Significant results of leading experiments

World science, 04 June 2018

NOvA experiment sees strong evidence for antineutrino oscillation

For more than three years, scientists on the NOvA collaboration have been observing particles called neutrinos as they oscillate from one type to another over a distance of 500 miles. Now, in a new result unveiled today at the Neutrino 2018 conference in Heidelberg, Germany, the collaboration has announced its first results using antineutrinos, and has seen strong evidence of muon antineutrinos oscillating into electron antineutrinos over long distances, a phenomenon that has never been unambiguously observed.

The new result is drawn from NOvA’s first run with antineutrinos. NOvA began studying antineutrinos in February of 2017. Fermilab’s accelerators create a beam of muon neutrinos (or muon antineutrinos), and NOvA’s far detector is specifically designed to see those particles changing into electron neutrinos (or electron antineutrinos) on their journey.

If antineutrinos did not oscillate from muon type to electron type, scientists would have expected to record just five electron antineutrino candidates in the NOvA far detector during this first run. But when they analyzed the data, they found 18, providing strong evidence that antineutrinos undergo this oscillation.

The Higgs boson reveals its affinity for the top quark

New results from the ATLAS and CMS experiments at the LHC reveal how strongly the Higgs boson interacts with the heaviest known elementary particle, the top quark, corroborating our understanding of the Higgs and setting constraints on new physics.