Data acquisition flow system for upgraded BM@N tracking system / Integration of cooling systems and FPGA readout boards into unified slow-control platform for MPD NICA
Seminars
Veksler and Baldin Laboratory of High Energy Physics
VBLHEP Scientific and Methodological Seminar #12-2025
Date and Time: Thursday, 23 October 2025, at 10:00 AM
Venue: room 347, bld. 215, Veksler and Baldin Laboratory of High Energy Physics, online on Volna
-
Seminar topic: “Data acquisition flow system for upgraded silicon tracking system of the BM@N Experiment” (based on the materials of the dissertation for the degree of Candidate of Technical Sciences)
Speaker: Mikhail Shitenkov
Abstract:
Диссертация посвящена созданию потоковой системы сбора данных, созданной на базе кремниевых трековых модулей типа CBM/BMN, для первой плоскости модернизированной кремниевой трековой системы эксперимента BM@N. В работе представлен обзор современных тенденций в области построения систем сбора данных в физике высоких энергий. Приведены результаты разработки и исследования характеристик входной детекторной электроники модулей на базе специализированной интегральной схемы STS-XYTER. Представлены технические решения и результаты создания устройств концентрации и обработки данных на базе ПЛИС с поддержкой высокоскоростного оптического протокола связи GBT, а также методы интеграции потоковой входной электроники в глобальную пособытийно-триггерную систему сбора данных эксперимента BM@N при максимальной частоте триггера до 78 кГц. Приведены результаты испытания разработанной системы сбора данных на протонном пучке с энергией 1 ГэВ.
-
Seminar topic: “Integration of cooling systems and FPGA readout boards into unified MasterSCADA-based slow-control platform for MPD at NICA”
Speaker: Youmna Ghoneim
Abstract:
The Multi-Purpose Detector (MPD) at the Nuclotron-based Ion Collider Facility (NICA) includes the Time Projection Chamber (TPC) whose operation critically depends on stable thermal conditions and precise control of the associated electronics to ensure accurate and reliable data acquisition.
The cooling and thermal stabilization system is implemented as a fully leakless water-based design, maintaining sub-atmospheric pressure to prevent leaks. It consists of approximately 117 channels, of which 76 are dedicated to thermal stabilization. Each channel incorporates pressure reducers, electric heaters, flow meters, temperature and pressure sensors, and safety valves. More than 250 temperature sensors are distributed across the TPC to enable multi-zone regulation through programmable logic controllers (PLCs). A dedicated graphical user interface (GUI) built in MasterSCADA 4D provides real-time monitoring of coolant temperature, flow rate, conductivity, liquid level, and vacuum levels, while also enabling data archiving, automated interlocks, and fault diagnostics.
The FPGA readout boards—critical for the TPC data acquisition system—were also integrated into the slow-control platform. Using Intel Quartus for FPGA configuration and the OPC UA protocol as middleware, logic-level outputs from the FPGA (including operational status, error flags, and communication integrity) are published to an OPC UA server. MasterSCADA acts as the client, subscribing to these tags for visualization, alarm management, and archiving.
The integration of thermal stabilization and cooling systems and FPGA-based readout electronics within a single MasterSCADA platform provides a robust, user-friendly, and extensible slow-control solution. This development significantly improves system reliability, operational transparency, and long-term stability of detector operations, representing a critical contribution to the success of the MPD experiment at NICA.