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Introduction

. magnetic catalysis of chiral symmetry breaking [1996...]

inverse magnetic catalysis  [2012-2014] Electromagnetic fields

_ - | can drive very
the possible p meson condensation in strong magnetic field

at finite temperature and density  [2010-2015] interesting phenomena

properties of nuclear matter including quark-hadron phase
transition (astrophysics)

anisotropic viscosity in hydrodynamical equations [2010-2014]

the enhanced anisotropic production of soft photons through
"magneto-sonoluminescence" (the conversion of phonons into
photons in an external magnetic field)  [2010]

early stage phenomena in heavy ion collisions
(like EM-field induced particle production)  [2010]

dissociation of heavy flavor mesons  [2011-2015]

chiral magnetic effect (CME)  [2005-2008 -] A ]ot of these phenomena were

chiral electric separate effect (CSE)  [2013] treated in the approximation of
chiral magnetic waves (CMW)  [2012] a constant external field.

[ [ — I.?
chiral vorticity effect  [2000-2011] Field D}'Ilﬂllllcb '

chiral vorticity wawves [2{}15] eecccccee



The first dynamical estimate of the magnetic field strength
(Au-Au collisions, b=10 fm)
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From SIS to LHC: from hadrons to partons

The goal: to study of the phase transition from hadronic to partonic matter
and properties of the Quark-Gluon-Plasma from a microscopic origin

= need a consistent non-equilibrium transport model

- with explicit parton-parton interactions (i.e. between quarks and gluons)
- explicit phase transition from hadronic to partonic degrees of freedom

1 1QCD EoS for partonic phase (,cross over’ at j1;=0)

 Transport theory for strongly interacting systems: off-shell PRsh
Kadanoff-Baym equations for the Green-functions S< (x,p) in

phase-space representation for the partonic and hadronic phase

IZD‘ Parton-Hadron-String-Dynamics (PHSD) \

QGP phase described by W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034913;
NPAB31 (2009) 215;

Dynamical QuasiParticle Model e B SR B
A. Peshier, W. Cassing, PRL 34 [2003) 172301;
(DQPM)

Cassing, NPA 791 (2007) 365: NPA 793 (2007)




The Dynamical QuasiParticle Model (DQPM)

Basic idea: Interacting quasiparticles

- massive quarks and gluons (g, q, q,,,) With spectral functions :
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1QCD: 0. Kaczmarek et,

‘ _ PRD 72 (2005) 059903
» fit to lattice (1QCD) results (e.g. entropy density)

with 3 parameters: T/T,=0.46; c=28.8; A=2.42

1 2 3 4 5 6 7 8910
/T,

DQPM: Peshier, Cassing, PRL 94 (2005) 172301;
Cassing, NPA 791 (2007) 365: NPA 793 (2007)

=» quasiparticle properties (mass, width)



The Dynamical QuasiParticle Model (DQPM)

= (Quasiparticle properties:
" large width and mass for gluons and quarks % Broad spectral function :

Gluon‘s P T=135T,
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®DOPM matches well lattice QCD
*DOoPM provides mean-fields (1PI) for gluons and quarks !
as well as effective 2-body interactions (2P1)
*DOPM gives transition rates for the formation of hadrons = PHSD

(HSD)
DQPM: Peshier, Cassing, PRL 94 (2005) 172301;

Cassing, NPA 791 (2007) 365: NPA 793 (2007)



x [fm]

PHSD: snapshot in the reaction plane
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o Color scale: baryon number density
« Black levels: parton density 0.6 and 0.01 fm3

« Red arrows: local velocity of baryon matter

V. Konchakovsky et al., PRC 90 (2014) 014903



Excitation function of elliptic flow

Y .Odyniec, Acta Phys. Pol. B40, 1237 (2009)
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Elliptic flow from PHSD vs. STAR/PHENIX
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is reasonably described by PHSD
due to an Increasing fraction of
partonic degrees-of-freedom !

V.Konchakovski et al. PR C85, 011902 (2012) (R)



Transport model with electromagnetic field

Generalized on-shell transport equations in the presence of electromagnetic fields can
be obtained formally by the substitution:

—
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Time dependence of eB,

AuAu, "-II.';J'N_.'." = 200 GeV

. ' HSD  AlL b=10 fm  s— D.E. Kharzeev et
o 0% e HSD Spect, b=10 fm - al., Nucl. Phys.
-'g“ ; "E_ Kharzeev, b= 8 fm ===ues A80_3z 227 (2008)
= 100 | RN Kharzeev. h=12 fiy = = = | ] Collision of two
— . infinitely thin
S 10 layers (pancake-
S g like)
aa
— P

V.Voronyuk,
107] | ' ' ' ' V.Toneev et al., PR
- T T B C84, 035202 (2011)

e Until t~1 fm/c the induced magnetic field is defined by spectators only.
e Maximal magnetic field is reached during nuclear overlapping time
At~0.2 fm/c, then the field goes down exponentially.



Beam energy dependence of eB,
AUAuU, b=10fm
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t [fm/c] V.Voronyuk, et al., PR
C84, 035202 (2011)

There is a non-vanishing field before nuclear touching moment



Comparison of magnetic fields

f A The Earths magnetic field 0.6 Gauss

A common, hand-held magnet 100 Gauss

The strongest steady magnetic fields 4.5 x 10° Gauss
achieved so far in the laboratory

The strongest man-made fields 10" Gauss
ever achieved, if only briefly

Typical surface, polar magnetic 10" Gauss
fields of radio pulsars

Surface field of Magnetars 10" Gauss

http://solomon.as.utexas.edu/~duncan/magnetar.htmil

several times 10¥ G

At BNL we beat them al“ Phys. Rev. C 89, (45805 (2014)

Off central Gold-Gold Collisions at 100 GeV per nucleon
eB(t=02fm) = 10°~10" MeV’ ~10" Gauss
beam energy  peak value of eB, /(m?)
0 GeV (NICA) ~ (.2
m% ~ IOIBGHUSS 200 GeV (RHIC) ~ 4
2.76 TeV (LHC) ~10




Magnetic field evolution

For a single moving charge
(HSD calculation result)

For two-nuclei collisions,
artist’s view: arXiv:1109.5849




Time evolution of the magnetic field
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V.Voronyuk, V.Toneev. et al., Phys. Rev. C84, 035202 (2011)
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Magnetic field and energy density correlation
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Electric field evolution

Electric field of a single
moving charge has a
“hedgehog” shape

AuAu, VS, =200 GeV, b=10 fm, 1=0.05 fm/c

e NS
LRl A DA

e E (x,y=0,z)/m_"

0
x [fm] 20

V.Voronyuk, V.Toneev. et al., Phys. Rev. C84, 035202 (2011)
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Fluctuations in the early state of HIC

@ Participants Y| PHSD: AutAu,b =9 fm V.Toneev et al., PR C65, 034910 (2012)
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Compensation of electric and magnetic forces
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CME: a possible CP violation signal

A remarkable property of gauge theories 1s the existance of nontrivial
topological configurations of gauge fields. Gauge field transitions
with changing the topological charge involve configurations which
may violate P and CP invariance of strong interactions.
Fermions can interact with a gauge field configurations, transtorming
left- into right-handed quarks and vice-versa via the axial chiral
anomaly and thus resulting in generated asymmetry between left- and
right-handed fermions. In this states a balance between left-handed
and right-handed chiral quarks is destroyed.

(NL — Npltmoo = 2N Qs
In the presence of inbalanced chirality a magnetic field induces
a chiral electric current along the the magnetic field (CME).

2 I«
D.Kharzeev et al., NP A803, 227 (2008); —N.Y s o

2
Ann.Phys. 325, 205 ( 2010); PR D78, 074033 (2008) ;e




Chiral magnetic effect in pictures

D. Kharzeev, PL B633, 260 (2006):
D. Kharzeev. A. Zlutmtsky, NP A797,

67 (2007); D. Kharzeev., L. McLerran,
B @ H. Warringa, NP A803, 227 (2008).
5 Qw;&u@

Red arrow - momentum; blue arrow - spin;

In the absence of topological charge no asymmetry between left and
right (fig.1) ;the fluctuation of topological charge (fig.2) in the
presence of magnetic field induces electric current (fig.3)




Background for BES experiments on CME
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STAR Coll., J.Phys. G38, 124166 (2012)
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In-plane and out-of-plane corr. (worrings)

Measure the difference between in-plane and out-of-plane correlations:

1
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y [fm]

Electric field E, in the transverse plane

15

Cu+Au (200 GeV) Au+Au (200 GeV)

t=0.1 fim/c 15 1=0.1 fm/c

In the overlapping region of asymmetric peripheral
collisions a finite electric current appears to be directed
from the heavy nuclei to light one.

e E_,,;fm,‘,t2



Charge-dependent v, distributions at RHIC

Cu+Au (200 GeV)
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1/N,, dN_ /dn

Charge-dependent v, distributions at NICA
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In the presence of the electromagnetic
force the splitting of 7° and =~ is clearly
seen => Signal of strong electric strength
is realized in heavy-ion collisions



Charge-dependent p; distributions at NICA

The transverse momentum v,
distributions of +/- pions are
different in the Cu- and Au-
sites. The shape of spectra
differs in forward and backward
semispheres
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Non-Abelian fields

we consider SU(2) non-Abelian fields only.
In the classical approximation they are c-number functions
to be solutions of the classical Yang-Mills equations

L= —}Lﬁwﬁw — A
Color vector ,E# = (A}, A7, A7) - a triplet of the Yang-Mills

fields of different colors,

J# - the current density of external color sources,

Gw = d, ~1 u}, A+ gél X 4_ - the gluon field tensor,

DEf =8 f + gA* x f - the covariant derivative.
The classical equations of motion DHG . = _}[,, .
The compatibility conditions of this system D+ j' = 0.

It generally implies that the color vector charge is m}t conserved
in a sense similar to electrodynamics.

A suitable solution of the Yang- Mills equations for a single particle
with constant color charge ' one may take the potentials of the form
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Chromoelectric and chromomagnetic fields

As an approximate solution, we consider a superposition of the Liénard-Wiechert
potentials in which the vector of the particle color charge can change in time and
should be taken at the retarded time.
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(Covariant four-current for a pointlike particle and the compatibility condition are
Ju(r', 1) = (C o(r' —n(t)),C w(t) 6(r" —r(t)))
C=g [g-ﬁ(;:. r)—v A(t, ﬂ] xC. [ag=g*/(4r) = 0.3]

Thus, taking proper derivatives the non-Abelian chromo-fields are (n = R/|R|)
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Two point-like sources located at z=0 and 1

1.5 T T 0

Assuming one particle carries a color charge P and the other
particle a Ll]c‘l,l'gt (), the consistency equa,tlons are simplified as

—

P=glt,e) x P, and Q = g 3lt,a) x Q

which result in charge modulus conservation P2 =0 and QE = )
If the scalar potential ¢ is spanned by the two color vectors deﬁned REERIEE 00 tas 2 as
above 0 = ¢; P + ¢y Q then the vector potential Ais spanned
by the vector product of charges only A=aPx () . The last two
equations fix the Coulomb gauge. So, we have equations for the
potential components y, ¢, and the vector field a
Results are obtained in a quark model with four-fermion interaction
generated by strong stochastic gluon vacuum fields (instanton liquid).
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looks very similar to
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the EM ﬁeld plcture Isolines of the cil[;?i)moelect. field

G.Zinovjev, C.Molodtsov, Phys.Atom.Nucl.70, 1136 (2006); Eur. Phys. J.
C75, 141 (2015).

W.Cassing, V.Goloviznin, S.Molodtsov et al., Phys.Rev C88, 064909 (2013)



Slmplest color conflguratlons

Twao color charges P () mov ing along the z-axis towards each other with velocities v p=1-2.10"2
Emd wg| =1-1 10-2 , respectively. The observation point is 2 = 2 fm, » = 1 fm, meeting point
V/5 ~ 2.24. The initial angles in the color space are fp = 7/1.95, ¢p = 7/20 and fy = —7/1.95,

0 =—m/20 => almost oppositely directed charges. The ﬁeln:l created by by E-lectric charge £ is

asaumed of the same interaction strength as the color charges (e”, el (4r) = ¢/ (4r) = 0.3).

Particularities: Field picture depends on the initial color state;
The color charges are rotating infinitely fast near the meeting point, w" = a_/Int;
There is a new color glow effect (not observable for electromagnetic field)
These particularities inherent also to color charge-dipole and dipole-dipole scatterings

4

' B il *
b g = 7/l o= w/20 | @ d= L8 p= 70 .'l' !
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] ; 0 5 ; . . | 5 3 A charge enters the interaction
t [fm/e] t [fm/d] area at T = —d/ (v + w);

W.Cassing, et al., Phys.Rev C88, 064909 (2013) th=4172T #=41=LT




PHSD with color fields

The PHSD transport model is generalized to account for creation of color fields

LR

J } - o
{E-I_(IE-I_FP L) T-",. ‘|‘(—"'|.-_"'r[. E.-r+f..-E‘|‘{”~:\"HEI) }f (_-m._r{l:f fl f;-. 1

The quasiparticle propagation in the color field is caleulated according to the Wong force
%=Eﬁ+5{vxﬁ}.
We assume that quarks between collisions move with a constant velocity and the change in

the color charge is neglected, hut the collective interaction resulting from the Debve screening
is taken into consideration by using the chromo fields. Thus

C e MX(1 4+ MX)(1 - v?)
4 R (1 —wvn)®

EL =

E= (11 — v), H=-vxE.

with X = |X| =R |1 — (vn)|. For moderate temperatures T' <300 MeV the chromo fields
practically are not suppressed by the Debye factor and their values are close to those for the
point-like source.

V.Voronyuk. G.Zmovjev et al., Yad. Fys. 78, 338 (2015)



Color field fluctuations in heavy ion collisions

Pb+Pb (2.76 TeV), b=6 fm; N_ =10
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The strength of the chromoelectric and chromagnetic fields strongly fuctuates
and exhibits a stochastic behavior of the event-by-event calculation results.



Abelian and and non-Abelian dispersion

Dispersion of the color field strength D5, = Ezg — E y%, If the space components

. S~ TRV ELE
are approximately equal to each other then, v/ D%, = {{|E|}} {N,).
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V.Voronyuk. G.Zinovjev et al.. Yad. Fys. 78, 338 (2015)

4




Space-time evolution of parton density

Single event
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Comparison with heavy-ion experiment
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Chromo effect is not seen in global characteristics below the RHIC
energy and effect is minor at higher one. Further work is needed.



Main results

# The microgcopic PHSD transport approach 12 generalized to include the creation
of the electromagnetic field in heavy-ion collisions, its propagation and influence
on the gquasgiparticle transpore. It 12 demonstrated that the EM strength reached in
HIC iz highezt among all procesges in nature. Temporal and 2pacial digtributions
of EM helds are investigated.

= It 12 curned out that global HIC characteristics are practically ingensitive to the
EM effects. An account of EM field Huctuations does not change thic fact. The
colution of chiz puzzle has been found: It i not due to the short interaction time
but follows from a compengation effect between electric and magnetic components
of the Lorentz force.

+ Ag a particular effect, observables for the Chiral Magnetic Effect was investigated
with background treated in the PHSD model with EM field. The STAR data at
ey ==7.7 and 11.2 GeV were sucecessfully deseribed. It 2ays that thera iz no
CME at theze low (NICA 7!) energies. IdVscrepancy at higher energies points out
that other sources (inclnding a posgible CNE) may contribute at higher energy.

= It hag been found that for asymmetric systems -— like Cu-Anu collisions — the
directed flow 12 sensitive to inclugion of the electromagnetic field resulting in
charge-dependent distributions. Obgervacion of charge-dependent eplitting would
evidence the creation of strong electromagnetic fields in HIC. Predictions for the
INICA energy are presented.

* The Yang-Mill: theory ig analyzed in the SU(2) clascical approsximation. The
calculated chromomagnetic and chromoelactric fields for two color charges at reat
exhibit structure very cloge to that for the electromagnetic field.



Main results, cont’d

* As a prelude to the kinetic approach, the ultrarelativiscic scattering of two
aimplest colored configurations ( charge-charge, charge-dipole, dipole-dipole) moving
along a straight line towards each other is treated in the classical approximation.
The time evolution of chromomagnetnic and chromoelectric field scrength is studied
in non-Abhelian and Abelian cagses. Quantum rotation of color charge vector in the
non-Abelian case results in a masimum in field strength at the the moment of
passing of two color charges through each other (color charge glow effect). This
effect was not observed earlier and is absent in the Abelian case.

e Tlf'lE" PHED ]-Ci]'.ll';."l'.il" H.Ppl‘ﬂﬂ.f'l'l {ﬂ génm'a]izpcl tD inc‘lut‘]e tlf'lE" C‘Tﬂﬂ.tiﬂn l'.'l'F C]'.I'I.'ﬂ'ﬂ'lﬂ
field in relacivistic HIC., The field of a point-like charge propagacing along the
trajectory v(r(f)) 12 described by the (retarded) Liénard-Wiechert potential and its
influence on the gquasiparcicle transport. The color field strength wildly Huctuates
almost vanishing in average, while in the EM case the dominating B, component,
coming from the regular motion of spectactors, is rather smooth. Dispersions of
chromomagnetic and chromoelectric field strength are very large, slowly changing
in time and exceeding those in the EM case roughly az o, /n_,, ~40. Temporal and
spatial distributions of chromo fields are investigated.

+ Due to Huctuation the nature of chromo field, its influence on global obsrvables in
ulcrarelativistic (above the top RHIC energy) collisions is gquite minor. In contrast
to expectation, the sharp /5y growth of average mmltiplicity and average transversze
energy at the mid-rapidity observed in the LHC experiments ig mainly explained
by an increase in quark-quark interaction energy (similarly to the rise of v; in the
RHIC energy range). Correction from the color fields is small. Further analysis
including various observables is needed.
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