (or P (up)). Commonly, in this case the

normalized Lifshits–Slezov distribution function [15]

is used:
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P (u) = {34eu2 exp(−1/(1 − 2u/3))/25/3/(u + 3)7/3/(3/2 − u)11/3, u ∈ (0, 3/2); 0, otherwise} (54)

having conventional properties
∫

P (u)du = 1, ū =∫
uP (u)du = 1. The absorption coefficients

K̃o(ω̃ph, ¯̃a, c̃) or K̃p(ω̃ph, ã, ¯̃c) of an ensemble of
semiconductor OSQDs or PSQDs with different
dimensions of minor semiaxes are expressed as

K̃o(ω̃ph, ¯̃a, c̃) =
∫

K̃(ω̃ph, ¯̃a, c̃, uo)P (uo)duo,

(55)

K̃p(ω̃ph, ã, ¯̃c) =
∫

K̃(ω̃ph, ã, ¯̃c, up)P (up)dup.

Substituting (47) into (55) and taking into account
the known properties of the δ function, we arrive at
the analytical expression for the absorption coefficient
K̃(ω̃ph, ã, c̃) of a system of semiconductor QDs with
a distribution of random minor semiaxes:

K̃(ω̃ph)
K̃0

=
∑
ν,ν′,s

K̃ν,ν′(ω̃ph)
K̃0

, (56)

K̃ν,ν′(ω̃ph)
K̃0

= Ĩν,ν′ (us)

∣∣∣∣∣
dfν,ν′(u)

du

∣∣∣∣
u=us

∣∣∣∣∣
−1

P (us) ,

where K̃0 = Ã−1Ẽg is the normalization factor, us are
the roots of the equation fν,ν′(us) = 0.

At γF = 0 for IPBM we have the interband
overlap Ĩν,ν′ = δnρo,n′

ρo
δnzo,n′

zo
δm,−m′ for OSQD, or

Ĩν,ν′ = (J1+|m|(αnρp+1,|m|)/J1−|m|(αnρp+1,|m|))2 ×
×δnzp,n′

zp
δnρp,n′

ρp
δm,−m′ for PSQD, where αnρp+1,|m|

is the positive root of the Bessel function, and the
selection rules m = −m′, nzo = n′

zo, nρo = n′
ρo, or

nρp = n′
ρp, nzp = n′

zp [27], while at γF 	= 0 one should
calculate the interband overlap (53) in accordance
with the selection rules m = −m′, nρo = n′

ρo, or
nρp = n′

ρp, respectively. Note, that in the adiabatic
limit and at small γF the contributions of non-
diagonal matrix elements to the energy values are
about 1% for IPBM of OSQD and PSQD; then in
the Born–Oppenheimer approximation of the order
bmax for the AC we get

fν,ν′(u) = λ1 −
fmax∑
j=0

f
(j)
ν,ν′u

j−2. (57)

The coefficients of the expansion (57) for parabolic
dispersion law for small γF 	= 0 were constructed
using the expansions (44) and (45) and at γF = 0 they

are given in [27]. In general case for the calculation
fν,ν′(u) by formula (48), (51), or (52) we used the
eigenvalues Ee

ν(a, c) and Eh
ν′(a, c) calculated numer-

ically with given accuracy. After that we evaluated
the coefficients of expansion like (57) by the method
of least squares and by the polynomial interpolation
in the case of parabolic and non-parabolic dispersion
laws, respectively. Because of monotonic behavior of
function fν,ν′(u) vs u in the case under consideration,
we have only one root us of the equation fν,ν′(us) = 0,
which was used in formula (56).

For the Lifshits–Slezov distribution Figs. 6 and 7
display the total absorption coefficients K̃(ω̃ph)/K̃0

and the partial absorption coefficients K̃ν,ν(ω̃ph)/K̃0,
that form the corresponding partial sum (56) over a
fixed set of quantum numbers ν, ν ′ at m = −m′ = 0.
As a result of averaging (55) a series of curves with
finite width and height are observed instead of a series
of δ functions. One can see that the summation over
the quantum numbers no = nzo + 1 = 1, 2, 3, 4, 5 (or
np = nρp + 1 = 1, 2, 3) enumerating the nodes of the
wave function with respect to the fast variable gives
the corresponding principal maxima of the total AC
for the ensemble of QDs with distributed dimen-
sions of minor semiaxis, while the summation over
the quantum number nρo = 0, 1, 2, 3, ..., 8 (or nzp =
0, 1, 2, ..., 15) that labels the nodes of the wave func-
tion with respect to the slow variable leads to the
increase of amplitudes of these maxima and to sec-
ondary maxima arising in the case of sparer energy
levels of IPBM of OSQDs (or PSQDs).

In the regime of strong dimensional quantiza-
tion the frequencies of the interband transitions
(h → e) in GaAS between the levels no = 1, nρo =
0,m = 0 for OSQD or np = 1, nzp = 0,m = 0 for
PSQD at the fixed values ã = 2.5ae and c̃ = 0.5ae
for OSQD or ã = 0.5ae and c̃ = 2.5ae for PSQD,
are equal to Δω̃ph

100/(2π) = 16.9 THz at γF = 0 and
Δω̃ph

100/(2π) =15.9 THz at γF = 10, or Δω̃ph
100/(2π) =

33.3 THz at γF = 0 and Δω̃ph
100/(2π) = 31.5 THz at

γF = 2, where Δω̃ph
100/(2π) = (2π�)−1(W̃100,100 −

Ẽg) corresponds to the IR spectral region [7, 8],
taking the band gap value (2π�)−1Ẽg = 346 THz
into account. In Fig. 7 one can see the quantum-
confined Stark effect that consists in the reduction of
the absorption energy (light frequency) at the expense
of lowering the energy of both (e) and (h) bound states
due to the electric field effect. The total ACs at F 	= 0,
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the optical interband transitions for the Lifshits–Slezov distribution, using the functions fh→e
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coefficient without electric field is given by dashed line.
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Fig. 8. The same as in Fig. 6, but for InSb (hh → e) inter-band transition.

shown by solid lines, qualitatively correspond to the
total AC at F = 0, shown by dashed lines, but have
lower magnitudes and smooth behavior, in spite of
the additional contribution to the partial ACs of the
overlap integral (53) from the interband transition
nzo 	= n′

zo or nzp 	= n′
zp in OSQD or PSQD, also

shown in Fig. 7.

At the same parameters of the QDs the frequen-
cies of the interband transitions (lh → e) in InSb

are equal to Δω̃ph
100/(2π) = 68.5 THz for OSQD

or Δω̃ph
100/(2π) = 87.2 THz for PSQD, while the

frequencies of the interband transitions (hh → e)

in InSb are equal to Δω̃ph
100/(2π) = 78.6 THz for

OSQD or Δω̃ph
100/(2π) = 102 THz for PSQD. These

values correspond to the infrared spectral region with
longer wavelength, similar to [22], with the band gap
value (2π�)−1Ẽg = 44 THz taken into account. One
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can see that the behavior of total ACs for parabolic
dispersion law for IPBM of InSb, shown in Fig. 8, is
similar to that for GaAs (Fig. 6), while the behavior
of AC for nonparabolic dispersion law, shown in
Fig. 9, is essentially different. In particular, for
OSQDs it grows faster with increasing λ1, while for
PSQDs it goes to a plateau before starting to grow.
Indeed, with increasing quantum numbers nρo or
nzp that characterize the excitation of slow motion,
the maxima of partial ACs decrease for parabolic
dispersion law, while for the non-parabolic one the
maxima of partial ACs increase.

With decreasing semiaxis the threshold energy
increases, because the “effective” band gap width
increases, which is a consequence of the dimensional
quantization enhancement. Therefore, the above fre-
quency is greater for PSQD than for OSQD, be-
cause the OSQD implemented in two direction of
the plane (x, y) is effectively larger than that in the
direction of the z-axis solely at similar values of semi-
axes. Higher-accuracy calculations reveal an essen-
tial difference in the frequency behavior of the AC
for interband transitions in systems of semiconductor
OSQDs or PSQDs having a distribution of minor
semiaxes, which can be used to verify the above
models.

7. CONCLUSIONS

The 3D BVP for spheroidal quantum dots with
respect to fast and slow variables of cylindrical co-
ordinates was reduced by Kantorovich or adiabatic
method to BVP for set of second-order differential
equations (ODE) with effective potentials given in the
analytic form with respect to the slow variable, using
the basis function of fast variables, that depended on
the slow variable as a parameter. Separation of vari-
ables of 3D BVP in spheroidal coordinates provides
exact classification of energy eigenvalues by means
of nodes of eigenfunctions which transform exactly
to an adiabatic classification of eigensolutions of a

diagonal approximation of ODE at small parameter,
i.e. ratio of minor and major semiaxes of oblate or
prolate spheroid. The effective potential of a crude di-
agonal adiabatic approximation (CDAA) of the ODE
has been approximated by power expansions by slow
variable. Energy eigenvalues and eigenfunctions of
the BVP for CDAA were sought in the form of expan-
sions over eigenfunctions of 2D or 1D oscillator with
adiabatic frequencies and power of small parameter
by the PT. Required coefficients of these expansions
were calculated in analytical form as polynomials of
the sets of adiabatic quantum numbers.

To specify the region of the model parameters, in
which the PT asymptotic series are valid, we have
compared the PT results with those of numerical
calculations carried out with required accuracy. The
PT eigensolutions were used in analytic evaluation
of the photoabsorption coefficient for ensembles of
oblate and prolate spheroidal QDs with given ran-
dom distribution of small semiaxes without and with
small values of external electric fields. In general
case for calculation fν,ν′(u) by formula (48), (51), or
(52) we used eigenvalues calculated numerically with
given accuracy and we evaluated the coefficients of
expansion like (57) by the method of least squares
and by the polynomial interpolation in the case of
parabolic and nonparabolic dispersion laws, respec-
tively. Note, in the case of numerical calculations of
the photoabsorption coefficient the required deriva-
tives of eigenenergies and eigenfunctions with respect
to a parameter, e.g., the small semiaxis, can be calcu-
lated also with the help of the numerical algorithms
[29, 35].

The elaborated methods, symbolic-numerical al-
gorithms (SNAs) and programs [23–35] can be ap-
plied for solving the BVPs of discrete and continu-
ous spectra of the Schrödinger-type equations and
the analysis of spectral and optical characteristics of
QWs, QWr’s and QD’s in external fields, as well as
the spectra of models of deformed nuclei [41].
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1. INTRODUCTION

To analyze the geometrical, spectral, and optical
characteristics of quantum dots in the effective mass
approximation and in the regime of strong dimen-
sional quantization following [1], many methods and
models were used. We mention some of them, that are
in the field of our interest: the exactly solvable models
of spherical and cylindrical layer (toroid) impermeable
wells [2, 3], the adiabatic approximation for a lens-
shaped well confined to a narrow wetting layer [4],
and a hemispherical impermeable well [5], molecular
interaction and polarisability [6], the model of strongly
oblate or prolate ellipsoidal impermeable well [7–
9], as well as numerical solutions of the boundary
value problems (BVPs) with separable variables in
the spheroidal coordinates for wells with infinite and
finite wall heights [10–15], Möbius [16] nanostruc-
tures, diffraction of waves by ribbons [17], scattering
problems for toric [18] and coupled nonidentical mi-
crodisks [19].

Similar models were used for describing the en-
ergy spectra of deformed nuclei [20–26], atomic clus-
ters deposited on planar surfaces [27], and low-energy
barrier nuclear reactions [28–33]. However, thorough

∗The text was submitted by the authors in English.
1)Joint Institute for Nuclear Research, Dubna, Russia.
2)Russian–Armenian (Slavonic) University, Yerevan, Arme-

nia.
3)Saratov State University, Russia.
**E-mail: gooseff@jinr.ru

comparative analysis of spectral and optical charac-
teristics of models with different potentials, including
those with non-separable variables, remains to be a
challenging problem.

In the present paper we analyze spectral and opti-
cal characteristics of the following models: a spheri-
cal quantum dot (SQD), an oblate spheroidal quan-
tum dot (OSQD), a prolate spheroidal quantum dot
(PSQD), and a dumbbell QD (DQD). We make use
of the Kantorovich method that reduces the problem
to a set of ordinary differential equations (ODE) [34]
by means of expanding the wave function in appro-
priate sets of single-parameter basis functions [35],
similar to the well-known adiabatic method [36].

We present briefly a calculation scheme for solving
elliptical BVPs with axially-symmetric potentials in
cylindrical coordinates (CC), spherical coordinates
(SC), oblate spheroidal coordinates (OSC), and pro-
late spheroidal coordinates (PSC). Basing on the
symbolic-numerical algorithms (SNA) developed for
axially-symmetric potentials [37–39], different sets
of solutions are constructed for the parametric BVPs
related to the fast subsystem, namely, the eigenvalue
problem solutions (the terms and the basis functions),
depending upon the slow variable as a parameter, as
well as the matrix elements, i.e., the integrals of the
products of basis functions and their derivatives with
respect to the parameter. These terms and matrix
elements form the matrices of variable coefficients
in the set of second-order ODE with respect to the
slow variable, which are calculated in special cases
analytically and in the general case using the program
ODPEVP [40]. The BVP for this set of ODEs is
solved by means of the program KANTBP [41], while
in the special cases crude diagonal estimations can be
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performed using the appropriate analytic approxima-
tions.

The efficiency of the calculation scheme and the
SNA used is demonstrated by tracing the peculiar-
ities of spectral and optical characteristics in the
course of varying the aspect ratio of the prolate
or oblate spheroid and dumbbell in the models of
quantum dots with different confining potentials,
such as the isotropic and anisotropic harmonic os-
cillator, the spherical and spheroidal well with finite
or infinite walls approximated by smooth short-range
potentials, as well as by constructing the adiabatic
classification of the states.

The paper is organized as follows. In Section 2,
the calculation scheme for solving elliptic BVPs with
axially-symmetric confining potentials is briefly pre-
sented. Sections 3 and 4 are devoted to the analysis
of the spectra and absorption coefficient of quan-
tum dot models with three types of axially-symmetric
potentials, including the benchmark exactly solvable
models. In Conclusion we summarize the results and
discuss the future applications.

2. PROBLEM STATEMENT

Within the effective mass approximation under the
conditions of strong dimensional quantization, the
Schrödinger equation for the slow envelope of the
wave function Ψ̃(r̃) of a charge carrier (electron e or
hole h) in the models of QDs has the form [7, 8]

{ ˜̂
H − Ẽ}Ψ̃(r̃) (1)

= {(2μp)−1 ˜̂P2 + Ũ(r̃) − Ẽ}Ψ̃(r̃) = 0,

where r̃ ∈ R3 is the position vector of the particle
having the effective mass μp = μe (or μp = μh),
˜̂P = −i�∇r̃ is the momentum operator, Ẽ is the
energy of the particle, Ũ(r̃) is the axially-symmetric
potential confining the particle motion in SQD,
PSQD, or OSQD. In Model A, Ũ(r̃) is chosen
to be the potential of an isotropic or anisotropic
axially-symmetric harmonic oscillator in Cartesian
coordinates r = {x, y, z}:

ŨA(r̃) = μpω̃
2(ζ1(x̃2 + ỹ2) + ζ3z̃

2)/2. (2)

Here ζ1 = 1, ζ3 = 1 for a spherical QD or ζ1 =
(r̃0/ã)4, ζ3 = (r̃0/c̃)4 for a spheroidal QD, inscribed
into a spherical one, where ã and c̃ are the semiaxes of
the ellipse which transforms into a sphere at ã = c̃ =
r̃0 =

√
x̃2

0 + ỹ2
0 + z̃2

0 , ω̃ = γr̃0�/(μpr̃
2
0) is the angular

frequency, and γr̃0 is an adjustable parameter. We will
use the value γr̃0 = π2/3 that follows from equating
the ground state energies for the spherical oscillator
and the spherical QD of Model B considered below.

If necessary, this definition can be replaced with a
different one, e.g., the one conventional for nuclear
physics [24–26].

For Model B, Ũ(r̃) is the potential of a spherical or
axially-symmetric well

ŨB(r̃) = {0, S(r̃) < 0; Ũ0, S(r̃) ≥ 0}, (3)

bounded by the surface S(r̃) = 0 with walls of finite or
infinite height 1 � Ũ0 < ∞. In Eq. (3) S(r̃) depends
on the parameters ã, c̃, and 0 ≤ c̃1 ≤ 1

S(r̃) ≡ x̃2 + ỹ2

ã2
+

(z̃2 − c̃2)(z̃2c̃2
1 + 1 − c̃2

1)
2

c̃2(c̃2
1c̃

2/4 + 1 − c̃2
1)2

. (4)

At c1 = 0 we get a spheroidal quantum dot model, at
0 < c1 < 1 it becomes a dumbbell QD with a sym-
metric double well, and at c1 > 1 we get a triple-well
model.

For Model C, Ũ(r̃) is taken to be a spherical or
axially-symmetric diffuse potential

ŨC(r̃) = Ũ0

(
1 − (1 + exp(S(r̃)/s))−1

)
, (5)

where s is the edge diffusiveness parameter of the
function smoothly approximating the vertical walls
of finite height Ũ0. Below we restrict ourselves by
considering Model B with infinite walls Ũ0 → ∞ and
Model C with walls of finite height Ũ0.

Throughout the paper we make use of the reduced
atomic units [1, 8]: a∗B = κ�

2/μpe
2 is the reduced

Bohr radius, κ is the DC permittivity, ẼR ≡ Ry∗ =
�

2/(2μpa
∗2
B ) is the reduced Rydberg unit of energy,

and the following dimensionless quantities are in-

troduced: Ψ̃(r̃) = a
∗−3/2
B Ψ(r), 2Ĥ = ˜̂

H/Ry∗, 2E =
Ẽ/Ry∗, 2U(r) = Ũ(r̃)/Ry∗, r = r̃/a∗B, a = ã/a∗B,
c = c̃/a∗B , c1 = c̃1/a

∗
B , r0 = r̃0/a

∗
B, ω = γr0/r

2
0 =

�ω̃/(2Ry∗). For an electron with the effective mass
μp ≡ μe = 0.067m0 at κ = 13.18 in GaAs: a∗B =
ae

B = 104 Å = 10.4 nm and Ry∗ = Ẽe
R = 5.275 meV.

For a heavy hole with the effective mass μh =
μe/0.12 = 0.558m0 the corresponding values are
ah

B = ae
B(μe/μh) = 12.48 Å = 1.248 nm, and Ẽh

R =
Ẽe

R(μh/μe) = 46.14 meV.

Note that for Model A with approximation of
OSQD/PSQD by the anisotropic oscillator (2) the
separation of variables in cylindric coordinates x =
(z, ρ, ϕ) is possible and additional integrals exist [42–
44]. Similarly, for Model B the variables are sep-
arable in the oblate/prolate spheroidal coordinates
x = (ξ, η, ϕ) and the additional integrals of motion
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The values of conditionally fast xf and slow xs independent variables, the coefficients gis(xs), gjf (xf ) and the potentials
V̌f (xf ), V̌s(xs), V̌fs(xf , xs), in Eqs. (10)–(12) for SQD, OSQD, and PSQD in cylindrical (CC), spherical (SC), oblate
and prolate spheroidal (OSC and PSC) coordinates with (d/2)2 = ±(a2 − c2), + for OSC, − for PSC

CC SC OSC and PSC

OSQD PSQD SQD OSQD and PSQD

xf z ρ η η

xs ρ z r ξ

g1f 1 ρ 1 1
g2f 1 ρ 1 − η2 1 − η2

g1s ρ 1 r2 1
g2s ρ 1 r2 ξ2 ± 1
g3s 1 1 r2 1
V̌f (xf ) ω2ζ3z

2 m2/ρ2 + ω2ζ1ρ
2 m2/g2f m2/g2f ± (d/2)2g2f · 2E

V̌s(xs) m2/ρ2 + ω2ζ1ρ
2 ω2ζ3z

2 0 ∓m2/g2s − ((d/2)2g2s − 1) · 2E

V̌fs(xf , xs) 0 0 V̌ (r, η) V̌ (ξ, η)

are Λ̂: [Ĥ, Λ̂] ≡ ĤΛ̂ − Λ̂Ĥ = 0, i.e. Ĥp and Λ̂p in
PSQD

Ĥp = − 4
d2

[
1

ξ2 − η2

(
d

dξ
(ξ2 − 1)

d

dξ
(6)

+
d

dη
(1 − η2)

d

dη

)
+

(
1

(ξ2 − 1)(1 − η2)

)
d2

dϕ2

]
,

Λ̂p =
1 − η2

ξ2 − η2

d

dξ
(ξ2 − 1)

d

dξ
+

ξ2 − 1
ξ2 − η2

(7)

× d

dη
(1 − η2)

d

dη
+

(
1

ξ2 − 1
− 1

1 − η2

)
d2

dϕ2
,

Ĥo and Λ̂o in OSQD

Ĥo = − 4
d2

[
1

ξ2 + η2

(
d

dξ
(ξ2 + 1)

d

dξ
(8)

+
d

dη
(1 − η2)

d

dη

)
−

(
1

(ξ2 + 1)(1 − η2)

)
d2

dϕ2

]
,

Λ̂o = − 1 − η2

ξ2 + η2

d

dξ
(ξ2 + 1)

d

dξ
− ξ2 + 1

ξ2 + η2
(9)

× d

dη
(1 − η2)

d

dη
−

(
1

ξ2 + 1
+

1
1 − η2

)
d2

dϕ2
.

Equation (9) is obtained by substituting ξ → iξ, d →
−id from the known Eq. (7) derived in [45, 46].

Since the Hamiltonian Ĥ in Eqs. (1)–(5) com-
mutes with the z-parity operator of reflection in
the plane z = 0 (z → −z or η → −η), the solutions
are divided into even (σ = +1) and odd (σ = −1)
ones. The solution of Eq. (1), periodical with respect
to the azimuthal angle ϕ, is sought in the form
of a product Ψ(xf , xs, ϕ) = Ψmσ(xf , xs)eimϕ/

√
2π,

where m = 0,±1,±2, . . . is the magnetic quan-
tum number. Note, that in the absence of mag-
netic fields the Hamiltonian commutes also with
the inversion operator (r → −r) with the eigen-
values σ̂ = (−1)mσ and the solutions can be di-
vided into gerade (σ̂ = +1) and ungerade (σ̂ =
−1) ones. Then the function Ψmσ(xf , xs) satis-
fies the following equation in the two-dimensional
domain Ω = Ωxf

(xs) ∪ Ωxs ⊂ R2\{0}, Ωxf
(xs) =

(xmin
f (xs), xmax

f (xs)), Ωxs = (xmin
s , xmax

s ):(
Ĥ1(xf ;xs) + Ĥ2(xs) (10)

+ V (xf , xs) − 2E
)
Ψmσ(xf , xs) = 0.

The Hamiltonian of the slow subsystem Ĥ2(xs) is
expressed as

Ĥ2(xs) = Ȟ2(xs) (11)

= − 1
g1s(xs)

∂

∂xs
g2s(xs)

∂

∂xs
+ V̌s(xs),

and the Hamiltonian of the fast subsystem Ĥ1(xf ;xs)
is expressed in terms of the reduced Hamiltonian
Ȟf (xf ;xs) and the weighting factor g3s(xs):

Ĥ1(xf ;xs) = g−1
3s (xs)Ȟf (xf ;xs), (12)

Ȟf (xf ;xs) = − 1
g1f (xf )

∂

∂xf
g2f (xf )

∂

∂xf

+ V̌f (xf ) + V̌fs(xf , xs).

The table contains a detailed description of the condi-
tionally fast xf and slow xs independent variables,
the coefficients g1s(xs), g2s(xs), g3s(xs), g1f (xf ),
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g2f (xf ), and the reduced potentials V̌f (xf ), V̌s(xs),
V̌fs(xf , xs), entering Eqs. (10)–(12) for SQD,
OSQD, and PSQD in cylindrical (x = (z, ρ, ϕ)),
spherical (x = (r, η = cos θ, ϕ)), and oblate/prolate
spheroidal (x = (ξ, η, ϕ)) coordinates (CS, SC, and
OSC/PSC) [47]. Note that in the table, using
Eqs. (2), (5) in the reduced atomic units, the potential
V̌ (r, η) for OSQD/PSQD in SC is expressed for
Model A as

V̌ (r, η) = 2r2UA(r, η) = ω2r4(ζ1(1 − η2) + ζ3η
2),

and for Model C as

V̌ (r, η) = 2r2UC(r, η)

= 2r2U0

(
1 − (1 + exp((r2((1 − η2)/a2

+ η2/c2) − 1)/s))−1
)
,

both having zero normal first derivatives ∂V (r, η)/∂r
in the vicinity of the origin r = 0 (equilibrium point),
similar to [29]. We do not use the CC for Model C,
because the motion in this case is not restricted by
two coordinates ρ and z. For Model B in the table
ω = 0 and the potentials V̌ (r, η) = V̌ (ξ, η) = 0 are
zero, since in this case one should impose the Dirich-
let boundary conditions Ψmσ(xf , xs)|∂Ω = 0 at the
boundary ∂Ω = {R2|S(xf , xs) = 0} of Ω, restricted
by the surface S(r̃) = 0, which is equivalent to the
action of the potential (3).

The solution Ψmσ
i (xf , xs) ≡ ΨEmσ

i (xf , xs) of the
problem (10)–(12) is sought in the form of Kan-
torovich expansion [34]

ΨEmσ
i (xf , xs) (13)

=
jmax∑
j=1

Φmσ
j (xf ;xs)χ

(mσi)
j (E,xs).

The set of appropriate trial functions is chosen as the
set of eigenfunctions Φmσ

j (xf ;xs) of the Hamiltonian

Ȟf (xf ;xs) from (12), i.e., the solutions of the para-
metric BVP{

Ȟf (xf ;xs) − λ̌i(xs)
}

Φmσ
i (xf ;xs) = 0, (14)

in the interval xf ∈ Ωxf
(xs), depending on the con-

ditionally slow variable xs ∈ Ωxs as on a parameter.
These solutions obey the boundary conditions

lim
xf→xt

f (xs)

(
N

(mσ)
f (xs)g2f (xf )

dΦmσ
j (xf ;xs)

dxf
(15)

+ D
(mσ)
f (xs)Φmσ

j (xf ;xs)
)

= 0

at the boundary points {xmin
f (xs), xmax

f (xs)} =
∂Ωxf

(xs) of the interval Ωxf
(xs). In Eq. (15),

N
(mσ)
f (xs) ≡ N

(mσ)
f , D

(mσ)
f (xs) ≡ D

(mσ)
f , unless

specially declared, are determined by the relations

N
(mσ)
f = 1, D

(mσ)
f = 0 at m = 0, σ = +1 (or at

σ = 0, i.e., without parity separation), N
(mσ)
f = 0,

D
(mσ)
f = 1 at m = 0, σ = −1 or at m �= 0. The

eigenfunctions satisfy the orthonormality condition
with the weighting function g1f (xf ) in the same
interval xf ∈ Ωxf

(xs):

〈
Φmσ

i |Φmσ
j

〉
=

xmax
f (xs)∫

xmin
f (xs)

Φmσ
i (xf ;xs) (16)

× Φmσ
j (xf ;xs)g1f (xf )dxf = δij .

Here λ̌1(xs) < . . . < λ̌jmax(xs) < . . . is the desired
set of real eigenvalues. The corresponding set of
potential curves 2E1(xs) < . . . < 2Ejmax(xs) < . . . of
Eqs. (12) is determined by 2Ej(xs) = g−1

3s (xs)λ̌j(xs).
Note that for OSC and PSC the desired set of
real eigenvalues λ̌j(xs) depends on the combined
parameter, xs → p2 = (d/2)2 · 2E, i.e., the product
of spectral 2E and geometrical (d/2)2 parameters
of the problem (10). The solutions of the prob-
lem (14)–(16) for Models A and B are calculated
in the analytical form [39], while for Model C this
is done using the program ODPEVP [40]. Sub-
stituting the expansion (13) into Eq. (1), we get a
set of ODEs for the slow subsystem with respect
to the unknown vector functions χ(mσi)(xs, E) ≡
χ(t)(xs) = (χ(t)

1 (xs), . . . , χ
(t)
jmax

(xs))T :
(
− 1

g1s(xs)
d

dxs
g2s(xs)

d

dxs
+ V̌s(xs) (17)

+ Vii(xs) − 2E
)

χ
(t)
i (xs) = −

∑
j

Vij(xs)χ
(t)
j (xs).

Here Vii(xs) = 2Ei(xs) +Hii(xs), Vij(xs) are defined
by the formula

Vij(xs) =
g2s(xs)
g1s(xs)

Hij(xs) +
1

g1s(xs)
(18)

× dg2s(xs)Qij(xs)
dxs

+
g2s(xs)
g1s(xs)

Qij(xs)
d

dxs
,

Hij(xs) = Hji(xs)
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=

xmax
f (xs)∫

xmin
f (xs)

g1f (xf )
∂Φi(xf ;xs)

∂xs

∂Φj(xf ;xs)
∂xs

dxf ,

Qij(xs) = −Qji(xs)

= −

xmax
f (xs)∫

xmin
f (xs)

g1f (xf )Φi(xf ;xs)
∂Φj(xf ;xs)

∂xs
dxf ,

and calculated analytically for Model B and by means
of the program ODPEVP [40] for Model C, while
the solutions of the BVPs for Eq. (17) with the
boundary and orthonormalization conditions of the
type (15), (16) with xf → xs were calculated by
means of the program KANTBP [41]. Note that
for Model A in SC or CC and Model B in OSC
or PSC, the variables xf and xs are separated so
that the matrix elements V̌ij(xs) = 0 are put into
the r.h.s. of Eq. (17), and Vs(xs) are substituted
from the table. For the interesting lower part of the
spectrum of Models A and B 2E: 2E1 < 2E2 < . . . <
2Et, or of Model C 2E: 2E1 < 2E2 < . . . < 2Et <
U0, the number jmax of the equations solved should
be at least not less than the number of the energy
levels of the problem (17) at a = c = r0. To ensure
the prescribed accuracy of calculation of the lower
part of the spectrum discussed below with eight
significant digits, we used jmax = 16 basis functions
in the expansion (8) and the discrete approximation
of the desired solution by Lagrange finite elements
of the fourth order with respect to the grid pitch
Ωp

hs(xs)
= [xs;min, xs;k = xs;k−1 + hs, xs;max]. The

details of the corresponding computational scheme
are given in [39].

3. SPECTRAL CHARACTERISTICS
OF SPHEROIDAL AND DUMBBELL QDs

3.1. Model A of OSQD and PSQD

In the exactly solvable Model A the variables are
separable in spherical coordinates, and under the
variation of the aspect ratio parameters ζca = c/a and
ζac = ζ−1

ca = a/c for the oblate and prolate spheroids,
determining the transverse ωρ =

√
ζ1ω and longi-

tudinal ωz =
√

ζ3ω frequencies of the circular and
linear harmonic oscillators. The spectrum is given
by the sum of energies 2Enρm = 2ωρ(2nρ + |m|+ 1),
nρ = 0, 1, . . ., m = 0,±1, . . . (with the eigenvalues
being degenerate with respect to λρ = 2nρ + |m|
that numbers in ascending order the energy val-
ues of the states [48, 49], which is conventionally
used in practice, see, for example, [21, 27]), and

2Enz = 2ωz(nz + 1/2), nz = 0, 1, . . . , at ω = ωr0 =
π2/(3r2

0),
√

ζ1 = r2
0/a

2, and
√

ζ3 = r2
0/c

2. At a =
c = r0 the independent variables are separable in
the boundary problem for Eq. (1) in the spherical
coordinates too, i.e., we have the energy spectrum of
a spherical oscillator 2Eosc

nrlm = 2ωr0(2nr + l + 3/2),
nr = 0, 1, . . ., l = 0, 1, . . ., m = 0,±1, . . . ,±l, with
the eigenvalues being degenerate with respect not
only to m, but also to λr = 2nr + l that numbers
in ascending order the energy values of states, sep-
arated in parity σ̂ = (−1)λ = (−1)l = (−1)mσ, σ =
(−1)l−m = ±1. The energy spectrum of the spherical
oscillator 2Eosc

nrlm coincides at a = c with

2E(a, c) = 2(Enzo + Enρo,m), (19)

2E(c, a) = 2(Enρp,m + Enzp),

which, respectively, defines the one-to-one corre-
spondence between the sets of the quantum num-
bers nzo = l − |m|, nρo = nr, m = m for OSQD and
SQD and nρp = nr, m = m, nzp = l− |m| for PSQD
and SQD, that characterize the fast and slow subsys-
tems at continuous variation of the parameters ζca =
c/a and ζac = a/c. At decreasing the parameter ζca

or ζac the degeneracy of the spectrum with respect to
the quantum numbers n, l, m is removed.

Figure 1 illustrates the lower part of the equidis-
tant energy spectrum Ẽ/ẼR = 2E(a, c) and Ẽ/ẼR =
2E(c, a) for even states σ = +1 of the model of
OSQD and PSQD with parabolic confining poten-
tials (2), at m = 0, i.e., of an oblate and prolate
spheroid, depending on the minor c or a and the
major a or c semiaxes, respectively. At fixed values
of the parity σ and the magnetic quantum number
m, when the ratio of the frequencies ωρ and ωz of the
longitudinal and transverse oscillators is a rational
number, ωρ/ωz ∈ Q, as illustrated, e.g., in Fig. 1, the
exact crossings of the same-parity terms occur, after
which above each energy level of OSQD (or PSQD),
labelled with the quantum number nzo (or nρp) of the
fast subsystem, an equidistant spectrum appears with
the energy levels labelled with the quantum number
nρo (or nzp) of the slow subsystem. Note that when
the parameters tend to zero, the longitudinal energy
of OSQD and the transverse energy of PSQD tend
to infinity. However, since the variables are separable
and the energy can be presented as a sum, the finite
energies for a disc Enρo,m or a wire Enzp result from
the subtraction of the longitudinal Enzo or transverse
Enρp,m energy, respectively.

3.2. Models B and C for Oblate Spheroidal QD

At fixed coordinate xs of the slow subsystem, the
motion of the particle in the fast degree of freedom
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Fig. 2. Energies 2E = Ẽ/ER of even σ = +1 lower states for OSQD versus the minor c, ζca = c/a ∈ (1/5, 1) being the
spheroid aspect ratio: (a) well with impermeable walls, (b) diffusion potential with 2U0 = 36, s = 0.1, the major semiaxis
a = 2.5 and m = 0. The thin lines are minimal values 2Emin

i ≡ 2Ei(xs = 0) of potential curves.

xf is localized within the potential well having the
effective width

L (xs) = 2c
√

1 − x2
s/a

2, (20)

where L = L̃/a∗B. The parametric BVP for Eq. (12)
at fixed values of the coordinate xs, xs ∈ (0, a),
is solved in the interval xf ∈ (−L(xs)/2, L(xs)/2)
for Model C using the program ODPEVP, and for
Model B the eigenvalues Ẽno(xs)/ẼR ≡ 2Ei(xs),
no = i = 1, 2, . . ., and the corresponding parametric
eigenfunctions Φσ

i (xf ;xs), are expressed in the ana-

lytical form:

2Ei (xs) =
π2n2

o

L2 (xs)
, Φσ

i (xf ;xs) (21)

=

√
2

L (xs)
sin

(
πno

2

(
xf

L (xs) /2
− 1

))
,

where the even solutions σ = +1 are labelled with odd
no = nzo + 1 = 2i− 1, and the odd ones σ = −1 with
even no = nzo + 1 = 2i, i = 1, 2, 3, . . . The effective
potentials (18) in Eq. (17) for the slow subsystem
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are expressed analytically in terms of the integrals
over the fast variable xf of the basis functions (21)
and their derivatives with respect to the parameter xs

including the states of both parities σ = ±1:

2Ei(xs) =
a2π2n2

o

4c2(a2 − x2
s)

, (22)

Hii(xs) =
3 + π2n2

o

12
x2

s

(a2 − x2
s)2

,

Hij(xs) =
2non

′
o(n2

o + n′2
o )(1 + (−1)no+n′

o)
(n2

o − n′2
o )2

× x2
s

(a2 − x2
s)2

,

Qij(xs) =
non

′
o(1 + (−1)no+n′

o)
(n2

o − n′2
o )2

xs

a2 − x2
s

, n′
o �= no.

For Model B at c = a = r0 the OSQD turns into
SQD with known analytically expressed energy levels
Et ≡ E

sp
nlm and the corresponding eigenfunctions

2Esp
nlm =

α2
nr+1,l+1/2

r2
0

, (23)

Φsp
nlm(r, θ, ϕ) =

√
2Jl+1/2

(√
2Esp

nlmr

)

r0
√

r|Jl+3/2(αnr+1,l+1/2)|
Ylm(θ, ϕ),

where αnr+1,l+1/2 are zeros of the Bessel function
of semi-integer index l + 1/2, numbered in as-
cending order 0 < α11 < α12 < . . . < αiv < . . . by
the integer i, v = 1, 2, 3, . . . Otherwise one can use
equivalent pairs iv ↔ {nr, l} with nr = 0, 1, 2, . . .
numbering the zeros of the Bessel function and
l = 0, 1, 2, . . ., being the orbital quantum number
that determines the parity of states σ̂ = (−1)l =
(−1)mσ, σ = (−1)l−m = ±1. At fixed l, the energy
levels Ẽnlm/ẼR = 2Et, degenerate with respect to
the magnetic quantum number m, are labelled with
the quantum number n = nr + 1 = i = 1, 2, 3, . . .,
in contrast to the spectrum of a spherical oscillator,
degenerate with respect to the quantum number
λ = 2nr + l. Figures 2, 3 show the lower part of
the non-equidistant spectrum Ẽ(ζca)/ẼR = 2Et and
the eigenfunctions Ψmσ

t from Eq. (13) for even states
of OSQD Models B and C at m = 0. There is
a one-to-one correspondence rule no = nzo + 1 =
2n − (1 + σ)/2, n = 1, 2, 3, . . ., and nρo = (l − |m| −
(1 − σ)/2)/2, between the sets of spherical quantum
numbers (n, l,m, σ̂) of SQD with radius r0 = a = c
and spheroidal ones {nξ = nr, nη = l − |m|,m, σ} of
OSQD with the major a and the minor c semiaxes,

and the adiabatic set of cylindrical quantum numbers
[nzo, nρo,m, σ] at continuous variation of the param-
eter ζca = c/a. The presence of crossing points of
the energy levels of similar parity under the symmetry
change from spherical ζca = 1 to axial, i.e., under the
variation of the parameter 0 < ζca < 1, in the BVP
with two variables at fixed m for Model B is caused
by the possibility of variable separation for Eq. (8) in
the OSC [47], i.e., the r.h.s. of Eq. (17) equals zero,
and by the existence of the integral of motion (9). The
transformation of the eigenfunctions occurring in the
course of a transition through the crossing points
(marked by circles) in Fig. 2, is shown in Fig. 3 for
Model B (marked by arrows) and similar for Model C.
From the comparison of these figures one can see
that if the eigenfunctions are ordered in accordance
with the increasing eigenvalues of the BVPs, then
for both Models B and C, the number of nodes [50]
is invariant under the variation of the parameter c
from c = a = 2.5 to c = 0.5 of the potentials (3) and
(5). For Model B, such a behavior follows from
the fact of separation of variables of the BVP with
the potential (3) in the OSC, while for Model C
further investigation is needed because the coordinate
system, in which the variables of the BVP with the
potential (5) are separable, is unknown. So, crossing
and quasicrossing points will correspond to branch-
ing points in the complex plane of focal parameter
d, like in the case of separable variables [51]. So,
at small values of the deformation parameter (ζca for
OSQD or ζac for PSQD) there are nodes only along
the corresponding major semiaxis. For Model C at
each value of the parameter a there is a finite number
of discrete energy levels limited by the value 2U0

of the well walls height. As shown in Fig. 2b, the
number of levels of OSQD, equal to that of SQD
at a = c = r0, is reduced with the decrease of the
parameter c (or ζca), in contrast to Models A and B
that have countable spectra, and avoided crossings
appear just below the threshold.

3.3. Models B and C for Prolate Spheroidal QD
In contrast to OSQD, for PSQD at fixed coor-

dinate xs of the slow subsystem the motion of the
particle in the fast degree of freedom xf is confined to
a 2D potential well with the effective variable radius

ρ0 (xs; a, c) = a
√

1 − x2
s/c

2, (24)

where ρ0(xs) = ρ̃0(xs)/a∗B. The parametric BVP for
Eq. (12) at fixed values of the coordinate xs from
the interval xs ∈ (−c, c) is solved in the interval xf ∈
(0, ρ0(xs)) for Model C using the program ODPEVP,
while for Model B the eigenvalues Ẽnρp+1(xs)/ẼR ≡
2Ei(xs), nρp + 1 = i = 1, 2, . . ., and the correspond-
ing parametric basis functions Φmσ=0

i (xf ;xs) ≡
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Fig. 3. Contour lines of the first five even-parity wave functions σ = +1 in the xz plane of Model B of OSQD for the major
semiaxis a = 2.5 and different values of the minor semiaxis c (ζca = c/a ∈ (1/5, 1)).

Φm
i (xf ;xs) without parity separation are expressed

in the analytical form:

2Ei (xs) =
α2

nρp+1,|m|
ρ2
0 (xs)

, (25)

Φm
nρp

(xs) =
√

2
ρ0 (xs)

J|m|

(√
2Enρp+1,|m| (xs)xf

)

|J|m|+1(αnρp+1,|m|)|
,

where αnρp+1,|m| = J̄
nρp+1
|m| are positive zeros of the

Bessel function of the first kind J|m|(xf ), labeled in
the ascending order with the quantum number nρp +
1 = i = 1, 2, . . .

The effective potentials (18) in Eq. (17) for the
slow subsystem are calculated numerically in quadra-
tures via the integrals over the fast variable xf of the
basis functions (25) and their derivatives with respect
to the parameter xs, and at m = 0 may be presented
in the analytical form:

2Ei (xs) =
(J̄ i

0)
2

ρ2
0 (xs)

, (26)

Hii(xs) =
(

ρ′0 (xs)
ρ0 (xs)

)2 (1 + J̄ i
0)

3
,
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Hij(xs) = 2
(

ρ′0 (xs)
ρ0 (xs)

)2

×

⎛
⎝J̄ i

0J̄
j
0

1∫
0

J1(J̄ i
0x)

J1(J̄ i
0)

J1(J̄
j
0x)

J1(J̄
j
0 )

x3dx

− J̄ i
0

1∫
0

J1(J̄ i
0x)

J1(J̄ i
0)

J0(J̄
j
0x)

J1(J̄
j
0 )

x2dx

− J̄j
0

1∫
0

J0(J̄ i
0x)

J1(J̄ i
0)

J1(J̄
j
0x)

J1(J̄
j
0 )

x2dx

⎞
⎠ ,

Qij(xs) = −2
ρ′0 (xs)
ρ0 (xs)

J̄j
0

1∫
0

J0(J̄ i
0x)

J1(J̄ i
0)

J1(J̄
j
0x)

J1(J̄
j
0 )

x2dx,

j �= i.

Figures 4, 5 illustrate the lower part of the
non-equidistant spectrum Ẽ(ζac)/ẼR = 2Et and the
eigenfunctions Ψmσ

t from Eq. (13) of even states of
PSQD Models B and C.

A one-to-one correspondence rule nρp + 1 =
np = i = n = nr + 1, i = 1, 2, . . ., and nzp = l − |m|
holds between the quantum numbers (n, l,m, σ̂)
of SQD with the radius r0 = a = c, the spheroidal
quantum numbers {nξ = nr, nη = l − |m|,m, σ} of
PSQD with the major c and the minor a semiaxes,
and the adiabatic set of quantum numbers [np =
nρp + 1, nzp,m, σ] under the continuous variation of

the parameter ζac = a/c. The presence of crossing
points of similar-parity energy levels in Fig. 4 under
the change of symmetry from spherical ζac = 1 to
axial, i.e., under the variation of the parameter 0 <
ζac < 1, in the BVP with two variables at fixed m
for Model B is caused by the possibility of variable
separation for Eq. (6) in the PSC [47], i.e., r.h.s.
of Eq. (17) equals zero, and by the existence of the
additional integral of motion (7). For Model C, at
each value of the parameter c there is also only a finite
number of discrete energy levels limited by the value
2U0 of the well walls’ height. As shown in Fig. 4b,
the number of energy levels of PSQD, equal to that
of SQD at a = c = r0, which is determined by the
product of mass μe of the particle, the well depth Ũ0,
and the square of the radius r̃0, is reduced with the
decrease of the parameter ã (or ζac) because of the
promotion of the potential curve (lower bound) into
the continuous spectrum, in contrast to Models A and
B having countable spectra. Note that the spectrum
of Model C for PSQD or OSQD should approach
that of Model B with the growth of the walls’ height
U0 of the spheroidal well. However, at critical values
of the ellipsoid aspect ratio it is shown that in the
effective mass approximation, both the terms (lower
bound) and the discrete energy eigenvalues in models
of the B type are shifted towards the continuum.
Therefore, when approaching the critical aspect ratio
values, it is necessary to use such models, as the
lens-shaped self-assembled QDs with a quantum
well confined to a narrow wetting layer [4], or, if the
minor semiaxis becomes comparable with the lattice
constant, to proceed to models beyond the effective
mass approximation (see, e.g., [52]).
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Fig. 5. Contour lines of the first five even-parity wave functions σ = +1 in the xz plane of Model B of PSQD for the major
semiaxis c = 2.5 and different values of the minor semiaxis a (ζac = a/c ∈ (1/5, 1)).

3.4. Models B for Dumbbell QD

For DQD at the fixed coordinate xs of the slow
subsystem the motion of the particle in the fast degree
of freedom xf is confined to a 2D potential double well
at 0 ≤ c1 ≤ 1 with the effective variable radius

ρ0 (xs) ≡ ρ0 (xs; a, c, c1) (27)

=
a

c

√
c2 − x2

s

x2
sc

2
1 + 1 − c2

1

c2
1c

2/4 + 1 − c2
1

.

Figure 6 illustrates the transformation of the prolate
spheroidal shape of QD with c = 2.5 and a = 0.5

considered in the previous section, into a “dumbbell”-
type shape and the corresponding evolution of the
lower part of the countable spectrum
Ẽ(ζac = 1/5, c1)/ẼR = 2Et of Model B versus the
deformation parameter c1 at a few fixed values c1 =
0, 0.25, . . . , 1.00 from the interval 0 ≤ c1 ≤ 1. At
c1 = 0 the discrete spectrum states are characterized
by a set of exact spheroidal or adiabatic cylindrical
quantum numbers, {nξ, nη,m, σ} or [nρp, nzp,m, σ].
Typically, one can see exact crossing of energy levels
having different parity (σ = ±1) with the growth
of the deformation parameter c1, which leads, first,
to the quasidegeneracy of these energy levels and
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m = 0 of PSQD.

then to their exact degeneracy at the critical value
c1 = 1. On the other hand, for small values of the
deformation parameter c1 one observes, first, exact
crossings (labelled with circles like in Fig. 4b above)
of similar-parity energy levels, replaced with the
avoided crossings (labelled with squares) for greater
values of the deformation parameter approaching the
critical value c1 = 1. A similar picture was observed
in the example of a 2D-Sinai billiard [53], a 2D-
quantum billiard with the shape x2 + y2 + εx3 = 1
and the deformation parameter ε > 0, possessing the
so-called whispering gallery modes and considered
in [54, 55], as well as in the unidirectional far-field
emission of coupled nonidentical microdisks [19].

Figure 7 illustrates the evolution of the first five
eigenfunctions with the increasing deformation pa-

rameter values c1 = 0, 0.11, . . . , 0.99. The transfor-
mation of eigenfunctions when passing the avoided
crossing points (labelled with squares) in Fig. 6b,
is shown in Fig. 7 for Model B of DQD (labelled
with arrows). Comparing these figures, one can
see that if the eigenfunctions are ordered in accor-
dance with the increasing eigenvalues of the BVPs,
then the number of nodes is not invariant under the
variation of the parameter c1 from c1 = 0 to c1 = 1
in the potentials (27). In particular, in Fig. 7 one
can see that the eigenfunction of the state [nρp = 0,
nzp = 6,m = 0, σ = +1] at c1 = 0.99 has the same
number of nodes as the eigenfunction of the state
[nρp = 1, nzp = 0,m = 0, σ = +1] at c1 = 0. Above
we could already observe this in Fig. 5 at a = 1 (up-
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going arrow) after several exact and avoided crossings
of the corresponding energy levels in Fig. 6b. At the
same time, the eigenfunction of the state [nρp = 0,
nzp = 8,m = 0, σ = +1] at c1 = 0.99 after avoided
crossing of the corresponding energy levels in Fig. 6b
has the same number of nodes as the eigenfunc-
tion of the state [nρp = 6, nzp = 0,m = 0, σ = +1] at
c1 = 0.

4. ABSORPTION COEFFICIENT
FOR AN ENSEMBLE OF QDs

One can use the mentioned differences in the en-
ergy spectra to verify the considered models of QDs
by calculating the absorption coefficient K(ωph, ã, c̃, )

of an ensemble of identical semiconductor QDs [56]:

K̃(ω̃ph, ã, c̃) =
∑
ν,ν′

K̃ν,ν′(ω̃ph, ã, c̃) (28)

= Ã
∑
ν,ν′

Ĩν,ν′δ(�ω̃ph − W̃νν′),

Ĩν,ν′ =
∣∣∣∣
∫

Ψ̃e
ν(r̃; ã, c̃, )Ψ̃h

ν′((r̃; ã, c̃, ))dr̃
∣∣∣∣
2

,

W̃νν′ = Ẽg + Ẽe
ν(ã, c̃) + Ẽh

ν′(ã, c̃),

where Ã is proportional to the square of the matrix el-
ement in the Bloch decomposition, Ψ̃e

ν(u) and Ψ̃h
ν′ are

the eigenfunctions of an electron (e) and a heavy hole
(h), Ẽe

ν and Ẽh
ν′ are the energy eigenvalues for an elec-

tron (e) and a heavy hole (h), depending on the semi-
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axis size c̃, ã for OSQD (or ã, c̃ for PSQD) and the
adiabatic set of quantum numbers ν = [nzo, nρo,m]
and ν ′ = [n′

zo, n
′
ρo,m

′] (ν = [nρp, nzp,m] and ν ′ =
[n′

ρp, n
′
zp,m

′]), where m′ = −m, Ẽg is the band gap
width in the bulk semiconductor, ω̃ph is the incident
light frequency, W̃νν′ is the inter-band transition
energy for which K̃(ω̃ph) has the maximal value.
We rewrite the expression (28) using dimensionless
quantities in reduced atomic units

K̃(ωph, ã, c̃) = ÃẼ−1
g

∑
ν,ν′

Ĩν,ν′δ[fν,ν′(u)],

fν,ν′(u) = λ1

− (2Eg)−1(2Ee
ν(a, c) + 2Eh

ν′(a, c)(μh/μe)),

where the parameter u will be defined below, λ1 =
(�ω̃ph − Ẽg)/Ẽg is the energy of the optical in-

terband transitions scaled to Ẽg, 2Eg = Ẽg/Ẽ
e
R =

1.43/(5.27 × 10−3) is the dimensionless band gap
width. For both electron and hole carriers the dimen-
sionless energies 2Ee

ν = Ẽe
ν/Ẽe

R and 2Eh
ν (μh/μe) =

Ẽh
ν /Ẽe

R are expressed in the same reduced atomic
units Ẽe

R.

Now consider an ensemble of OSQDs (or
PSQDs) with different values of the minor semiaxis
c = uoc̄ (or a = upā) determined by the random
parameter u = uo (or u = up). The corresponding
minor semiaxis mean value is c̄ at fixed major semiaxis
a (or ā at fixed major semiaxis c) and the appropriate
distribution function is P (uo) (or P (up)). Conven-
tionally, they use the normalized Lifshits–Slezov
P (u) ≡ P LS(u) [57] or Gaussian P (u) ≡ P G(u)
distribution functions (

∫
P (u)du =

∫
uP (u)du = 1):

P LS(u) := {34eu2 exp(−1/(1 − 2u/3))/25/3/(u + 3)7/3/(3/2 − u)11/3, u ∈ (0, 3/2); 0, otherwise},
P G(u) := 1/

√
2π/σ exp(−(u − 1)2/(2σ2)),

where ū =
∫

uP G(u)du = 1 is the mean value of u

and σ2 = (
∫

(u − ū)2P G(u)du) is the variance. The
absorption coefficient of an ensemble of semiconduc-
tor QDs with different dimensions of minor semiaxes
is then expressed as

K̃o(ωph, ¯̃a, c̃) =
∫

K̃(ωph, ¯̃a, c̃, uo)P (uo)duo,

K̃p(ωph, ã, ¯̃c) =
∫

K̃(ωph, ã, ¯̃c, up)P (up)dup.

Taking the known properties of the δ function into
account, we arrive at the analytical expression for
the the absorption coefficient K̃(ωph, ã, c̃) of a system
of semiconductor QDs with a distribution of minor
semiaxes:

K̃(ωph)
K̃0

=
∑
ν,ν′,s

K̃ν,ν′(ωph)
K̃0

, (29)

K̃ν,ν′(ωph)
K̃0

= Ĩν,ν′

∣∣∣∣∣
dfν,ν′(u)

du

∣∣∣∣
u=us

∣∣∣∣∣
−1

P (us),

where K̃0 = Ã−1Ẽg is the normalization factor, us are
the roots of the equation fν,ν′(us) = 0.

In particular, for Model B of OSQD or
PSQD we have the interband overlap
Ĩν,ν′ = δnρo,n′

ρo
δnzo,n′

zo
δm,−m′ for OSQD,

Ĩν,ν′ = (J1+|m|(αnρp+1,|m|)/J1−|m|(αnρp+1,|m|))2 ×
×δnzp,n′

zp
δnρp,n′

ρp
δm,−m′ for PSQD, and the selection

rules nzo = n′
zo, nρo = n′

ρo, and m = −m′ or nρp =
n′

ρp, nzp = n′
zp and m = −m′, respectively. Note that

the contributions of non-diagonal matrix elements
to the energy values are about 1% for OSQD and
PSQD of Model B; then in the Born–Oppenheimer
approximation of the order bmax for the absorption
coefficient we get

fν,ν′(u) = λ1 −
bmax∑
j=0

Ě(j)uj−2. (30)

Here the coefficients Ě(j) are defined by

Ě(j) = (2Eg)−1E
(j)
io ω2−j

ρ;no
(c̄)(1 + μe/μh) (31)

or Ě(j) = (2Eg)−1E
(j)
ip ω2−j

z;nρp
(ā)(1 + μe/μh),

ωρ;no(c̄) = πno/(ac̄), ωz;nρp(ā) = αnρp+1,|m|/(āc),

E
(0)
io = a2/4, E

(1)
io = (2nρo + |m| + 1),

E
(2)
io = (6nρo|m| + 2 + 6nρo + 6n2

ρo

+ |m|2 + 3|m|)a−2,

E
(3)
io = 3(6nρo + 3|m| + 2 + |m|2 + 6n2

ρo

+ 6nρo|m| + 4n3
ρo + 6|m|n2

ρo + 2|m|2nρo)a−4/2,
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E
(0)
ip = c2, E

(1)
ip = (2nzp + 1),

E
(2)
ip = +3(2nzp + 2n2

zp + 1)c−2/4,

E
(3)
ip = 3(3n2

zp + 7nzp + 2n3
zp + 3)c−4/16.

The coefficients of the order bmax ≥ 4 are calculated by
the perturbation theory algorithms [37, 38] using ex-
act solutions of 2D and 1D oscillators with adiabatic
frequencies ωρ;no(c̄) and ωz;nρp(ā) from (31) that dis-
tinguish from conventional ones, for example, ωρ and
ωz used in Section 3.1 or in [21, 27]. The accuracy
of such approximations up to bmax = 5 is about 4–6

decimal digits in comparison with the numerical re-
sults of the crude diagonal adiabatic approximation
(CDAA) of Eq. (17) without Hii(xs) for the states
from Fig. 2a at c = 0.5 and Fig. 4a at a = 0.5. In
the case a = c = 1 the accuracy is only about two
decimal digits in comparison with the CDAA of the
exact spectrum Eq. (23) of Model B of SQDs [56].

Note that in Model B 2Eio and 2Eip monotoni-
cally depend upon the parameter u and, therefore, the
algebraic equation fν,ν′(u) = 0 has the only solution
in the considered domain of definition. Using the

notations λ′
1 = λ1 for bmax = 1 and λ′

1 = λ1 −E
(2)
io , or
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λ′
1 = λ1 − E

(2)
ip for bmax ≥ 2, we rewrite this equation

in the Born–Oppenheimer approximations up to the
third order bmax ≤ 3

fν,ν(u) = λ′
1 − Ě(0)u−2 − Ě(1)u−1 − Ě(3)u = 0,

which has the required roots u1 = u
(bmax)
1 :

u
(1,2)
1 = (2λ′

1)
−1(Ě(1) + ((Ě(1))2 + 4λ′

1Ě
(0))1/2),

u
(3)
1 ≈ u

(2)
1 + Ě(3)(u(2)

1 )4/(2Ě(0) + Ě(1)u
(2)
1 ).

For the Lifshits–Slezov distribution Fig. 8 dis-
plays the total absorption coefficients K̃(ωph)/K̃0

and the partial absorption coefficients K̃ν,ν(ωph)/K̃0,
that form the corresponding partial sum (29) over
a fixed set of quantum numbers ν at m = −m′ = 0.
One can see that the summation over the quantum
numbers nzo (or nρp) numerating the nodes of the
wave function with respect to the fast variable gives
the corresponding principal maxima of the total ab-
sorption coefficients for the ensemble of QDs with
distributed dimensions of minor semiaxis, while the
summation over the quantum number nρo (or nzp)
that label the nodes of the wave function with respect
to the slow variable leads to the increase of amplitudes
of these maxima and to appearing secondary maxima
in the case of sparer energy levels of Model B OSQDs
(or PSQDs).

In the regime of strong dimensional quantization
the frequencies of the interband transitions between
the levels no = 1, nρo = 0, m = 0 for OSQD or
np = 1, nzp = 0, m = 0 for PSQD in the BO1, at
the fixed values ã = 2.5ae and c̃ = 0.5ae for OSQD

or ã = 0.5ae and c̃ = 2.5ae for PSQD, are equal to
Δω̃ph

100 = 1.64× 1013 s−1 or Δω̃ph
100 = 3.32× 1013 s−1

(Δω̃ph
100 = (2π�)−1(W̃100,100 − Ẽg) with the accuracy

to 3% and 0.5%, respectively), corresponding to
the infrared spectral region [7, 8]. With decreasing
semiaxis the threshold energy increases, because
the “effective” band gap width increases, which is
a consequence of the enhancement of dimensional
quantization. Therefore, the above frequency is
greater for PSQD than for OSQD, because the
OSQD implemented in two directions of the plane
xy is effectively greater than that in the direction
of the z axis solely at similar values of semiaxes.
Higher-accuracy calculations reveal an essential
difference in the frequency behavior of the absorption
coefficient for interband transitions (see Fig. 9) in
systems of semiconductor OSQDs or PSQDs having
a distribution of minor semiaxes, which can be used
to verify the above models.

5. CONCLUSIONS

The presented examples of the analysis of en-
ergy spectra of SQD, OSQD, PSQD, and DQD
models with three types of axially symmetric po-
tentials demonstrate the efficiency of the developed
computational scheme and SNA. Only Model A
(anisotropic harmonic oscillator potential) is shown
to have an equidistant spectrum, while Models B
and C (wells with infinite and finite wall height)
possess non-equidistant spectra. In Model C, there
is a finite number of energy levels. This number
becomes smaller as the parameter a or c (ζac or
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ζca) is reduced because the potential curve (lower
bound) moves into the continuum. Models A and
B have countable discrete spectra. This difference
in spectra allows verification of SQD, OSQD, and
PSQD models using the experimental data [2], e.g.,
photoabsorption, from which not only the energy level
spacing, but also the mean geometric dimensions
of QD may be derived [7, 12, 13]. The considered
examples of calculating the absorption coefficient for
ensembles of OSQDs or PSQDs with random minor
semiaxes in Model B have proved the possibility of a
similar verification. It is shown that there are critical
values of the ellipsoid aspect ratio, at which in the
approximation of effective mass the discrete spectrum
of the models with finite-wall potentials turns into
a continuous one. Hence, using the experimental
data, it is possible to verify different QD models
like the lens-shaped self-assembled QDs with a
quantum well confined to a narrow wetting layer [4],
or to determine the validity domain of the effective
mass approximation, if a minor semiaxis becomes
comparable with the lattice constant and to proceed
opportunely to more adequate models such as [52].

Further development of the method, symbolic–
numerical algorithms, and the software package is
planned for solving the quasi-2D and quasi-1D BVPs
with both discrete and continuous spectrum, which
are necessary for calculating the optical transition
rates, channeling and transport characteristics in the
models like quantum wells or quantum wires and low-
energy barrier nuclear reactions.
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